通信原理课程设计--DSB调制解调
- 格式:doc
- 大小:1.05 MB
- 文档页数:19
现代通信原理与技术课程设计AM-DSB信号的调制与解调学院专业电子信息工程班级 09级电子一班分组成员联系方式指导教师基于Matlab 的AM-DSB 信号的调制与解调一、振幅调制原理1、振幅调制产生原理所谓调制,就是在传送信号的一方将所要传送的信号附加在高频振荡上,再由天线发射出去。
这里高频振荡波就是携带信号的运载工具,也叫载波。
振幅调制,就是由调制信号去控制高频载波的振幅,直至随调制信号做线性变化。
在线性调制系列中,最先应用的一种幅度调制是全调幅或常规调幅,简称为调幅(AM )。
为了提高传输的效率,还有载波受到抑制的双边带调幅波(DSB )和单边带调幅波(SSB )。
在频域中已调波频谱是基带调制信号频谱的线性位移;在时域中,已调波包络与调制信号波形呈线性关系。
设正弦载波为)cos()(0ϕω+=t A t c c式中,A 为载波幅度;c ω为载波角频率;0ϕ为载波初始相位(通常假设0ϕ=0). 调制信号(基带信号)为)(t m 。
根据调制的定义,振幅调制信号(已调信号)一般可以表示为)cos()()(t t Am t s c m ω=设调制信号)(t m 的频谱为)(ωM ,则已调信号)(t s m 的频谱)(ωm S :)]()([2)(c c mM M AS ωωωωω-++= 2、两种调幅电路分析(1)标准调幅波(AM )调制与解调幅度调制是由调制信号去控制高频载波的幅度,使正弦载波的幅度随着调制信号而改变的调制方案,属于线性调制。
AM 信号的时域表示式:频谱:调制器模型如图所示:图1-1 调制器模型00()[()]cos cos ()cos AM c c c s t A m t t A t m t tωωω=+=+01()[()()][()()]2AM c c c c S A M M ωπδωωδωωωωωω=++-+++-c tAM 的时域波形和频谱如图所示:时域 频域图1-2 调制时、频域波形AM 信号的频谱由载频分量、上边带、下边带三部分组成。
实验一DSB调制与解调一、实验目的1.掌握DSB调制与解调的原理2.掌握LabView程序设计的方法3.了解信号噪声对传输特性的影响二、实验内容用NI(National Instrument,美国国家仪器)公司的虚拟仪器开发平台LabView设计图1和图2所示的DSB调制解调系统。
图1 Vi工程前面板图2 程序框图三、实验原理DSB 调制与解调系统如图3所示,基带信号是)(t m ,载波是t c ωcos ,调制信号)(t s DSB 由公式(1)计算所得。
图3中)(t n 是高斯白噪声,LPF 为低通滤波器,相干解调后的输出信号)(t m O 由公式(3)计算所得。
DSB 调制信号时域波形和频域谱如图4所示。
t t m t s c DSB ωcos )()(= (1)t t m t m tt m t t s c c c DSB ωωω2cos )(21)(21cos )(cos )(2+==⋅ (2) )(21)(t m t m O =(3)图3 DSB 调制解调系统)(t s DSB )(t m 0tttc ωcos t载波反向点1)(ωM 1/2)(ωDSB S cωcω-HωHω-0ωωHω2图4 DSB 调制信号时域波形和频域谱四、实验步骤步骤1:新建一个vi 工程“DSB 。
vi",从菜单“窗口”“显示程序框图”进入程序框图窗口。
步骤2:在程序框图窗口单击右键,在弹出的“函数” “信号处理" “波形生成”中选择“基本函数发生器”,命名为“基带信号"。
图5 添加基带信号步骤3:在程序框图窗口,将鼠标移动到基本函数发生器的上方,当出现“信号类型”字样时,单击右键,在弹出的菜单中选择“创建" “输入控件”,即可为基带信号添加一个“信号类型”控件。
图6 给基带信号添加信号类型控件另:除了程序框图窗口可以添加输入控件外,前面板窗口也可以添加输入控件。
如图7所示,在前面板中单击右键,在弹出的“控件”“Express" “数值输入控件”中选择“数值输入控件”.如图8所示,此时前面板和程序框图中都会出现新添加的数值输入控件。
dsb调制解调实验报告DSB 调制解调实验报告一、实验目的本次 DSB 调制解调实验的目的在于深入理解双边带调制(DSB)和解调的原理,通过实际操作和观察实验现象,掌握 DSB 调制与解调的基本方法和技术,分析其性能特点,并对相关理论知识进行验证和巩固。
二、实验原理(一)DSB 调制原理DSB 调制是一种抑制载波的双边带调制方式。
在调制过程中,将调制信号与载波信号相乘,得到已调信号。
其数学表达式为:\s_{DSB}(t) = m(t) \cdot c(t)\其中,\(m(t)\)为调制信号,\(c(t) = A \cos(\omega_c t)\)为载波信号,\(A\)为载波幅度,\(\omega_c\)为载波角频率。
(二)DSB 解调原理DSB 信号的解调通常采用相干解调法。
在接收端,将已调信号与同频同相的本地载波相乘,然后通过低通滤波器滤除高频分量,即可恢复出原始调制信号。
其数学表达式为:\r(t) = s_{DSB}(t) \cdot c(t)\\r(t) = m(t) \cdot c^2(t) =\frac{1}{2} m(t) +\frac{1}{2} m(t) \cos(2\omega_c t)\经过低通滤波器后,高频分量被滤除,得到解调后的信号:\m_d(t) =\frac{1}{2} m(t)\三、实验仪器与设备本次实验所使用的仪器和设备包括:1、函数信号发生器:用于产生调制信号和载波信号。
2、示波器:用于观察调制信号、已调信号和解调信号的波形。
3、乘法器:实现信号的相乘,完成调制和解调过程。
4、低通滤波器:滤除解调后的高频分量。
四、实验步骤1、按照实验电路图连接好各仪器设备,确保连接正确无误。
2、打开函数信号发生器,设置调制信号的频率、幅度和波形。
3、同样在函数信号发生器中设置载波信号的频率和幅度。
4、将调制信号和载波信号输入乘法器进行调制,在示波器上观察已调信号的波形。
5、将已调信号与同频同相的本地载波信号输入乘法器进行解调。
-1 -9快鬲待按夫爹现代通信系统原理课程设计说明书题目:DSB-SC调制与解调学生:________________学号:_______________院(系):______专业:____________指导教师:_________________年月曰目录一、调幅与解调原理:.............................................. (4)二、DSB勺调制调制与解调总系统框:.................................... ..4三、DSB调制与解调: (4)3.1 .双边带调制原理.............................................. (4)3.2调幅波的解调:…... .................................................................................... ..63.3乘法器原理 (7)四、单元电路设计: (7)4.1调幅电路图、波形图以及频谱图及理论分析 (8)4.2解调电路图、波形图以及频谱图及理论分析 (9)4.3低通滤波器电路图、已调波波形图以及频谱图及理论分析 (10)五:总电路图:......................................................... . (18)六、自设问题并解答以及心得体会...................................... 1 9七、附录元器件清单:............................................... ..20八、参考文献.............................................................. . (21)摘要模拟通信系统具有直观,容易实现等优点,在早期的通信系统中得到了广泛的应用,专业.整理.统之一,具有调制效率高,抗噪性能好等优点,得到了广泛的研究与应用。
摘要本课程设计主要运用MATLAB集成环境下的Simulink仿真平台设计进行DSB调制与相干解调系统仿真。
在本次课程设计中先根据DSB调制与解调原理构建调制解调电路,从Simulink工具箱中找所各元件,合理设置好参数并运行,其中可以通过不断的修改优化得到需要信号,之后分别加入高斯白噪声,并分析对信号的影响,最后通过对输出波形和功率谱的分析得出DSB调制解调系统仿真是否成功。
关键词:Simulink;DSB;调制;相干解调目录1 课程设计目的 (5)2 课程设计要求 (5)3 相关知识 (5)4 课程设计分析 (2)5 仿真 (4)6结果分析 (6)7 参考文献 (7)1 课程设计目的通信技术的发展日新月异,通信系统也日趋复杂,在通信系统的设计研发过程中,软件仿真已成为必不可少的一部分,电子设计自动化EDA技术已成为电子设计的潮流。
随着信息技术的不断发展,涌现出了许多功能强大的电子仿真软件,如Workbench、Protel、Systemview、Matlab等。
《通信原理》是电子通信专业的一门极为重要的专业基础课,由于内容抽象,基本概念较多,是一门难度较大的课程,要想学好并非易事。
采用Matlab及Simulink作为辅助教学软件,摆脱了繁杂的计算,可以使学生对书本上抽象的原理有进一步的感性认识,加深对基本原理的理解。
2 课程设计要求DSB调制与解调系统设计(1)录制一段2s左右的语音信号,并对录制的信号进行8000Hz的采样,画出采样后语音信号的时域波形和频谱图;(2)采用正弦信号和自行录制的语音信号(.wav文件)进行DSB调制与解调;信道使用高斯白噪声;画出相应的时域波形和频谱图。
3相关知识DSB调制原理在消息信号m(t)上不加上直流分量,则输出的已调信号就是无载波分量的双边带调制信号,或称抑制载波双边带(DSB-SC)调制信号,简称双边带(DSB)信号。
DSB 调制器模型如图1-1,可见DSB信号实质上就是基带信号与载波直接相乘。
摘要本课程设计主要运用MATLAB集成环境下的Simulink仿真平台设计进行DSB调制与相干解调系统仿真。
在本次课程设计中先根据DSB调制与解调原理构建调制解调电路,从Simulink工具箱中找所各元件,合理设置好参数并运行,其中可以通过不断的修改优化得到需要信号,之后分别加入高斯白噪声,并分析对信号的影响,最后通过对输出波形和功率谱的分析得出DSB调制解调系统仿真是否成功。
关键词:Simulink;DSB;调制;相干解调目录1 课程设计目的 (5)2 课程设计要求 (5)3 相关知识 (5)4 课程设计分析 (2)5 仿真 (4)6结果分析 (6)7 参考文献 (7)1 课程设计目的通信技术的发展日新月异,通信系统也日趋复杂,在通信系统的设计研发过程中,软件仿真已成为必不可少的一部分,电子设计自动化EDA技术已成为电子设计的潮流。
随着信息技术的不断发展,涌现出了许多功能强大的电子仿真软件,如Workbench、Protel、Systemview、Matlab等。
《通信原理》是电子通信专业的一门极为重要的专业基础课,由于内容抽象,基本概念较多,是一门难度较大的课程,要想学好并非易事。
采用Matlab及Simulink作为辅助教学软件,摆脱了繁杂的计算,可以使学生对书本上抽象的原理有进一步的感性认识,加深对基本原理的理解。
2 课程设计要求DSB调制与解调系统设计(1)录制一段2s左右的语音信号,并对录制的信号进行8000Hz的采样,画出采样后语音信号的时域波形和频谱图;(2)采用正弦信号和自行录制的语音信号(.wav文件)进行DSB调制与解调;信道使用高斯白噪声;画出相应的时域波形和频谱图。
3相关知识DSB 调制原理在消息信号m(t)上不加上直流分量,则输出的已调信号就是无载波分量的双边带调制信号,或称抑制载波双边带(DSB-SC )调制信号,简称双边带(DSB )信号。
DSB 调制器模型如图1-1,可见DSB 信号实质上就是基带信号与载波直接相乘。
沈阳理工大学通信系统课程设计报告DSB调制与解调1课程设计目的本课程设计是实现 DSB的调制解调。
在此次课程设计中,我将通过多方搜集资料与分析,来理解 DSB调制解调的具体过程和它在 MATLAB中的实现方法。
预期通过这个阶段的研习,更清晰地认识 DSB的调制解调原理,同时加深对 MATLAB 这款通信仿真软件操作的熟练度,并在使用中去感受 MATLAB的应用方式与特色。
利用自主的设计过程来锻炼自己独立思考,分析和解决问题的能力,为我今后的自主学习研究提供具有实用性的经验。
2课程设计要求(1)熟悉 MATLAB中 M文件的使用方法,掌握 DSB信号的调制解调原理,以此为基础用 M文件编程实现 DSB信号的调制解调。
(2)绘制出 SSB信号调制解调前后在时域和频域中的波形,观察两者在解调前后的变化,通过对分析结果来加强对DSB信号调制解调原理的理解。
(3)对信号分别叠加大小不同的噪声后再进行解调,绘制出解调前后信号的时域和频域波形,比较未叠加噪声时和分别叠加大小噪声时解调信号的波形有何区别,由所得结果来分析噪声对信号解调造成的影响。
(4)在老师的指导下,独立完成课程设计的全部内容,并按要求编写课程设计论文,文中能正确阐述和分析设计和实验结果。
3相关知识在AM信号中,载波分量并不携带信息,信息完全由边带传送。
如果将载波抑制,只需在将直流A0去掉,即可输出抑制载波双边带信号,简称双边带信号( DSB)。
DSB调制器模型如图 1 所示。
图 1 DSB 调制器模型其中,设正弦载波为c(t) Acos( c t0)式中,A为载波幅度; c 为载波角频率;0 为初始相位(假定0为0)。
调制过程是一个频谱搬移的过程,它是将低频信号的频谱搬移到载频位置。
而解调是将位于载频的信号频谱再搬回来,并且不失真地恢复出原始基带信号。
双边带解调通常采用相干解调的方式,它使用一个同步解调器,即由相乘器和低通滤波器组成。
在解调过程中,输入信号和噪声可以分别单独解调。
现代通信原理与技术课程设计AM-DSB信号的调制与解调学院专业电子信息工程班级 09级电子一班分组成员联系方式指导教师基于Matlab 的AM-DSB 信号的调制与解调一、振幅调制原理1、振幅调制产生原理所谓调制,就是在传送信号的一方将所要传送的信号附加在高频振荡上,再由天线发射出去。
这里高频振荡波就是携带信号的运载工具,也叫载波。
振幅调制,就是由调制信号去控制高频载波的振幅,直至随调制信号做线性变化。
在线性调制系列中,最先应用的一种幅度调制是全调幅或常规调幅,简称为调幅(AM )。
为了提高传输的效率,还有载波受到抑制的双边带调幅波(DSB )和单边带调幅波(SSB )。
在频域中已调波频谱是基带调制信号频谱的线性位移;在时域中,已调波包络与调制信号波形呈线性关系。
设正弦载波为)cos()(0ϕω+=t A t c c式中,A 为载波幅度;c ω为载波角频率;0ϕ为载波初始相位(通常假设0ϕ=0). 调制信号(基带信号)为)(t m 。
根据调制的定义,振幅调制信号(已调信号)一般可以表示为)cos()()(t t Am t s c m ω=设调制信号)(t m 的频谱为)(ωM ,则已调信号)(t s m 的频谱)(ωm S :)]()([2)(c c mM M AS ωωωωω-++= 2、两种调幅电路分析(1)标准调幅波(AM )调制与解调幅度调制是由调制信号去控制高频载波的幅度,使正弦载波的幅度随着调制信号而改变的调制方案,属于线性调制。
AM 信号的时域表示式:频谱:调制器模型如图所示:图1-1 调制器模型00()[()]cos cos ()cos AM c c c s t A m t t A t m t tωωω=+=+01()[()()][()()]2AM c c c c S A M M ωπδωωδωωωωωω=++-+++-c tAM 的时域波形和频谱如图所示:时域 频域图1-2 调制时、频域波形AM 信号的频谱由载频分量、上边带、下边带三部分组成。
实验报告哈尔滨工程大学教务处制DSB信号的调制及相干解调一、整体方案及参数设置1.1 方案设计DSB的调制过程实际上是一个频谱搬移的过程,即是将低频信号的频谱(调制信号)搬移到载频位置(载波)。
解调是调制的逆过程,即是将已调信号还原成原始基带信号的过程,信号的接收端就是通过解调来还原已调信号从而读取发送端发送的信息。
本次实验采用相干解调法解调DSB信号(即将已调信号与相同载波频率相乘),这种方式将广泛应用在载波通信和短波无线电话通信中。
但在信道传输过程中定会引入高斯白噪声,虽然经过带通滤波器后会使其转化成窄带噪声,但它依然会对解调信号造成影响,对信号频谱进行分析时将对比讨论加噪声与不加噪声对其影响。
图一:DSB频谱图图二:DSB调制图三:DSB解调DSB信号与本地相干载波相乘后的输出为:Z(t)= Sdsb(t)cos ωct=m(t)cosωct*cosωct=[m(t)/2]*(1+cos2ωct),经过低通滤波后就能够无失真地恢复原始调制信号为:So(t)= 1/2 m(t),因而可得到无失真的调制信号。
1.2参数设计这儿不知道咋写……你写了给我看下吧1.3实验大纲a.绘制出DSB调制波形时域频域图,用载波将其调制,得到已调波形;b.绘制已调波形时,分为加噪与不加噪两种,分析其频谱上有何差别;c.用与载波频率相同的波对上述两种已调信号进行解调,分别分析两种波形解调结果有何不同。
二.设计实现2.1 实验程序n=2048;fs=n;s=400*pi;i=0:1:n-1;t=i/n;m=sin(10*pi*t);c=cos(300*pi*t);x=m.*c;y=x.*c;x1=awgn(x,30);x2=awgn(x,30);x3=awgn(x,30);x4=awgn(x,30);y1=x1.*c;y2=x2.*c;y3=x3.*c;y4=x4.*c;z1=x1-x;z2=x2-x;z3=x3-x;z4=x4-x;n1=z1.*c;n2=z2.*c;n3=z3.*c;n4=z4.*c;wp=0.1*pi;ws=0.12*pi;Rp=1;As=15; [N,wn]=buttord(wp/pi,ws/pi,Rp,As); [b,a]=butter(N,wn);m1=filter(b,a,y);m1=2*m1;m2=filter(b,a,y1);m2=2*m2;M=fft(m,n);C=fft(c,n);X=fft(x,n);Y=fft(y,n);X1=fft(x1,n);Z1=fft(z1,n);Z2=fft(z2,n);Z3=fft(z3,n);Z4=fft(z4,n);N1=fft(n1,n);N2=fft(n2,n);N3=fft(n3,n);N4=fft(n4,n);[H,w]=freqz(b,a,n,'whole');f=(-n/2:1:n/2-1);figure(1);subplot(221),plot(t,m,'k');axis([0,1,-0.25,1.25]);title('m(t)波形');subplot(222),plot(t,abs(fftshift(M)),'k');%axis([-300,300,0,250]); title('m(t)频谱');subplot(223),plot(t,c,'k');axis([0,0.2,-1.2,1.2]);title('c(t)波形');subplot(224),plot(t,abs(fftshift(C)),'k');%axis([-300,300,0,600]); title('c(t)频谱');figure(2);subplot(221),plot(t,x,'k');axis([0,1,-1.2,1.2]);title('无噪时已调DSB时域波形');subplot(222),plot(t,abs(fftshift(X)),'k');%axis([-300,300,0,600]); title('无噪时已调DSB频谱图');subplot(223),plot(t,x1,'k');axis([0,1,-1.2,1.2]);title('有噪时已调DSB时域波形');subplot(224),plot(t,abs(fftshift(X1)),'k');%axis([-300,300,0,600]); title('有噪时已调DSB频谱图');figure(3);subplot(311),plot(t,abs(fftshift(H)),'k');%axis([-300,300,0,200]); title('滤波器特性');subplot(312),plot(t,m1,'k');axis([0,1,-0.25,1.25]);title('DSB解调后信号波形(无噪)');subplot(313),plot(t,m2,'k');axis([0,1,-0.25,1.25]);title('DSB解调后信号波形(有噪)');2.2实验结果三.总结从程序运行结果可以看出DSB调制是对基带信号进行频谱搬移。
通信原理课程设计simulink dsb调试一、教学目标本课程旨在通过Simulink DSB调试,让学生掌握通信原理的基本知识和应用技能。
教学目标包括:1.知识目标:使学生了解DSB信号的产生、调制和解调过程,理解DSB信号在通信系统中的应用。
2.技能目标:培养学生使用Simulink工具进行DSB信号调试的能力,提高他们在实际通信系统中的分析和解决问题的能力。
3.情感态度价值观目标:培养学生对通信技术的兴趣,增强他们学习通信原理的动力,使他们认识到通信技术在现代社会中的重要性。
二、教学内容本课程的教学内容主要包括DSB信号的产生、调制解调过程以及其在通信系统中的应用。
具体安排如下:1.第1课时:介绍DSB信号的基本概念,讲解DSB信号的产生原理。
2.第2课时:讲解DSB信号的调制过程,分析调制过程中的关键参数。
3.第3课时:讲解DSB信号的解调过程,分析解调过程中的关键参数。
4.第4课时:通过Simulink工具,进行DSB信号的调试,使学生掌握调试技巧。
5.第5课时:结合实际通信系统,分析DSB信号的应用,让学生了解DSB信号在通信系统中的重要性。
三、教学方法为了提高学生的学习兴趣和主动性,本课程将采用以下教学方法:1.讲授法:讲解DSB信号的基本概念、产生原理、调制解调过程以及应用。
2.实验法:通过Simulink工具进行DSB信号的调试,使学生掌握调试技巧。
3.案例分析法:结合实际通信系统,分析DSB信号的应用,让学生了解DSB信号在通信系统中的重要性。
四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将准备以下教学资源:1.教材:《通信原理》。
2.参考书:相关通信原理的论文和书籍。
3.多媒体资料:Simulink教程、DSB信号调试视频等。
4.实验设备:计算机、Simulink软件、示波器等。
五、教学评估为了全面、客观、公正地评估学生的学习成果,本课程将采用以下评估方式:1.平时表现:通过课堂参与、提问、回答问题等方式,评估学生的课堂表现。
信息处理课程设计报告题目:基于simulink的DSB调制与解调系统设计学院(系):机械与电子工程学院专业年级:电信08学生姓名:武彦曾杨指导教师:迟* 秦**合作指导教师:吴** 侯**完成日期: 2011-7-20基于simulink的DSB调制与解调系统设计摘要本课程设计主要运用MATLAB集成环境下的Simulink仿真平台设计进行DSB调制与相干解调系统仿真。
在本次课程设计中先根据DSB调制与解调原理构建调制解调电路,从Simulink工具箱中找所各元件,合理设置好参数并运行,其中可以通过不断的修改优化得到需要信号,之后分别加入高斯白噪声,并分析对信号的影响,最后通过对输出波形和功率谱的分析得出DSB调制解调系统仿真是否成功。
关键词:Simulink;DSB;调制;相干解调目录1 设计任务............................................................................................................................................. - 1 -1.1 设计的目的和意义.................................................................................................................... - 1 -1.2 设计任务与要求........................................................................................................................ - 1 -2 系统原理............................................................................................................................................. - 1 -2.1 DSB调制原理............................................................................................................................. - 1 -2.2 DSB解调原理............................................................................................................................. - 2 -3 设计方案............................................................................................................................................. - 3 -3.1 仿真平台.................................................................................................................................... - 3 -3.2 录音功能的实现........................................................................................................................ - 5 -3.3 调制模块设计............................................................................................................................ - 7 -3.4 高斯白噪声信道........................................................................................................................ - 9 -3.5 解调模块设计.......................................................................................................................... - 10 -3.6 总体模型...................................................................................................................................- 11 -4 系统特性分析.................................................................................................................................. - 12 -4.1 频谱分析.................................................................................................................................. - 12 -4.2 功率谱分析.............................................................................................................................. - 14 -5 总结.................................................................................................................................................... - 15 -5.1 遇到的问题.............................................................................................................................. - 15 -5.2 致谢.......................................................................................................................................... - 16 -参考文献 ............................................................................................................................................... - 16 -1 设计任务1.1 设计的目的和意义通信技术的发展日新月异,通信系统也日趋复杂,在通信系统的设计研发过程中,软件仿真已成为必不可少的一部分,电子设计自动化EDA技术已成为电子设计的潮流。
随着信息技术的不断发展,涌现出了许多功能强大的电子仿真软件,如Workbench、Protel、Systemview、Matlab等。
《通信原理》是电子通信专业的一门极为重要的专业基础课,由于内容抽象,基本概念较多,是一门难度较大的课程,要想学好并非易事。
采用Matlab及Simulink作为辅助教学软件,摆脱了繁杂的计算,可以使学生对书本上抽象的原理有进一步的感性认识,加深对基本原理的理解。
1.2 设计任务与要求设计题目:DSB调制与解调系统设计设计要求:(1)录制一段2s左右的语音信号,并对录制的信号进行8000Hz的采样,画出采样后语音信号的时域波形和频谱图;(2)采用正弦信号和自行录制的语音信号(.wav文件)进行DSB调制与解调;信道使用高斯白噪声;画出相应的时域波形和频谱图。
2 系统原理2.1 DSB调制原理在消息信号m(t)上不加上直流分量,则输出的已调信号就是无载波分量的双边带调制信号,或称抑制载波双边带(DSB-SC)调制信号,简称双边带(DSB)信号。
DSB 调制器模型如图2-1,可见DSB信号实质上就是基带信号与载波直接相乘。
图2-1 DSB 信号调制器模型其时域和频域表示式分别如下t t m t S c DSB ωcos )()(= (式2-1)[])()(21)(c c DSB M M S ωωωωω-++= (式2-2) 除不再含有载频分量离散谱外,DSB 信号的频谱与AM 信号的完全相同,仍由上下对称的两个边带组成。
故DSB 信号是不带载波的双边带信号,它的带宽与AM 信号相同,也为基带信号带宽的两倍,DSB 信号的波形和频谱分别如图2-2:图2-2 DSB 信号的波形与频谱2.2 DSB 解调原理因为不存在载波分量,DSB 信号的调制效率是100%,即全部功率都用于信息传输。
但由于DSB 信号的包络不再与m(t)成正比,故不能进行包络检波,需采用相干解调。
图2-3 DSB 信号相干解调模型图2-3中SL(t)为本地载波,也叫相干载波,必须与发送端的载波完成同步。
即频率相同时域分析如下:t 2cos )(21)(21t m(t)cos (t)S (t)S (t)c c 2L DSB p ωωt m t m S +==⋅= (式2-3) Sp(t)经过低通滤波器LPF ,滤掉高频成份,)(t m o 为)(21)(t m t m o = (式2-4) 频域分析如下:[])(S )-(21)(c DSB c DSB p ωωωωω++=S S )(21)H()(S )(p o ωωωωM M =⋅=∴ (式2-5) 式中的H(ω)为LPF 的系统函数。