烟气脱硫脱硝技术在催化裂化装置中的应用
- 格式:pdf
- 大小:301.15 KB
- 文档页数:5
催化裂化再生烟气湿法脱硫腐蚀分析及新技术开发应用发布时间:2023-02-10T05:57:46.382Z 来源:《城镇建设》2022年19期作者:张爽[导读] 催化裂化再生烟气是污染物排放的主要来源,为了降低再生烟气中SOx的排放,张爽沧州炼化河北沧州 061000摘要:催化裂化再生烟气是污染物排放的主要来源,为了降低再生烟气中SOx的排放,主要采取以下几种措施:一是通过对催化裂化原料进行加氢处理来降低其硫含量,从而大幅度降低烟气中SOx的排放,其处理效果明显,但是加工成本较高;二是在催化裂化反应再生体系内引入硫转移助剂,无需增加设备投资,操作简单,但由于其脱硫效率低,难以达到环保排放要求;三是直接对催化裂化再生烟气进行处理,由于其投资相对较低、脱硫效率高,其应用也较为广泛。
催化裂化再生烟气湿法脱硫技术具有工艺流程简单和原料适应性强等优势,但是湿法脱硫工艺装置在长期运行过程中会产生蓝色和白色烟羽,存在高盐废水排放量大、设备腐蚀严重等问题,影响了该技术的应用效果。
为了克服湿法烟气脱硫技术的缺陷,有些企业研究开发和应用了半干法和干法等烟气脱硫技术。
关键词:催化裂化;湿法脱硫;腐蚀;分析;新技术引言随着中国经济的快速发展和科技的不断创新,汽油、柴油、乙烯等石油化工产品的需求不断增加,高质量炼油量无法满足社会需求。
随着全球石油资源退化的强劲趋势以及氮和硫含量高的原油比例显着增加,越来越多的炼油公司开始尝试提炼劣质石油。
对高氮和高硫原油进行提炼,将不可避免地导致催化裂化再生烟气中的二氧化硫和氮氧化物等空气污染物含量大幅度增加。
与此同时,各国的环境要求不断提高,炼油工业的环境压力也大大增加。
1.概念催化裂化(FCC)催化剂再生是一个在高温下烧掉沉积在催化剂表面焦炭的过程,在这个过程中会产生大量的再生烟气。
由于催化剂上的焦炭除了含有大量的碳、氢元素外还含有少量的硫、氮等元素,因此FCC再生烟气中会有一定量的氮氧化物NOx和硫氧化物SOx存在。
裂化装置再生烟气污染物排放治理摘要:当前背景下,催化裂化装置再生烟气中的NOx、SO2、粉尘等大气污染物会给环境带来较大污染。
文中结合某公司催化裂化装置烟气脱硫脱硝技术应用,及运行过程中存在的问题,制定有针对性的解决措施,以推进烟气脱硫脱硝技术应用的不断完善,保证污染物达标排放。
关键词:再生烟气;污染物;烟气脱硫脱硝1工艺流程说明1.1急冷段来自脱硝装置的烟气通过一矩形管进入脱硫除尘装置脱硫段,脱硫段入口管道上方装有两级喷嘴组,喷嘴组喷射循环洗涤液---该喷射液覆盖整个气流断面并均匀冲洗管道内壁以急冷烟气,使烟气饱和,烟气被冷却至绝热饱和温度:正常运行工况下约为60°C。
两级急冷喷嘴配有独立的洗涤液供给系统,即各有分支管路接至洗涤液供液总管。
急冷喷嘴组管路还另接至一套紧急供水系统,以便在洗涤液供应完全中断时还能对烟气进行急冷。
1.2逆流式脱硫段(洗涤段)SO2吸收和相当部分的颗粒物脱除是在一个开放的逆流式脱硫段内完成的。
该脱硫段布置有4级喷淋层,喷射从(脱硫除尘装置底部)洗涤液池泵入的循环液,喷射液与沿垂直方向通过的饱和汽形成逆流。
为了吸收SO2以及中和静电除尘段收集的酸雾,须在洗涤液池内添加氢氧化钠溶液,添加的量通过测量循环液的PH来控制。
脱硫段反应机理如下:吸收二氧化硫(SO2)气体生成亚硫酸氢钠/亚硫酸盐(HSO3/ SO3)液体亚硫酸盐:SO2 + 2 OH¯ + 2 Na+→Na2SO3 + H2O亚硫酸氢盐:S O2 + HSO3¯ + Na+→NaHSO3 + CO2吸收剂分解:NaOH + H2O→Na+ + OH¯SO3 / H2SO4反应:H2SO4 + 2OH¯ + 2Na+→Na2SO4 + 2 H2O脱硫段为一圆柱形塔器。
其底部作为洗涤液泵池,池底有锥形排放口。
喷淋系统喷嘴为径向流喷嘴,材料为SiC(碳化硅),有两种类型:下3层喷淋层为双向喷嘴(上下喷淋),最上层为单向喷嘴(向下喷淋),喷嘴各有喷枪支撑,为了确保喷淋液100%覆盖洗涤段断面,喷枪相应也有两种尺寸。
WGS技术在催化裂化装置烟气脱硫中的首次应用丁大一【摘要】介绍了国内首套引进美国Exxon Mobil公司WGS湿法脱硫技术在催化裂化装置烟气脱硫除尘中的应用情况.该技术具有工艺简单、脱硫除尘效率高、操作难度小、单元能耗低、对催化烟机做功无影响等优点.脱硫率达到95%,除尘率达到90%以上,完全满足GB 31570-2015《石油炼制工业污染物排放标准》的要求.在中国石油锦西石化分公司1 Mt/a催化裂化装置上已达到连续运行2 a的国内最长周期水平.【期刊名称】《炼油技术与工程》【年(卷),期】2016(046)005【总页数】5页(P23-27)【关键词】WGS技术;催化裂化装置;烟气脱硫;除尘;工业应用【作者】丁大一【作者单位】中国石油锦西石化分公司,辽宁省葫芦岛市125001【正文语种】中文国内早期的大气污染治理始于20世纪80年代。
近年来,随着大中型城市雾霾加剧,国家加大力度对污染区、污染物以及重点污染源进行限期治理,相关的大气治理法规不断得到完善和修订,污染物排放浓度标准日益严格,大气污染物排放总量幅大削减。
国务院印发的《“十二五”节能减排综合性工作方案》中要求:在“十二五”期间全国二氧化硫排放总量削减8%,氮氧化物排放总量削减10%。
炼油企业的各类排放是主要污染源,而其中催化裂化装置再生烟气又是炼油企业主要污染源之一。
其排放物中SO2,NOx、颗粒物为主要污染物,采取净化措施对其进行有效治理十分必要。
大气污染防治法于1987年制定,并于1995年、2000年曾两次修改;2014年11月26日讨论通过《中华人民共和国大气污染防治法(修订草案)》。
从立法的角度,强制企业进行有效的大气治理。
催化裂化装置烟气排放标准长期以来执行GB 16297—1996《大气污染物综合排放标准》和HJ 125—2003《清洁生产标准——石油炼制业》标准,目前已被GB 31570—2015《石油炼制工业污染物排放标准》替代,从2015年7月1日开始执行。
湿法烟气脱硫技术在催化裂化装置的应用发布时间:2022-08-30T09:14:53.293Z 来源:《科学与技术》2022年第30卷4月8期作者:王新宇[导读] 催化裂化工艺是炼化企业生产的重要过程,随着我国能源炼厂数量越来越多王新宇广饶科力达石化科技有限公司【摘要】催化裂化工艺是炼化企业生产的重要过程,随着我国能源炼厂数量越来越多,能源催化裂化装置排放量逐渐增加,这对自然生态环境的发展造成了很大的影响。
只有根据炼化企业的生产现状和未来发展制定科学、合理的催化裂化烟气脱硫技术,进一步加强对硫化物的控制,才能有效地减少有物质的排放,真正起到保护周边的自然环境,营造一个绿色无污染的生活环境,促进科学发展和可持续发展。
本文通过论述催化裂化烟气脱硫技术的发展现状,浅析湿法烟气脱硫技术在催化裂化装置的改造与应用,实现烟气脱硫的减排与优化。
【关键词】催化裂化;烟气脱硫;硫化物;减排与优化一、概述催化裂化是目前石油冶炼和二次加工过程中的重要环节,在生产过程中原油中的氮氧化物和硫氧化物等转变为气体、固体颗粒等污染物随催化裂化再生烟气一起排入大气中,造成了严重的大气污染。
以我国目前的经济水平和技术能力还不允许像发达国家那样大量投入人力、物力和财力去治理大气的污染,且我国对大气中氮氧化物和硫氧化物等污染物的相关治理起步较晚,目前还处于探索阶段。
国内一些炼油厂等工业部门的烟气脱硫装置制造大部分都是从欧美等国引进的技术,许多都在试验阶段,且这些脱硫装置处理的烟气量有限,脱硫速度有待提高,如果处理不善很可能会造成二次污染?。
随着节能减排战略的提出和实施,以及相关环境法律法规要求的日益严格,炼油厂对催化裂化装置中排放出的氮氧化物和硫氧化物等污染物排放标准和治理方案也开始提上日程。
近年来炼油厂都被要求必须采用烟气脱硫脱硝优化工艺,以降低催化裂化装置中再生烟气的污染物排放量,满足大气环保要求? 。
二、烟气脱硫系统应用1、系统概况根据国家“十二五”污染减排工作精神和相关环境法律法规的要求,对于污染物排放量较大或再生烟气不能达标排放的炼化企业催化裂化装置,全面建设烟气脱硫设施。
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==脱硝剂在催化裂化装置的工业应用氮氧化物(NOx)是催化裂化装置(FCC)再生烟气中的主要污染物之一,其排放量约占炼油厂NOx排放总量的50%v以上[1],约占石油炼制工业NOX排放总量的10%v[2]。
NOx不仅能形成酸雨和光化学烟雾,破坏臭氧层,损害人体健康,污染环境,同时再生烟气中NOx是形成设备应力腐蚀介质的主要来源,再生烟气低温系统易产生腐蚀,影响装置安全长周期运行[3]。
近年来,随着环保法规的日益严格,特别是201X年《石油炼制工业污染物排放标准》对FCC再生烟气NOx排放浓度限定值要求小于200mg/m3,特别地区小于100mg/m3的指标发布之后,催化烟气的氮氧化物控制已经成为炼油行业关注的重点,因此采取适宜的措施降低FCC装置的NOx排放显得尤为重要。
一、1.0Mt/a ARGG装置工艺技术特点1.0Mt/a ARGG装置由洛阳工程有限公司设计,装置包括反应―再生、分馏、吸收稳定、产品精制、余热锅炉、烟气脱硫、主风机组、气压机组等部分,采用深度催化转化工艺(ARGG)和灵活多效FDFCC技术,重油提升管反应器的原料为大庆常压渣油,其规模为1.0Mt/a,汽油提升管反应器的原料是0.36×Mt/a的稳定汽油,装置的沉降器与再生器采用同轴式布置,两根提升管采用外提升管,再生器采用单段逆流富氧再生的方式。
二、催化裂化装置再生烟气中氮氧化物产生的机理催化裂化原料中氮化物被分为四类:胺、吡啶的衍生物、吡咯的衍生物和酰胺。
大多数胺类和吡啶类化合物被认为是碱性的,这些碱性氮吸附在催化剂酸性位上,以芳香环的形式存在于焦炭中,而中和性和酸性氮的化合物则被认为进入产品中。
一般催化裂化装置原料中大约35%~40%的N转移到焦炭中[3],焦炭中的氮在烧焦过程中,首先大部分生成HCN,少量生成NH4,然后又进一步反应生成N2和NOx。
催化裂化装置烟气脱硫脱硝运行问题及对策摘要:当前高硫原料的比例增加,对工业生产的环保要求也在逐渐提升,需要全面控制好催化裂化装置再生烟气的排放工作,发挥脱硫脱硝装置的优势和作用,起到良好的污染防治效果。
本文主要是从催化裂化再生烟气脱硫脱硝装置的基本情况入手,重点分析其反应机理、工艺流程等方面内容,开展效果分析工作,为全面提升该装置的整体运行水平提供一定参考和借鉴。
关键词:催化裂化;再生烟气;脱硫脱硝;装置;运行效果分析引言为满足国家和地方环保要求,建设环境友好型企业,近年来中国石化催化裂化装置陆续新增了烟气脱硫、脱硝以及除尘装置。
但是由于烟气脱硫脱硝装置处于复杂恶劣的腐蚀环境,装置运行中逐渐暴露出一些不足,尤其是因腐蚀问题导致的非计划停工,给催化裂化装置安全稳定长周期运行带来了困扰。
1反应机理催化裂化再生烟气脱硫脱硝装置实际应用的过程中,首先开展的是脱硫反应,应用了EDV湿法烟气脱硫方法,这一方法将烟气之中存在着的S02与Na0H溶液进行逆向性的充分接触反应,从而对烟气中的S02进行有效清除,同时能够有效净化和洗涤烟气,使烟气达到排放标准。
此方法实现作用的过程中,主要利用了S02+H20→H2S03这一反应式,经过一系列的化学反应,最终在PTU氧化罐中进行反应,反应式为Na2SO3+1/2O2→Na2SO4。
其次,催化裂化再生烟气脱硝反应,这主要是将烟气中的NO和NO2进行氧化反应处理生成N2O5,需要注意到的是,N2O5能和水分发生化学反应形成硝酸,最终硝酸和NaOH反应生成硝酸钠。
脱硝反应进行过程中的反应式为HNO3+NaOH→NaNO3+H2O。
2催化裂化再生烟气脱硫脱硝装置的效果分析工作2.1重视硫转移助剂和脱硝助剂的使用硫转移助剂以及脱硝助剂的工业应用已经非常成熟,在多套催化裂化装置都有工业案例,虽然该方法仅适用于烟气中SOx、NOx浓度较低的催化裂化装置,且存在脱除效率较低以及对原料适应性较差的问题,但该方法不需要增加设备投资,使用灵活、操作方便,不存在潜在的液体或固体废弃物处理问题,可与现有湿法脱硫脱硝技术组合应用,适合现有装置的提标改造。
烟气脱硫除尘技术在催化装置的应用探讨薛小波范秋生玉门油田分公司炼油化工总厂80万吨/年重油催化裂化装置是由原来的50万吨/年蜡油催化裂化装置扩建改造而成的。
装置自2005年开工以来,各系统运行良好,各项经济技术指标达到并超过了设计值,创造了可观的经济效益。
目前重油催化装置所用原料为混合蜡油与减压渣油的混合物,其中掺渣比为20%~25%,属于高硫重质油范畴。
由于原料未经过加氢预处理,原料中的硫大约有10%~15%在裂化反应转化到了催化焦炭中,经过再生后随烟气一起排放,致使催化烟气中硫含量较高。
同时,催化烟气中伴随有大量的催化剂细粉,浓度达到50~150mg/m3,这就导致催化烟气有高硫高粉尘的特点。
研究表明,烟气中100μm以下的悬浮物能够进入人体,粘附在支气管和肺上,危害人体健康;烟气中的SO2和NO X,排入大气会导致酸雨,使农、林、牧业受损,工业设备、建筑物、历史古迹等受到腐蚀。
为了保护周围的环境,有必要建设一套催化裂化烟气脱硫除尘系统。
1 装置现状和存在的问题催化烟气中的SO2的浓度主要取决于催化原料的硫含量,焦炭产率和再生形式。
装置混合原料的硫含量(质量分数)为0.15%~0.4%。
大约10%~15%的原料硫转化于催化焦炭中,通过再生后,生成SO2随烟气一起排放,目前装置烟气排放量为125000m3/h左右,其中SO2含量为300~500 mg/m3,烟气中催化剂细粉含量为50~150mg/m3。
根据中华人民共和国保护行业标准,HJ/T125-2003,清洁生产标准,石油炼制业,规定的催化裂化装置清洁生产标准,要求烟气中SO2含量≯550mg/m3,颗粒物浓度排放≯120mg/m3。
目前,装置SO2和催化剂粉尘排放浓度基本处于国家行业排放标准边缘。
同时,2010年11月,国家环境保护部开始对拟颁布的《石油炼制工业污染物排放标准》广泛征求意见。
该标准规定,自2014年7月1日起,现有企业催化裂化装置再生烟气二氧化硫、氮氧化物和颗粒物分别不大于400mg/m3、200mg/m3和50mg/m3。
催化裂化烟气同时脱硫、脱硝新技术随着工业的发展,烟气污染对环境和人类健康造成了严重的影响。
而其中硫氧化物和氮氧化物是主要的污染物之一。
因此,研究开发一种能够同时高效脱除烟气中的硫氧化物和氮氧化物的催化裂化新技术显得尤为重要。
催化裂化烟气同时脱硫、脱硝技术是一种基于催化作用的先进技术,能够在高温条件下实现烟气中硫氧化物和氮氧化物的去除,有效减少其对环境的影响。
该技术综合应用了催化剂、吸附剂等多种材料,通过化学反应达到同时脱硫、脱硝的目的。
首先,催化剂在催化裂化过程中起到了重要的作用。
催化剂可以降低反应温度和活化能,提高反应速率和选择性,从而促进硫氧化物和氮氧化物的催化转化。
催化剂的选择和设计对于技术的效率和稳定性具有关键影响。
目前常用的催化剂包括贵金属类、过渡金属氧化物类等,其性能和稳定性经过多次研究得到不断改善。
其次,吸附剂在催化裂化烟气处理中也起到了重要作用。
吸附剂可以吸附烟气中的硫氧化物和氮氧化物,使其从气相转化为固相,从而实现脱硫、脱硝的效果。
常用的吸附剂有活性炭、分子筛等,其物理性能和吸附能力的改进对于技术的性能和经济效益具有重要意义。
通过将催化剂和吸附剂结合使用,催化裂化烟气同时脱硫、脱硝技术能够较好地解决烟气污染问题。
催化裂化烟气处理工艺中,烟气经过预处理后,进入催化裂化装置,通过催化剂的作用,使硫氧化物和氮氧化物发生催化反应转化为无害物质。
然后,烟气经过吸附剂的处理,吸附剂将烟气中的硫氧化物和氮氧化物吸附下来,使其被固定在吸附剂上,达到脱硫、脱硝的效果。
最后,经过处理后的烟气排放出去时,其硫氧化物和氮氧化物含量大幅降低,对环境的影响也得到了有效的控制。
总的来说,催化裂化烟气同时脱硫、脱硝新技术是一种高效、环保的烟气处理技术。
通过合理选择和设计催化剂和吸附剂,可以实现烟气中硫氧化物和氮氧化物的高效去除,减少对环境的影响。
随着技术的不断进步和优化,催化裂化烟气处理技术将会在工业生产中得到广泛应用,为改善环境质量和保护人类健康做出贡献。