材料腐蚀与防护
- 格式:doc
- 大小:32.00 KB
- 文档页数:3
材料腐蚀与防护材料腐蚀是破坏金属与其他材料性能的主要因素之一。
本文将探讨材料腐蚀的原因、分类、对工业生产的影响,并介绍几种常见的防腐方法。
一、材料腐蚀的原因材料腐蚀是由于材料表面与外界介质(气体、液体、固体)相互作用而导致的一种破坏现象。
其中氧化、腐蚀、电化学腐蚀是主要原因。
氧化是指金属在空气中或其他氧化性气体中与氧反应形成金属氧化物,导致表面氧化腐蚀。
而腐蚀是指金属或合金在特定条件下受化学或电化学作用而变质或溶解的过程。
电化学腐蚀是指在电解质溶液中,金属表面上生成一些电化学反应,使金属表面腐蚀。
二、材料腐蚀的分类根据腐蚀原因,材料腐蚀可分为物理腐蚀和化学腐蚀两类。
物理腐蚀指在材料表面受到机械力作用或磨损导致的表面损害。
化学腐蚀是指金属在特定环境中受到化学作用而发生的腐蚀现象。
化学腐蚀又可以细分为氧化腐蚀、酸性腐蚀、碱性腐蚀等。
三、材料腐蚀对工业生产的影响材料腐蚀会降低材料的强度、硬度、耐磨性、韧性等性能,导致设备的损坏和寿命缩短。
在工业生产中,材料腐蚀不仅会造成设备的停工维修,增加维修成本,还会对产品质量造成影响,进而影响企业的经济效益。
四、常见的防腐方法为了延长材料的使用寿命,减少材料腐蚀带来的负面影响,工程界广泛采用各种防腐技术。
常见的防腐方法包括防护涂层、阳极保护、防腐合金材料等。
防腐涂层是在金属表面形成一层保护膜,隔绝金属表面与外界介质的直接接触,起到防腐护材料的作用。
阳极保护则是靠金属阳极的电化学性质来保护金属表面,使金属不易腐蚀。
防腐合金材料则是在金属表面镀一层稳定、耐腐蚀的合金,增加材料的耐蚀性。
结语材料腐蚀是工业生产中不可忽视的问题,对材料的选择和处理,以及采取有效的防腐措施至关重要。
只有有效地控制材料腐蚀,才能确保设备的正常运行,延长设备的使用寿命,提高工业生产的效率和质量。
希望本文对您了解材料腐蚀及防护方法有所帮助。
金属材料的腐蚀与防护金属材料在使用过程中容易受到腐蚀的影响,从而降低其机械性能和寿命。
为了延长金属材料的使用寿命,保护措施是至关重要的。
本文将讨论金属材料腐蚀的原因和常见的防护方法。
一、金属材料腐蚀的原因金属材料腐蚀的原因主要包括化学腐蚀和电化学腐蚀两种。
1. 化学腐蚀化学腐蚀是指金属材料与大气中的氧、水、酸、碱等物质发生反应,导致金属表面发生变化。
常见的化学腐蚀有氧化腐蚀、酸性腐蚀和碱性腐蚀等。
氧化腐蚀是指金属与氧气反应生成金属氧化物的过程。
例如铁与氧气反应生成铁氧化物,即常见的铁锈现象。
在湿润环境下,氧化腐蚀速度更快。
酸性腐蚀是指金属与酸性溶液接触产生的化学反应。
常见的酸性腐蚀有硫酸腐蚀、盐酸腐蚀等。
酸性腐蚀可导致金属材料表面产生腐蚀坑。
碱性腐蚀是指金属与碱性溶液接触产生的化学反应。
常见的碱性腐蚀有氢氧化钠腐蚀、氢氧化钾腐蚀等。
碱性腐蚀会使金属表面发生腐蚀、变硬或变脆等。
2. 电化学腐蚀电化学腐蚀是指金属在电解质中发生的电化学反应导致腐蚀现象。
电化学腐蚀包括阳极腐蚀和阴极腐蚀。
阳极腐蚀是指金属作为阳极,在电化学反应中溶解生成阳离子。
金属表面因此变薄,甚至出现孔洞。
例如,铁的阳极腐蚀就是普遍的铁锈现象。
阴极腐蚀是指金属作为阴极,在电化学反应中受到硬币金属材料的腐蚀与防护电子供给,发生反应并生成金属阳离子的过程。
阴极腐蚀可导致金属表面发生凹陷或沉积物形成。
二、金属材料的防护方法金属材料的防护方法主要包括表面涂层、阳极保护和电化学防护等。
1. 表面涂层表面涂层是指在金属材料表面形成一层附着力强的保护层。
常见的表面涂层有油漆、镀层和涂覆层等。
这些涂层可以隔绝金属材料与环境介质的接触,从而减少腐蚀的发生。
2. 阳极保护阳极保护是通过在金属材料上施加电流,使其成为阴极从而抑制腐蚀的发生。
常用的阳极保护方法有热浸镀锌、电镀和阳极保护涂层等。
这些方法可在金属材料表面形成一层保护膜,提供额外的保护。
3. 电化学防护电化学防护是利用电化学原理减缓金属材料腐蚀的速率。
材料腐蚀与防护材料腐蚀是指在特定环境条件下,材料表面遭受化学或电化学作用而发生的破坏现象。
腐蚀不仅会降低材料的强度和耐久性,还会对设备和结构的安全性造成严重威胁。
因此,对材料腐蚀进行有效的防护至关重要。
本文将就材料腐蚀的原因、分类及防护方法进行探讨。
首先,材料腐蚀的原因主要包括化学腐蚀、电化学腐蚀和微生物腐蚀。
化学腐蚀是指材料与化学物质直接发生反应,导致材料表面腐蚀。
电化学腐蚀是指在电解质存在的情况下,材料表面发生的电化学反应所致的腐蚀。
微生物腐蚀是由微生物产生的代谢产物对材料表面造成的腐蚀。
这些腐蚀形式各有特点,需要针对性地采取防护措施。
其次,根据腐蚀的性质和特点,可以将材料腐蚀分为干腐蚀和湿腐蚀。
干腐蚀是指在干燥的环境中发生的腐蚀现象,主要包括氧化腐蚀、硫化腐蚀和氯化腐蚀等。
湿腐蚀是指在潮湿或液态环境中发生的腐蚀现象,主要包括腐蚀、孔蚀和应力腐蚀等。
针对不同类型的腐蚀,需要采取相应的防护措施。
针对材料腐蚀问题,可以采取多种防护方法。
首先是选用耐腐蚀材料,例如不锈钢、耐蚀合金等,这些材料具有良好的耐腐蚀性能,能够有效地延缓腐蚀的发生。
其次是表面涂层防护,通过在材料表面涂覆一层防腐蚀涂层,可以有效地隔绝材料与腐蚀介质的接触,起到防腐蚀的作用。
另外,还可以采取阴极保护、阳极保护等电化学防护方法,以及改变环境条件、控制腐蚀介质浓度等措施来防止材料腐蚀的发生。
综上所述,材料腐蚀是一种常见的材料破坏现象,对设备和结构的安全性造成严重威胁。
为了有效地防止材料腐蚀,需要深入了解腐蚀的原因和分类,针对不同类型的腐蚀采取相应的防护措施。
只有通过科学的防护方法,才能有效地延缓材料腐蚀的发生,保障设备和结构的安全运行。
中国材料腐蚀与防护现状腐蚀是指金属材料在与环境接触的过程中,由于化学或电化学作用而导致的材料性能恶化的现象。
在中国这个拥有广阔土地和丰富资源的国家,腐蚀问题不可忽视。
本文将主要讨论中国材料腐蚀与防护的现状。
一、材料腐蚀的类型根据腐蚀的原理和机制,腐蚀可以分为化学腐蚀、电化学腐蚀和微生物腐蚀等几种类型。
其中,化学腐蚀是指金属在化学介质(如酸、碱、盐等)的作用下发生的腐蚀;电化学腐蚀是指金属在介质中扮演阳极和阴极角色,通过电子传递和物质扩散而发生的腐蚀;微生物腐蚀则是指由微生物产生的酶、酸等物质对金属的腐蚀作用。
二、中国材料腐蚀的现状在中国,腐蚀对材料的破坏是经济、社会和安全的重大问题。
据统计,中国每年因腐蚀带来的直接经济损失约为国内生产总值的3%左右,相当于几百亿人民币。
腐蚀不仅在工业生产中造成材料的早期失效和设备的事故,还对基础设施如桥梁、管道、水电站等的安全运行产生重要影响。
近几年来,中国政府高度重视腐蚀问题,并采取了一系列措施加以解决。
政府部门加大了对腐蚀防护技术的研发投入,并积极推动在工艺、材料及装备等方面的创新。
另外,加强监管执法力度,推出一系列相关政策和法规,加强腐蚀防护工作的宣传教育,提高相关人员的意识和技能。
三、中国材料腐蚀防护的技术为了有效应对腐蚀问题,中国在材料腐蚀防护方面进行了一系列的研究和探索。
以下是几种主要的腐蚀防护技术。
1.表面涂层技术表面涂层技术是目前应用最广泛的腐蚀防护技术之一。
通过在金属材料的表面形成一层阻挡物,有效隔绝了材料与环境的接触,以达到防腐蚀的目的。
常见的表面涂层材料包括涂料、油漆、聚合物等。
2.电化学防蚀技术电化学防腐蚀技术通过施加电压或电流的方式,在金属表面形成一层保护膜,减少金属与环境的接触,降低腐蚀速率。
常见的电化学防腐蚀技术包括阳极保护和阴极保护等。
3.高温防腐蚀技术高温环境下材料的腐蚀问题同样引起了重视。
高温防腐蚀技术通过选择具有良好抗高温腐蚀性能的材料,以及采取隔热措施等方式,保护材料在高温环境下的安全使用。
材料腐蚀与防护材料腐蚀是指材料与周围环境中的物质相互作用,导致材料发生物理性或化学性变化,失去原有功能和性能的过程。
腐蚀常见于金属材料,特别是铁、钢等容易受到氧气、水和酸碱等物质的侵蚀。
本文将介绍材料腐蚀的原因和常见的防护方法。
材料腐蚀的原因主要有以下几点:第一,氧气的作用。
氧气在空气中广泛存在,与金属材料接触会发生氧化反应,形成金属氧化物,导致材料表面腐蚀。
第二,水的作用。
水中溶解了许多化学物质,如氯离子、硫酸根离子等,它们会与金属发生反应,形成腐蚀物质。
此外,水的存在也会促进材料内部的电化学反应,加速腐蚀过程。
第三,化学物质的作用。
强酸、强碱及其他有害物质的存在都会对材料造成严重的腐蚀。
第四,电化学作用。
当金属表面存在局部缺陷或异质金属接触时,会形成电池,产生金属的电化学腐蚀。
为了防止材料腐蚀,可以采取以下方法:第一,选择抗腐蚀性能良好的材料。
如不锈钢、铝合金等具有良好的抗腐蚀性能,可以用于制造对抗腐蚀要求较高的产品。
第二,通过表面处理来增加材料的抗腐蚀能力。
如镀锌、喷涂等处理方法可以在材料表面形成一层保护膜,起到防腐蚀的作用。
第三,采用防护层。
比如在金属材料表面涂覆一层抗腐蚀的涂料,阻隔外界侵蚀材料的物质。
第四,进行电化学保护。
如防腐蚀涂层中引入金属粉末,形成阳极保护,避免材料发生电化学腐蚀。
第五,加强材料的维护与保养。
定期清洗、除锈、涂层修补等方法可以延长材料的使用寿命。
需要注意的是,不同材料腐蚀的原因和防护方法有所差异,应根据具体情况采取相应的防护措施。
此外,在使用过程中也需要注意环境条件和操作规范,避免因不当操作而引起的腐蚀问题。
总之,材料腐蚀是一个普遍存在的问题,对材料的使用寿命和性能产生不良影响。
通过选择合适的材料和采取科学有效的防护方法,可以延长材料的使用寿命,提高产品的质量和性能。
金属材料腐蚀与防护技术随着工业领域的迅速发展,金属材料在各个领域都得到了广泛的应用。
同时,金属材料面临的问题也日益凸显,其中最重要的问题就是腐蚀。
由于金属材料在各种环境条件下都容易受到腐蚀的影响,因此腐蚀防护技术的研究和应用就显得尤为重要。
本文将针对金属材料腐蚀的原因、分类以及防护技术进行详细介绍。
一、金属材料腐蚀原因金属材料腐蚀的原因主要是与金属材料所处的环境和自身的性质有关。
主要有以下几个方面:1、化学腐蚀化学腐蚀是由于金属材料与化学物质发生反应而引起的。
如淬火后的钢容易被水氧化,生成三氧化二铁,长期浸泡在水中则容易生锈。
金属材料在工业生产中,也容易受到各种酸、碱、盐等化学物质的侵蚀。
2、电化学腐蚀电化学腐蚀是由于金属材料在电化学作用下发生的氧化还原反应而引起的。
金属材料在介质中与其他金属或非金属材料接触,会形成不同的电位差,从而产生电化学腐蚀。
例如,海洋中的金属材料由于电化学反应,具有较高的腐蚀性。
3、应力腐蚀应力腐蚀是由于金属材料处于受到张、压或弯曲等应力状态下,而发生的的腐蚀反应。
应力腐蚀会导致金属材料的疲劳强度降低,腐蚀现象加剧。
二、金属材料腐蚀分类金属材料的腐蚀分类主要有以下几种:1、均匀腐蚀均匀腐蚀是指金属材料在腐蚀过程中,腐蚀面积均匀增加的一种腐蚀方式。
均匀腐蚀主要发生在金属表面,是金属材料最普遍的腐蚀方式。
2、点蚀腐蚀点蚀腐蚀是金属表面发生的一个局部的、离散的、深度不大的腐蚀现象。
点蚀腐蚀一般是由于金属表面在处理和使用时,留下的局部腐蚀敏感点,引发的腐蚀现象。
3、晶间腐蚀晶间腐蚀是指金属材料表面发生的沿晶或穿晶腐蚀现象。
晶间腐蚀主要是由于金属材料在焊接、热处理或其他加工过程中,使金属的晶粒尺寸产生变化,引起的局部腐蚀。
4、异种金属腐蚀异种金属腐蚀是由于两种金属在接触时产生静电势差,引起电化学反应导致的。
异种金属腐蚀一般发生在金属之间的缝隙或切口。
三、金属材料腐蚀防护技术为了减少金属材料腐蚀,保护金属材料的使用寿命,防止不必要的损失,研究金属材料的防腐技术变得尤为重要,其中主要有以下几种:1、涂层防护涂层防护是通过分别使用各种防腐涂层,将金属材料表面进行涂覆,形成一层保护层。
材料腐蚀与防护一、引言材料腐蚀是指材料在特定环境中受到氧化、化学物质侵蚀等因素的破坏和损害。
腐蚀不仅对材料的完整性和性能产生负面影响,还可能带来安全隐患和经济损失。
因此,研究材料腐蚀的机理和方法,以及防护技术的应用具有重要意义。
二、材料腐蚀的机理材料腐蚀的机理主要包括电化学腐蚀、化学腐蚀和微生物腐蚀等。
以下将对这些机理进行简要介绍。
1. 电化学腐蚀电化学腐蚀是指材料在电化学环境中受到电流和电位的影响,导致材料表面发生化学反应,进而发生腐蚀的过程。
电化学腐蚀可以分为阳极腐蚀和阴极腐蚀两种类型。
阳极腐蚀是指材料在电化学环境下,作为阳极溶解或发生氧化反应而腐蚀;阴极腐蚀是指材料在电化学环境下,作为阴极发生还原反应而腐蚀。
2. 化学腐蚀化学腐蚀是指材料在化学物质的作用下发生的腐蚀过程。
化学腐蚀可以是直接化学反应,也可以是材料表面受到化学物质吸附,形成新的腐蚀介质而引起的腐蚀。
化学腐蚀的速率与环境中化学物质的浓度、温度、PH值等因素密切相关。
3. 微生物腐蚀微生物腐蚀是指微生物在特定环境中对材料进行腐蚀的过程。
微生物腐蚀主要包括微生物产生的酸性物质引起的腐蚀以及微生物与材料表面形成生物膜而导致的腐蚀。
微生物腐蚀往往与湿度、温度、气氛等环境因素密切相关。
三、材料腐蚀的防护方法为了延长材料的使用寿命并减少腐蚀造成的损失,需要采取相应的防护措施。
下面将介绍一些常见的材料腐蚀防护方法。
1. 表面涂覆表面涂覆是一种常用的材料腐蚀防护方法,通过在材料表面形成一层保护性涂层,阻隔材料与外界环境的接触,达到防蚀的目的。
常见的涂层材料有有机涂料、金属涂层和无机涂层等。
涂覆方法包括喷涂、涂刷、浸渍等。
2. 阳极保护阳极保护是利用特定材料作为阳极,在电化学环境中提供电流以保护被腐蚀材料的一种方法。
通过阳极保护,可以将被腐蚀材料设定为阴级,从而抑制电化学腐蚀的发生。
阳极保护常用于金属结构、管道等设施的防腐。
3. 选择合适材料在设计和选择材料时,应根据不同的工作环境和使用要求,选择合适的材料来抵抗腐蚀。
材料腐蚀与防护答案材料腐蚀是指材料在特定环境条件下受到化学或电化学作用而逐渐失去原有性能的现象。
腐蚀不仅会降低材料的强度和耐久性,还会对设备和结构的安全性造成威胁。
因此,对于材料腐蚀问题,我们需要重视并采取有效的防护措施。
首先,了解腐蚀的原因是非常重要的。
材料腐蚀的原因主要包括化学腐蚀、电化学腐蚀和微生物腐蚀。
化学腐蚀是指材料与周围环境中的化学物质发生反应而导致腐蚀,如金属在酸性或碱性环境中的腐蚀。
电化学腐蚀是指在电解质溶液中,金属表面形成阳极和阴极,发生电化学反应而引起腐蚀。
微生物腐蚀是由微生物产生的酸、碱或氧化物对材料表面造成腐蚀。
其次,选择合适的防护方法是至关重要的。
常见的防护方法包括表面处理、涂层保护、合金改性和电化学防护。
表面处理是通过对材料表面进行清洁、抛光、喷砂等方式,去除氧化物和污垢,以减少腐蚀的发生。
涂层保护是在材料表面涂覆一层防腐蚀涂层,如喷涂、镀层、喷漆等方式,以隔离材料与环境的接触,防止腐蚀的发生。
合金改性是通过改变材料的化学成分和微观结构,提高材料的抗腐蚀性能。
电化学防护是利用外加电流或外加电位的方式,改变金属表面的电化学特性,达到防腐蚀的目的。
最后,定期检测和维护也是防护材料腐蚀的重要手段。
定期检测可以及时发现材料表面的腐蚀情况,及时采取修复措施,延长材料的使用寿命。
同时,定期维护也可以对材料进行保护性处理,如重新涂层、电化学保护等,保持材料的良好状态。
综上所述,材料腐蚀是一个需要引起重视的问题,对于不同的腐蚀原因和环境条件,我们需要选择合适的防护方法,同时进行定期检测和维护,以保证材料的使用寿命和安全性。
希望本文能够对材料腐蚀与防护有所帮助,谢谢阅读!。
材料腐蚀与防护措施材料腐蚀是指材料与其周围环境发生化学反应导致其性能和结构的损坏。
腐蚀不仅会导致材料的损坏,还会对设备和结构的安全性和可靠性产生不良影响。
因此,采取有效的防护措施对于材料的长期使用非常重要。
本文将介绍材料腐蚀的类型、原因和防护措施。
材料腐蚀的类型可以分为电化学腐蚀和化学腐蚀两类。
电化学腐蚀是指材料与电解质溶液或湿气发生化学反应,产生电流从而导致腐蚀;化学腐蚀是指材料直接与化学物质反应,导致其性能和结构的损坏。
造成材料腐蚀的原因有很多,主要包括以下几点:1.酸碱介质:酸和碱是常见的腐蚀介质,它们能够与材料表面发生反应,形成溶解产物进而导致腐蚀。
2.湿气和水:湿气和水中含有溶解的氧、二氧化碳等物质,这些物质能够在材料表面形成一层氧化膜,导致腐蚀。
3.盐类:盐类是一种常见的腐蚀介质,例如氯离子在湿气和水中能够形成氯离子溶液,从而引起腐蚀。
4.金属接触:不同金属之间发生接触,会引起电化学腐蚀,产生电流从而导致腐蚀。
为了有效防护材料腐蚀,人们采取了多种防护措施。
下面将介绍几种常见的防护措施:1.涂层防护:在材料表面涂覆一层防腐蚀涂料,能够有效隔绝材料与环境介质的接触,起到防护作用。
常见的涂层材料有油漆、涂层树脂等。
2.电镀防护:通过电化学方法,在材料表面形成一层金属镀层,起到阻止材料与环境介质接触的作用。
常见的电镀材料有镀铬、镀锌等。
3.合金防护:通过在材料中添加一定比例的合金元素,改变材料的化学性质,提高其抗腐蚀性能。
4.热处理防护:通过对材料进行热处理,改变材料的晶体结构和化学成分,提高其抗腐蚀性能。
5.等离子体涂层:利用等离子体技术,在材料表面形成一层陶瓷涂层,有效防止材料与环境介质的接触。
6.选择合适的材料:对于一些特殊环境下的材料使用,应选择具有抗腐蚀性能的材料,例如不锈钢、高温合金等。
综上所述,材料腐蚀对设备和结构的使用寿命和安全性产生不良影响,因此采取有效的防护措施非常重要。
工业纯锌,金属锌在稀硫酸中的腐蚀差异:把一块工业纯锌浸入稀硫酸溶液中,同样发生2个原电池反应。
工业纯锌中含有少量的杂质Fe,以FeZn7形式存在,电位比Zn搞,Zn为阳极,杂质为阴极,Zn被溶解了。
由此可见金属Zn在稀硫酸中的溶解也是由于形成腐蚀电池而引起的。
腐蚀电池/原电池区别:原电池是能够吧化学能转变为电能,作出有用功的装置。
腐蚀电池是只能导致金属破坏而不能作有用功的短路电池。
宏观电池:肉眼可分辨出电极极性的电池。
浓差电池:同一种金属浸入同一种电解质溶液中,当局部的浓度(或温度)不同时,构成的腐蚀电池。
微观电池:肉眼难以分辨出电极极性的电池。
电极电位:在金属与溶液的界面上进行的电化学反应称为电极反应。
电极反应导致在金属和溶液的界面上形成双电层,双电层两侧的电位差,即为电极电位,也称为绝对电极电位。
平衡电极电位:当金属电极上只有唯一的一种电极反应,并且该反应处于动态平衡时,金属的溶解速度等于金属离子的沉积速度,则建立如下电化学平衡:Me n+·ne+mH2O⇔Me n+·mH2O+ne 。
此时电极获得了一个不变的电位值。
自腐蚀电位:外电流为零时的电极电位(E i=0),E R。
非平衡电极电位:金属电极上可能同时存在两个或者两个以上不同物质参与的电化学反应,当动态平衡时,电极上不可能出现物质交换与电荷交换均达到平衡的情况,这种情况下的电极电位称为非平衡电极电位。
标准电极电位:参与电极反应的物质都处于标准状态:25℃,离子活度为1,分压为1*105Pa时测得的电势。
标准氢电极:由电解镀铂丝浸入H+活度等于1的溶液和105Pa氢压气氛中构成的。
规定在任何温度下,标准氢电极电势都为0,用表示。
铜/硫酸铜电极:金属电极的电极反应通式:Me⇔Me n++ne 电极电位表达式:E=E0+RT*lnC/nF 硫酸铜电极是在工业中常用的参比电极。
甘汞电极:甘汞电极是参比电极中用得最多的一种。
简化:(SCE)Hg丨Hg2Cl2丨KCl(饱和水溶液)丨丨H (aH+=1),H2(1*105Pa)丨Pt (SHE) 。
甘汞电极的优点:电位稳定。
缺点:对温度比较敏感。
极化:电击伤有净电流通过,电极电位显著的偏离了未通净电流的起始电位的变化现象。
塔菲尔关系:ηa=±β*lgi / i oηa=a+blni 式中:ηa:电化学极化过电位;β:Tafel常数或Tafel直线斜率;i:电流密度(阳极或阴极反应速度);i o:交换电流密度;a:通过单位极化电流密度时的过电位;b:极化曲线斜率,其值范围在0.1~0.14V;±:代表阳极,阴极变化。
0<a<1,β通常在0.05~0.15V,一般取0.1V。
加剧阳极腐蚀:溶液流速增加,扩散层厚度降低,导致扩散电流密度i D增大,另外,温度,反应物浓度增加也会使极限电流密度增大,从而加剧阳极腐蚀。
阳极极化曲线:(图)分为4个区:AB区:活性溶解区。
金属电极的阳极电流密度随电位升高而增大,金属处于活性溶解状态,以低价形式溶解。
BC区:活化—钝化过渡区。
当电极电位达到临界钝化电位Eb时,金属表面状态发生突变,电位继续增加,电流急剧下降,金属由活化态进入钝化态。
B 点标志着金属钝化的开始。
CD区:钝化区或稳定钝化区。
在这个区金属处于钝态并以ip速度溶解着。
Ip基本与电极电位无关,随电位增加,在一个相当宽的电位范围内金属阳极溶解速度几乎不变。
金属表面可能生成一层耐蚀性好的高价氧化物膜。
DE区:过钝化区。
特征:阳极电流密度再次随电位的升高而增加。
当电位超过Eop时,金属溶解速度急剧增加,氧化膜进一步氧化生成更高价的可溶性氧化物。
Er:稳态电位/自腐蚀电位Eb:临界钝化ib:临界钝态电流密度ip:钝态电流Ep:钝态电位Eop:过钝态。
析氢腐蚀:由氢去极化引起的金属腐蚀。
提高析氢过电位措施:1.加入析氢过电位高的合金元素,增加合金的耐蚀性,如Hg,Pb。
2.提高金属的纯度,消除或减少杂质。
3.加入阴极缓蚀剂提高阴极析氢过电位,提高合金的耐蚀性。
如在酸性溶液中加As,Sb,Hg,盐。
氧去极化腐蚀:吸氧腐蚀。
当电解质溶液中有氧存在时,在阴极上发生氧去极化反应。
在中性或碱性溶液中:O2+2H2O+4e→4OH- ;酸性溶液中:O2+4H+ +4e→2H2O 。
由此引起阳极金属不断溶解的现象。
腐蚀极化图:伊文思极化图:在一个均相的腐蚀电极上,如果只进行两个电极反应,则金属阳极溶解的电流强度Ia一定等于阴极还原反应的电流强度Ic。
金属的钝化:由活化态转为钝态的过程成为钝化。
钝化原因:引起金属钝化的因素有化学及电化学两种。
化学因素:一般是由强氧化剂引起如硝酸,硝酸银,氯酸,氯酸钾,重铬酸钾,氧。
他们也是钝化剂。
电化学钝化:外加电流的阳极极化产生的钝化。
如Fe在0.5mol/L的H2SO4溶液中,外加电流引起的钝化。
全面腐蚀速度及耐蚀标:重量法:V+ΔW=(W1-W0)/st V-ΔW=(W0-W2)/st 式中:W0:试样原始重量;W1:未清除腐蚀产物的试样重量;W2:清楚腐蚀产物的试样重量;±:分别代表增重,失重。
均匀腐蚀速度。
深度法:B=8.76*V/ρ式中:B:按深度计算的腐蚀速度,mm/a;V:按重量计算的腐蚀速度,g/m2·h;ρ:金属材料的密度,g/cm3。
电流法:点腐蚀(孔蚀):一种腐蚀集中在金属(合金)表面数十微米范围内且向纵深发展的腐蚀形式。
点腐蚀发生的条件:1.金属表面易生成钝化膜的金属材料。
2.在又特殊离子的介质中易发生点蚀。
3.电位大于点蚀电位(Ebr)易发生。
可钝化金属典型的“环形阳极极化曲线”:(图)三个电位区:Ebr:电视电位。
Ep:保护电位。
1.E>Ebr,将形成新的点蚀孔,已有点蚀孔继续长大。
2.Ebr>E>Ep:不会形成新点蚀孔,原有的继续长大。
Ep>E:原有点蚀孔全部钝化。
不形成新的。
Ebr值越正耐点蚀性能越好。
Ep与Ebr值越接近,钝化膜修复能力愈强。
点蚀坑的生长:蚀孔内的自催化酸化机制,即闭塞电池作用。
点蚀程度:可用点蚀系数或点蚀因子来表示:点蚀系数=最大腐蚀深度/平均腐蚀深度或点蚀因子=P/d 式中:P:最大腐蚀深度;d:平均腐蚀深度。
影响点蚀的因素:卤素因素:在含卤素离子的介质中,点蚀敏感性增强,大小:Cl->Br->I-。
缝隙腐蚀条件:缝隙宽度0.025~0.1mm,介质滞留其中,引起缝隙内金属的腐蚀,这种腐蚀形式。
缝隙腐蚀/点蚀异同:缝隙腐蚀可以发生在所有金属和合金上,且钝化金属及合金更容易放生。
任何介质(酸碱盐)均可发生缝隙腐蚀,但含Cl-的溶液更容易发生。
晶间腐蚀:金属材料在特定的腐蚀介质中沿着材料的晶界发生的一种局部腐蚀。
贫化理论:(图)晶间腐蚀是由于晶界析出新相,造成附近某一部分的贫乏化。
杂质偏聚理论:σ相在晶界析出有关。
干大气腐蚀:在金属表面不存在液膜层时的腐蚀。
特点:在金属表面形成不可见的保护性氧化膜(1~10nm)和某些金属失泽现象。
潮大气腐蚀:指金属在相对湿度小于100%的大气中,表面存在肉眼看不见的薄的液膜层(10nm~10μm)发生的腐蚀。
湿大气腐蚀:指金属再相对湿度大于100%水分直接溅落在金属表面上,表面上存在肉眼可见的水膜(1μm~1mm)发生的腐蚀。
充气不均匀引起的腐蚀:主要指地下管线穿过不同的地质结构及潮湿程度不同的土壤带时,由于氧的浓度差别引起的宏观电池腐蚀。
杂散电流引起的腐蚀:杂散电流是一种漏电现象。
其主要来源是应用直流电的大功率电气装置,如电气化铁路,电解及电镀,电焊机,由于绝缘不好产生的杂散电流引起宏观电池的腐蚀。
两个宏观电池作用:(图)铁轨(地面)—阳极,土壤—电解质,管道(地下)—阴极;管道(地下)—阳极,土壤—电解质,铁轨(地面)—阴极。
金属在盐类水溶液中的腐蚀:含有卤素的氧化剂:尤其是阳离子氧化剂(FeCl3,CuCl2,HgCl2等),由于Fe3+,Cu2+参与阴极反应,使工业金属加剧腐蚀,高危。
卤素盐:卤素离子由于半径小,对钝化膜穿透能力大或由于易被金属表面吸附,因而对钝化膜的破坏作用最大。
强弱:Cl->Br->I-。
热力学稳定性:一般情况下,各种纯金属的热力学稳定性可根据其标准电极电位值作出近似的判断。
标准电极电位较正的金属,其热力学稳定性也较高,较负的则稳定性较低。
根据pH=7和pH=0,氧和氢的平衡电极电位分别为+0.815V,+1.23V及-0.414V,0.000V,可粗略把金属分为4类。
(表)不稳定<-0.414V;不够稳定-0.414V~0 [在中性水溶液中,仅在含氧或氧化剂的情况下才产生腐蚀(氧去极化腐蚀),在酸性溶液中,即使不含氧也能产生腐蚀(析氢腐蚀),当含氧时也既产生析氢腐蚀也能产生氧去极化腐蚀。
];较稳定(半贵金属)0~+0.815V;稳定(贵金属)>+0.815V。
自钝性:在热力学不稳定的金属中,有不少金属在适宜的条件下,由活化态转为钝化态而耐蚀。
最容易钝化的金属有Zr,Ti,Ta,Nb,Al,Cr,Be,Mo,Ni,Co。
多数可钝化的金属都是在氧化性介质中易钝化,如HNO3中及强烈通空气的溶液中;而当介质中含有活性离子(Cl-,Br-,F-)时,以及在还原性介质中大部分金属的钝态会受到破坏。
提高合金热力学稳定性:阻滞阴极过程:1.减少合金的阴极活性面积。
2.加入析氢过电位高的合金元素。
降低合金的阳极活性:1.减少阳极面积 2.加入易钝化的合金元素 2.加入阴极性合金元素促进阳极钝化使合金表面生成高耐蚀的腐蚀产物薄膜:加入一些合金元素促使在合金表面生成致密,高耐蚀的保护膜。
材料的防护:控制材料腐蚀的一门技术。
防止材料腐蚀从本身,环境,界面三方考虑。
主要方式:正确选用耐蚀材料和合理的结构设计;腐蚀环境的改善;表面腐蚀处理;电化学保护。
缓蚀剂:是一种当它以适当的浓度和形式存在于环境(介质)时可以防止或减缓腐蚀的化学物质或复合物质。
缓蚀机理: 1.阳极型缓蚀剂:大部分是氧化剂。
阳极抑制型。
阻滞阳极过程增加阳极极化。
腐蚀电位正移,阳极的极化率增加,腐蚀电流减小。
危险缓蚀剂。
2.阴极型缓蚀剂:阴极抑制型。
抑制阴极过程,增加阴极极化,腐蚀电位负移。
安全缓蚀剂。
3.混合型缓蚀剂:混合抑制型。
阻滞阳极/阴极过程。
腐蚀电位变化不大,腐蚀电流显著降低。
这类缓蚀剂分三类:(1.含N的有机化合物。
(2.含S。
(3.含S,N。
阴极保护:将被保护金属作为阴极,进行外加阴极极化以降低或放置金属腐蚀的方法。
两法:1.外加电流法:被保护金属与直流电源的负极相联成为阴极,阳极为一个不溶性的辅助电极。
利用外加阴极电流进行阴极极化,组成宏观电池以保护。