土壤水分和土壤空气
- 格式:ppt
- 大小:68.50 KB
- 文档页数:7
第五章土壤水、空气和热量主要教学目标:学会分析土壤肥力要素水、气、热之间的关系。
由于土壤水分的重要作用,因此首先要求学生掌握土壤水的形态学观点和能量学观点。
在基本知识掌握的基础上,并能系统地处理土壤水、气、热三者的相互关系和调节措施。
主要内容:第一节土壤水的类型第二节土壤水分含量的表示方法第三节土壤水分能量的分析第四节土壤水分的管理与调节第五节土壤空气和热量第六节土壤水、气、热的相互关系第一节土壤水的类型土壤学中的土壤水是指在一个大气压下,在105℃条件下能从土壤中分离出来的水分.土壤中液态水数量最多,对植物的生长关系最为密切。
液态水类型的划分是根据水分受力的不同来划分的,这是水分研究的形态学观点。
这一观点在农业、水利、气象等学科和生产中广泛应用。
一、吸湿水土壤颗粒从空气中吸收的汽态水分子。
从室外取土,放在室内风干若干时间后,表面上看似乎干燥了,但把土壤放在烘箱中烘烤,土壤重量会减轻;再放置到常温常压下,土壤重量又会增加,这表明土壤吸收了空气中的水汽分子。
土壤的吸湿性是由土粒表面的分子引力作用所引起的,一般来说,土壤中吸湿水的多少,取决于土壤颗粒表面积大小和空气相对湿度。
由于这种作用的力非常大,最大可达一万个大气压,所以植物不能利用此水,称之为紧束缚水。
二、膜状水土粒吸足了吸湿水后,还有剩余的吸引力,可吸引一部分液态水成水膜状附着在土粒表面,这种水分称为膜状水。
重力不能使膜状水移动,但其自身可从水膜较厚处向水膜较薄处移动,植物可以利用此水。
但由于这种水的移动非常缓慢(0.2-0.4mm/d),不能及时供给植物生长需要,植物可利用的数量很少.当植物发生永久萎蔫时,往往还有相当多的膜状水。
三、毛管水当把一个很细的管子(毛细管)插入水中后,水分可以上升的较高于水平面,并保持在毛细管中。
毛管水:由于毛管力的作用而保持在土壤中的液态水。
毛管水可以有毛管力小的方向移向毛管力大的方向,毛管力的大小可用Laplace公式计算:P = 2T/r式中的P为毛管力,T为水的表面张力,r为毛管半径。
第五章植物生长的土壤环境教学目标:掌握土壤、土壤肥力、土壤质地、土壤有机质、土壤通气性、土壤胶体、土壤保肥性、土壤供肥性、土壤缓冲性、土壤空隙性、土壤结构、土壤耕性等基本概念;土壤的基本组成及各组分的特性。
第一节土壤的基本组成。
一、土壤矿物质及土壤质地二、土壤生物和土壤有机质三、土壤水分和土壤空气1.土壤:即指覆盖在地球陆地表面上的,能够生长绿色植物的疏松表层。
土壤分为:自然土壤和农业土壤。
2.土壤肥力:是指在植物生长发育过程中,土壤不断地供给和调节植物所必需的水、肥、气、热等物质和能量的能力。
3.土壤的组成:自然界土壤由矿物质、有机质(土壤固相)、土壤水分(液相)和土壤空气(气相)三相物质组成。
一、土壤矿物质及土壤质地(一)土壤矿物质的组成原生矿物是在风化过程中没有改变化学组成而遗留在土壤中的一类矿物。
次生矿物是原生矿物在风化和成土作用下,重新形成的一类矿物。
(二)土壤质地土壤中各种粒级的配合和组合状况称为土壤质地,即土壤沙黏程度。
土壤质地可分为沙土、壤土和黏土三类。
1.沙土。
沙土的特性粒间孔隙大,通气性强,保水性差,不耐旱。
有机质分解快,保肥能力弱,但肥效快。
土壤温度变幅大,常称“热性土”。
作物前期生长快,后期易脱肥,“发小苗不发老苗”,肥水管理应是少量多次。
2.壤土。
壤土兼有沙土与黏土的优点,通气透水性良好,保水保肥力强;有机质分解较快,供肥性能好;土温较稳定,耕性良好水、肥、气、热状况比较协调,适宜种植各种作物,发小苗也发老苗——“壮子送老”3.黏土。
黏土的黏粒含量较多,其粒间孔隙小而总孔隙度大,毛细管作用强烈,透水透气性差,但保水保肥性强;黏质土矿质养分丰富,加之通气不良,有机质分解缓慢,肥效稳长后劲足;黏土水多气少,土温升降速度慢,昼夜温差小,称“冷性土”二、土壤生物和土壤有机质(一)土壤生物。
土壤生物包括土壤中的动物、植物和微生物。
土壤微生物种类:细菌、放线菌、真菌、藻类及病毒等。
土壤中的四个因素决定着土壤肥力的高低1 土壤水分1.1 土壤水分类型土壤水分常以三种形式存在于土壤中,束缚水。
紧紧吸附在土粒表面,不能流动,也很难为作物根系吸收的水分叫束缚水。
土粒越细,吸附在土粒表面的束缚水越多;毛管水。
土粒之间小于0.1mm的小孔隙叫毛细管,毛细管中的水可以在土壤中上下、左右移动,是供作物吸收利用的主要有效水。
因此,毛管水对作物生长发育最为重要;重力水。
是土粒之间大于0.1mm大孔隙中的水分。
由于受重力作用只能向下流动,所以叫重力水。
在水稻田中,重力水是有效的水分。
在旱田中,重力水只能短期被植物利用,如较长期地充满着重力水(即地里积水),则土壤空气缺乏,对作物生长非常不利。
1.2 土壤水分的有效性土壤水分并不能全部被作物吸收利用,束缚水和重力水都是不能被作物利用的无效水,只有毛管水是能被作物利用的有效水。
当土壤中只存在着束缚水时,因作物不能利用,而表现出萎蔫,这时的土壤含水量叫萎蔫系数。
随着土壤水分的增加毛细管中开始充水,当土壤中毛细管全部充满水时的含水量,叫田间持水量。
土壤有效水的数量是田间持水量减去萎蔫系数的数值。
土壤有效水含量的多少,主要受土壤质地、结构、有机质含量的影响。
砂土和黏土有效水都低于壤土。
具有团粒结构的土壤毛细孔隙增加,有效水含量高。
2 土壤养分2.1 土壤养分的有效性根据作物吸收土壤养分的难易,可把土壤养分分为两类。
一类是速效态养分叫有效养分,另一类是迟效态养分又叫潜在养分。
速效态养分以离子、分子状态存在于土壤溶液中和土壤胶凿表面上,能够直接被作物吸收利用。
持效养分存在于土壤矿物质和有机质中,难溶于水而不能被作物直接吸收利用,需经化学作用和微生物作用,分解成可溶性的速效养分才能被吸收。
理想的土壤,不但要求养分种类齐全,含量高,而且要求速效和迟效各占一定比例,使养分能均衡持久地供给作物利用。
2.2 土壤养分的转化2.2.1 土壤中氮的转化各类土壤中一般全氮含量约为0.05%-0.2%。
土壤中的四个要素决定着土壤肥力的高低1土壤水分1.1 土壤水分种类土壤水分常以三种形式存在于土壤中,约束水。
牢牢吸附在土粒表面,不可以流动,也很难为作物根系汲取的水分叫约束水。
土粒越细,吸附在土粒表面的约束水越多;毛管水。
土粒之间小于 0.1mm 的小孔隙叫毛细管,毛细管中的水能够在土壤中上下、左右挪动,是供作物汲取利用的主要有效水。
所以,毛管水对作物生长发育最为重要;重力水。
是土粒之间大于 0.1mm 大孔隙中的水分。
因为受重力作用只好向下贱动,所以叫重力水。
在水稻田中,重力水是有效的水分。
在旱田中,重力水只好短期被植物利用,如较长久地充满侧重力水(即地里积水),则土壤空气缺少,对作物生长特别不利。
1.2 土壤水分的有效性土壤水分其实不可以所有被作物汲取利用,约束水和重力水都是不可以被作物利用的无效水,只有毛管水是能被作物利用的有效水。
当土壤中只存在着约束水时,因作物不可以利用,而表现出萎蔫,这时的土壤含水量叫萎蔫系数。
跟着土壤水分的增添毛细管中开始充水,当土壤中毛细管所有充满水时的含水量,叫田间持水量。
土壤有效水的数目是田间持水量减去萎蔫系数的数值。
土壤有效水含量的多少,主要受土壤质地、构造、有机质含量的影响。
砂土和粘土有效水都低于壤土。
拥有团粒构造的土壤毛细孔隙增添,有效水含量高。
2土壤养分2.1 土壤养分的有效性依据作物汲取土壤养分的难易,可把土壤养分分为两类。
一类是速效态养分叫有效养分,另一类是迟效态养分又叫潜伏养分。
速效态养分以离子、分子状态存在于土壤溶液中和土壤胶凿表面上,能够直接被作物汲取利用。
持效养分存在于土壤矿物质和有机质中,难溶于水而不可以被作物直接汲取利用,需经化学作用和微生物作用,分解成可溶性的速效养分才能被汲取。
理想的土壤,不只要求养分种类齐备,含量高,并且要求速效和迟效各占必定比率,使养分能平衡长久地供应作物利用。
2.2 土壤养分的转变2.2.1 土壤中氮的转变各种土壤中一般全氮含量约为 0.05%-0.2%。
其土壤含水量的变化应等于其来水水增加,负值表示减少。
田间土壤水分收支示意图P 下渗水 D 降水灌溉 I上行水 U根据田间土壤水分示意图,可列出土壤水分平衡的数学表达式:P+l+U=E+T+R+In+D+△W式中:△W 表示计算时段末与时段初土体储水量之差(mm);公式中左侧为水分进入量;而右侧则为水分支出量。
当△W 为零时,说明,土层中水分无增无减,即收支平衡。
植物冠层截流 ln蒸腾、蒸发ET 径流损失 R动,并不断地与大气进行交换。
如果土壤空气和大气不进行交换,土壤空气中的氧气可能会在12~40h消耗殆尽。
土壤空气运动的方式有两种:对流和扩散。
(一)对流定义:是指土壤与大气间由总压力梯度推动的气体的整体流动,也称为质流。
土壤与大气间的对流总是由高压区流向低压区。
低压对流方向:高压总压力梯度的产生:气压变化、温度梯度、表面风力、降雨或灌溉、翻耕。
土壤空气对流方程式:q v = -(k /η) ▽pq v—空气的容积对流量(单位时间通过单位横截面积的空气容积);k —通气孔隙透气率;η —土壤空气的粘度;▽p —土壤空气压力的三维梯度。
空气对流量随着土壤透气率和气压梯度的增大而增大。
(二)扩散定义:在大气和土壤之间CO2和O2浓度的不同形成分压梯度,驱使土壤从大气中吸收O2,同时排出CO2的气体扩散作用,称为土壤呼吸。
是土壤与大气交换的主要机制。
扩散过程气相扩散液相扩散通过充气孔隙扩散保持着大气和土壤间的气体交流作用通过不同厚度水膜的扩散(二)扩散这两种扩散过程都可以用费克(Fick)定律表示:qd = - Ddc/dxqd — 扩散通量(单位时间通过单位面积扩散的质量);“-”— 表示方向D — 在该介质中扩散系数(其量纲为面积/时间);dc/dx — 浓度梯度对于气体来说,其浓度梯度常用分压梯度表示:qd = - (D/B) (dp/dx )B — 偏压与浓度的比扩散系数D值的大小取决于土壤性质,通气孔隙状况及其影响因素(质地、结构、松紧程度、土壤含水量等)(一)土壤热量来源太阳辐射能:土壤热量的最根本来源。
土壤水分与土壤空气一、土壤水分土壤水土壤水并不是纯水,而是含有多种无机盐与有机物的稀薄溶液、又称土壤溶液。
植物吸收水分的主要来源。
土壤水分类型有吸湿水、膜状水、毛管水和重力水。
土壤水分除能直接供作物直接吸收外,还影响着土壤的其他肥力性状,如矿质养分溶解、土壤有机质的分解与合成、土壤的氧化还原状况、土壤热特性、土壤的物理机械性性等。
因此,土壤水分是土壤肥力诸因素中最重要、最活跃的因素。
二、土壤空气1.土壤空气组成与特点与大气相比,土壤空气的组成特点如下:(1)土壤空气中的二氧化碳的含量高于大气。
(2)土壤空气中的氧气含量低于大气。
(3)土壤空气的相对湿度比大气高。
(4)土壤空气中有时像甲烷等还原性气体的含量远高于大气。
还原性气体通常在水分饱和的土壤中产生,如浓度过高,可能会不利于作物的生长。
(5)土壤空气各成分的浓度在不同季节和不同土壤深度内变化很大。
2.土壤通气性土壤空气与大气的交换能力或速率称为土壤通气性,如交换速度快,则土壤的通气性好;反之,土壤的通气性差。
土壤空气与大气之间的交换机理为:(1)土壤空气的整体交换(2)土壤空气的扩散3.土壤空气与作物生长土壤空气状况是土壤肥力的重要因素之一,不仅影响植物生长发育,还影响土壤肥力状况。
(1)影响种子萌发;(2)影响根系生长和吸收功能;(3)影响土壤微生物活动;(4)影响植物的抗病性和土壤养分状况。
4.土壤通气性调节调节土壤空气的主要措施是:(1)深耕结合施用有机肥料培育和创造良好的土壤结构和耕层构造,改善通气性。
(2)客土掺沙掺黏,改良过沙过黏质地。
(3)后及时中耕,消除土壤板结。
(4)灌溉、排水相结合排水可以增加土壤空气的含量,灌水以降低土壤空气的含量,也可促进土壤空气的更新。
大规模农业生产一般不会对土壤采取强制通气的方法。