高考物理三种宇宙速度知识点精讲
- 格式:doc
- 大小:12.51 KB
- 文档页数:2
2020届高考物理考点分类解析03三种宇宙速度教学素材〔3〕三种宇宙速度=7.9km/s,它是卫星的最小发射速度,也是地球卫星的最①第一宇宙速度:v1大围绕速度.=11.2km/s,使物体挣脱地球引力束缚的最小②第二宇宙速度〔脱离速度〕:v2发射速度.=16.7km/s,使物体挣脱太阳引力束缚的最小③第三宇宙速度〔逃逸速度〕:v3发射速度.〔4〕地球同步卫星所谓地球同步卫星,是相关于地面静止的,这种卫星位于赤道上方某一高度的稳固轨道上,且绕地球运动的周期等于地球的自转周期,即T=24h=86400s,离地面高度同步卫星的轨道一定在赤道平面内,同时只有一条.所有同步卫星都在这条轨道上,以大小相同的线速度,角速度和周期运行着.〔5〕卫星的超重和失重〝超重〞是卫星进入轨道的加速上升过程和回收时的减速下降过程,此情形与〝升降机〞中物体超重相同.〝失重〞是卫星进入轨道后正常运转时,卫星上的物体完全〝失重〞〔因为重力提供向心力〕,现在,在卫星上的仪器,凡是制造原理与重力有关的均不能正常使用.五、动量1.动量和冲量〔1〕动量:运动物体的质量和速度的乘积叫做动量,即p=mv.是矢量,方向与v 的方向相同.两个动量相同必须是大小相等,方向一致.〔2〕冲量:力和力的作用时刻的乘积叫做该力的冲量,即I=Ft.冲量也是矢量,它的方向由力的方向决定.2. ★★动量定理:物体所受合外力的冲量等于它的动量的变化.表达式:Ft=p′-p 或Ft=mv′-mv〔1〕上述公式是一矢量式,运用它分析咨询题时要专门注意冲量、动量及动量变化量的方向.〔2〕公式中的F是研究对象所受的包括重力在内的所有外力的合力.〔3〕动量定理的研究对象能够是单个物体,也能够是物体系统.对物体系统,只需分析系统受的外力,不必考虑系统内力.系统内力的作用不改变整个系统的总动量.〔4〕动量定理不仅适用于恒定的力,也适用于随时刻变化的力.关于变力,动量定理中的力F应当明白得为变力在作用时刻内的平均值.★★★ 3.动量守恒定律:一个系统不受外力或者所受外力之和为零,那个系统的总动量保持不变.表达式:m1 v1+m2v2=m1v1′+m2v2′〔1〕动量守恒定律成立的条件①系统不受外力或系统所受外力的合力为零.②系统所受的外力的合力虽不为零,但系统外力比内力小得多,如碰撞咨询题中的摩擦力,爆炸过程中的重力等外力比起相互作用的内力来小得多,能够忽略不计.③系统所受外力的合力虽不为零,但在某个方向上的重量为零,那么在该方向上系统的总动量的重量保持不变.〔2〕动量守恒的速度具有〝四性〞:①矢量性;②瞬时性;③相对性;④普适性.4.爆炸与碰撞〔1〕爆炸、碰撞类咨询题的共同特点是物体间的相互作用突然发生,作用时刻专门短,作用力专门大,且远大于系统受的外力,故可用动量守恒定律来处理. 〔2〕在爆炸过程中,有其他形式的能转化为动能,系统的动能爆炸后会增加,在碰撞过程中,系统的总动能不可能增加,一样有所减少而转化为内能.〔3〕由于爆炸、碰撞类咨询题作用时刻专门短,作用过程中物体的位移专门小,一样可忽略不计,能够把作用过程作为一个理想化过程简化处理.即作用后还从作用前瞬时的位置以新的动量开始运动.5.反冲现象:反冲现象是指在系统内力作用下,系统内一部分物体向某方向发生动量变化时,系统内其余部分物体向相反的方向发生动量变化的现象.喷气式飞机、火箭等差不多上利用反冲运动的实例.明显,在反冲现象里,系统的动量是守恒的.六、机械能1.功〔1〕功的定义:力和作用在力的方向上通过的位移的乘积.是描述力对空间积存效应的物理量,是过程量.定义式:W=F·s·cosθ,其中F是力,s是力的作用点位移〔对地〕,θ是力与位移间的夹角.〔2〕功的大小的运算方法:①恒力的功可依照W=F·S·cosθ进行运算,本公式只适用于恒力做功.②依照W=P·t,运算一段时刻内平均做功. ③利用动能定理运算力的功,专门是变力所做的功.④依照功是能量转化的量度反过来可求功.〔3〕摩擦力、空气阻力做功的运算:功的大小等于力和路程的乘积.发生相对运动的两物体的这一对相互摩擦力做的总功:W=fd〔d是两物体间的相对路程〕,且W=Q〔摩擦生热〕2.功率〔1〕功率的概念:功率是表示力做功快慢的物理量,是标量.求功率时一定要分清是求哪个力的功率,还要分清是求平均功率依旧瞬时功率.〔2〕功率的运算①平均功率:P=W/t〔定义式〕表示时刻t内的平均功率,不管是恒力做功,依旧变力做功,都适用. ②瞬时功率:P=F·v·cosα P和v分不表示t时刻的功率和速度,α为两者间的夹角. 〔3〕额定功率与实际功率:额定功率:发动机正常工作时的最大功率. 实际功率:发动机实际输出的功率,它能够小于额定功率,但不能长时刻超过额定功率. 〔4〕交通工具的启动咨询题通常讲的机车的功率或发动机的功率实际是指其牵引力的功率.①以恒定功率P启动:机车的运动过程是先作加速度减小的加速运动,后以最大速度v m=P/f 作匀速直线运动, .②以恒定牵引力F启动:机车先作匀加速运动,当功率增大到额定功率时速度为v1=P/F,而后开始作加速度减小的加速运动,最后以最大速度vm=P/f作匀速直线运动。
高考物理考点分类汇编03〔3〕三种宇宙速度①第一宇宙速度:v 1 =7.9km/s,它是卫星的最小发射速度,也是地球卫星的最大环绕速度.②第二宇宙速度〔脱离速度〕:v 2 =11.2km/s,使物体挣脱地球引力束缚的最小发射速度.③第三宇宙速度〔逃逸速度〕:v 3 =16.7km/s,使物体挣脱太阳引力束缚的最小发射速度.〔4〕地球同步卫星所谓地球同步卫星,是相对于地面静止的,这种卫星位于赤道上方某一高度的稳定轨道上,且绕地球运动的周期等于地球的自转周期,即T=24h=86400s,离地面高度同步卫星的轨道一定在赤道平面内,并且只有一条.所有同步卫星都在这条轨道上,以大小相同的线速度,角速度和周期运行着.〔5〕卫星的超重和失重“超重〞是卫星进入轨道的加速上升过程和回收时的减速下降过程,此情景与“升降机〞中物体超重相同.“失重〞是卫星进入轨道后正常运转时,卫星上的物体完全“失重〞〔因为重力提供向心力〕,此时,在卫星上的仪器,凡是制造原理与重力有关的均不能正常使用.五、动量1.动量和冲量〔1〕动量:运动物体的质量和速度的乘积叫做动量,即p=mv.是矢量,方向与v 的方向相同.两个动量相同必须是大小相等,方向一致.〔2〕冲量:力和力的作用时间的乘积叫做该力的冲量,即I=Ft.冲量也是矢量,它的方向由力的方向决定.2. ★★动量定理:物体所受合外力的冲量等于它的动量的变化.表达式:Ft=p′-p 或Ft=mv′-mv〔1〕上述公式是一矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向.〔2〕公式中的F是研究对象所受的包括重力在内的所有外力的合力.〔3〕动量定理的研究对象可以是单个物体,也可以是物体系统.对物体系统,只需分析系统受的外力,不必考虑系统内力.系统内力的作用不改变整个系统的总动量.〔4〕动量定理不仅适用于恒定的力,也适用于随时间变化的力.对于变力,动量定理中的力F应当理解为变力在作用时间内的平均值.★★★3.动量守恒定律:一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变.表达式:m 1 v 1 +m 2 v 2 =m 1 v 1′+m 2 v 2′〔1〕动量守恒定律成立的条件①系统不受外力或系统所受外力的合力为零.②系统所受的外力的合力虽不为零,但系统外力比内力小得多,如碰撞问题中的摩擦力,爆炸过程中的重力等外力比起相互作用的内力来小得多,可以忽略不计.③系统所受外力的合力虽不为零,但在某个方向上的分量为零,那么在该方向上系统的总动量的分量保持不变.〔2〕动量守恒的速度具有“四性〞:①矢量性;②瞬时性;③相对性;④普适性.4.爆炸与碰撞〔1〕爆炸、碰撞类问题的共同特点是物体间的相互作用突然发生,作用时间很短,作用力很大,且远大于系统受的外力,故可用动量守恒定律来处理.〔2〕在爆炸过程中,有其他形式的能转化为动能,系统的动能爆炸后会增加,在碰撞过程中,系统的总动能不可能增加,一般有所减少而转化为内能.〔3〕由于爆炸、碰撞类问题作用时间很短,作用过程中物体的位移很小,一般可忽略不计,可以把作用过程作为一个理想化过程简化处理.即作用后还从作用前瞬间的位置以新的动量开始运动.5.反冲现象:反冲现象是指在系统内力作用下,系统内一部分物体向某方向发生动量变化时,系统内其余部分物体向相反的方向发生动量变化的现象.喷气式飞机、火箭等都是利用反冲运动的实例.显然,在反冲现象里,系统的动量是守恒的.六、机械能1.功〔1〕功的定义:力和作用在力的方向上通过的位移的乘积.是描述力对空间积累效应的物理量,是过程量.定义式:W=F·s·cosθ,其中F是力,s是力的作用点位移〔对地〕,θ是力与位移间的夹角.〔2〕功的大小的计算方法:①恒力的功可根据W=F·S·cosθ进行计算,本公式只适用于恒力做功.②根据W=P·t,计算一段时间内平均做功. ③利用动能定理计算力的功,特别是变力所做的功.④根据功是能量转化的量度反过来可求功.〔3〕摩擦力、空气阻力做功的计算:功的大小等于力和路程的乘积.发生相对运动的两物体的这一对相互摩擦力做的总功:W=fd〔d是两物体间的相对路程〕,且W=Q〔摩擦生热〕2.功率〔1〕功率的概念:功率是表示力做功快慢的物理量,是标量.求功率时一定要分清是求哪个力的功率,还要分清是求平均功率还是瞬时功率.〔2〕功率的计算①平均功率:P=W/t〔定义式〕表示时间t内的平均功率,不管是恒力做功,还是变力做功,都适用. ②瞬时功率:P=F·v·cosα P和v分别表示t 时刻的功率和速度,α为两者间的夹角.〔3〕额定功率与实际功率:额定功率:发动机正常工作时的最大功率. 实际功率:发动机实际输出的功率,它可以小于额定功率,但不能长时间超过额定功率. 〔4〕交通工具的启动问题通常说的机车的功率或发动机的功率实际是指其牵引力的功率.①以恒定功率P启动:机车的运动过程是先作加速度减小的加速运动,后以最大速度v m=P/f 作匀速直线运动,.②以恒定牵引力F启动:机车先作匀加速运动,当功率增大到额定功率时速度为v1=P/F,而后开始作加速度减小的加速运动,最后以最大速度vm=P/f作匀速直线运动。
高一物理《宇宙航行》知识点总结
一、宇宙速度
1.第一宇宙速度的推导
(1)已知地球质量m 地和半径R ,物体在地面附近绕地球的运动可视作匀速圆周运动,万有引
力提供物体运动所需的向心力,轨道半径r 近似认为等于地球半径R ,由Gmm 地R 2=m v 2R ,可得v =Gm 地R
. (2)已知地面附近的重力加速度g 和地球半径R ,由mg =m v 2
R 得:v =gR . 2.三个宇宙速度及含义
二、判断卫星变轨时速度、加速度变化情况的思路
1.判断卫星在不同圆轨道的运行速度大小时,可根据“越远越慢”的规律判断.
2.判断卫星在同一椭圆轨道上不同点的速度大小时,可根据开普勒第二定律判断,即离中心天体越远,速度越小.
3.判断卫星为实现变轨在某点需要加速还是减速时,可根据离心运动或近心运动的条件进行分析.
4.判断卫星的加速度大小时,可根据a =F 万m =G M r
2判断.。
三种宇宙速度的计算方法一、第一宇宙速度。
1.1 概念理解。
第一宇宙速度啊,那可是个很奇妙的东西。
简单来说呢,就是物体在地面附近绕地球做匀速圆周运动的速度。
想象一下啊,就像有个小卫星,紧紧地贴着地球表面飞行,但又不掉下来,这个速度就是第一宇宙速度。
从理论上讲呢,这个速度能让物体刚刚好克服地球的引力,进入到一种圆周运动的状态。
就好比一个调皮的小孩,在地球这个大操场的边缘,以刚刚好的速度跑圈,既不会飞出去,也不会掉进来。
1.2 计算方法。
那这个速度怎么算呢?咱们得用到一些物理知识。
根据万有引力提供向心力这个原理,咱们有公式G(Mm)/(R^2) = mfrac{v^2}{R}。
这里面G是引力常量,M是地球的质量,m是卫星的质量,R是地球的半径,v就是咱们要求的第一宇宙速度啦。
经过计算啊,v=√(frac{GM){R}}。
把地球的质量M = 5.97×10^24kg,地球半径R = 6371km = 6.371×10^6m,引力常量G = 6.67×10^11N· m^2/kg^2代入进去,就能算出第一宇宙速度大约是7.9km/s。
这就像是解开了一道神秘的密码,这个速度就是进入地球轨道的入门钥匙呢。
二、第二宇宙速度。
2.1 概念剖析。
第二宇宙速度呢,它比第一宇宙速度更厉害。
如果说第一宇宙速度是让物体在地球周围转圈的速度,那第二宇宙速度就是让物体彻底摆脱地球引力束缚的速度。
就像一个勇敢的探险家,想要离开地球这个家,到更广阔的宇宙空间去闯荡,那他就得达到这个速度才行。
这时候啊,物体就不再被地球的引力拉着做圆周运动了,而是可以飞向远方,“海阔凭鱼跃,天高任鸟飞”的感觉。
2.2 计算原理。
它的计算也有自己的门道。
第二宇宙速度v_2和第一宇宙速度v_1是有关系的。
实际上v_2=√(2)v_1。
咱们前面算出了第一宇宙速度v_1 = 7.9km/s,那么第二宇宙速度v_2=√(2)×7.9km/s≈11.2km/s。
高一物理必修2人造卫星宇宙速度学习目标:1.知道人造卫星的运行原理和轨道。
2.知道三个宇宙速度。
3.掌握人造卫星的周期、线速度、角速度跟其轨道半径的关系。
学习重点:1.人造卫星的运行原理和轨道。
2.人造卫星的周期、线速度、角速度跟其轨道半径的关系。
学习难点: 人造卫星的周期、线速度、角速度跟其轨道半径的关系。
主要内容:一、人造卫星的运行原理和轨道1.运行原理:2.运行轨道二、宇宙速度:1.第一宇宙速度(环绕速度):2.第二宇宙速度(脱离速度):3.第三宇宙速度(逃逸速度):三、人造卫星的发射速度和运行速度人造卫星的发射速度与运行速度是两个不周的概念。
所谓发射速度是指被发射物在地面附近离开发射装置时的初速度,并且一旦发射后就再无能量补充,被发射物仅依靠自己的初动能克服地球引力上升一定高度,进入运动轨道。
要发射一颗人造地球卫星,发射速度不能小于第一宇宙速度。
若发射速度等于第一宇宙速度,卫星只能“贴着”地面近地运行,如果要使人造卫星在距地面较高的轨道上运行,就必须使发射速度大于第一宇宙速度。
所谓运行速度,是指卫星在进入运行轨道后绕地球做匀速圆周运动的线速度。
当卫星“贴着”地面运行时,运行速度等于第一宇宙速度。
根据知,人造卫星距地面越高(即轨道半径r越大),运行速度越小。
实际上,由于人造卫星的轨道半径都大于地球半径,所以卫星的实际运行速度一定小于发射速度。
人造卫星的发射速度与运行速度之间的大小关系是:1 1.2km/.y>v发≥7.9km/s>v运四、人造卫星绕行线速度、角速度、周期与半径的关系1.线速度与半径的关系:2.角速度与半径的关系:3.周期与半径的关系:由五、地球同步卫星所谓地球同步卫星,是相对地面静止的跟地球自转同步的卫星。
卫星要与地球自转同步,必须满足下列条件:1.卫星绕地球的运行方向与地球自转方向相同,且卫星的运行周期与地球自转周期相同(即等于24h)。
2.卫星运行的圆形轨道必须与地球的赤道平面重合。
高中物理“宇宙三大速度”知识点详解牛顿的设想(1)牛顿对人造卫星原理的描绘设想在高山上有一门大炮,水平发射炮弹,初速度越大,水平射程就越大。
可以想象当初速度足够大时,这颗炮弹将不会落到地面,将和月球一样成为地球的一颗卫星。
(2)人造卫星绕地球运行的动力学原因人造卫星在绕地球运行时,只受到地球对它的万有引力作用,人造卫星作圆周运动的向心力由万有引力提供。
(3)人造卫星的运行速度设地球质量为M,卫星质量为m,轨道半径为r,由于万有引力提供向心力,则∴,可见:高轨道上运行的卫星,线速度小。
角速度和周期与轨道半径的关系可见:高轨道上运行的卫星,角速度小,周期长。
第一宇宙速度【问题】牛顿实验中,炮弹至少要以多大的速度发射,才能在地面附近绕地球做匀速圆周运动?地球半径为6370km。
【分析】在地面附近绕地球运行,轨道半径即为地球半径。
由万有引力提供向心力:【结论】如果发射速度小于7.9km/s,炮弹将落到地面,而不能成为一颗卫星;发射速度等于7.9km/s,它将在地面附近作匀速圆周运动;要发射一颗半径大于地球半径的人造卫星,发射速度必须大于7.9km/s。
可见,向高轨道发射卫星比向低轨道发射卫星要困难。
【意义】第一宇宙速度是人造卫星在地面附近环绕地球作匀速圆周运动所必须具有的速度,所以也称为环绕速度。
第二宇宙速度【大小】V2=11.2 km/s【意义】使卫星挣脱地球的束缚,成为绕太阳运行的人造行星的最小发射速度,也称为脱离速度。
【注意】发射速度大于7.9km/s,而小于11.2km/s,卫星绕地球运动的轨迹为椭圆;等于或大于11.2km/s时,卫星就会脱离地球的引力,不再绕地球运行。
第三宇宙速度【大小】V3=16.7km/s【意义】使卫星挣脱太阳引力束缚的最小发射速度,也称为逃逸速度。
【注意】发射速度大于11.2km/s,而小于16.7km/s,卫星绕太阳作椭圆运动,成为一颗人造行星。
如果发射速度大于等于16.7km/s,卫星将挣脱太阳引力的束缚,飞到太阳系以外的空间。
三个宇宙速度参考系
摘要:
1.宇宙速度的定义与分类
2.第一宇宙速度
3.第二宇宙速度
4.第三宇宙速度
5.宇宙速度与参考系的关系
正文:
【宇宙速度的定义与分类】
宇宙速度是指在地球引力场中,物体需要达到的最低速度,才能克服地球引力,进入宇宙空间。
根据物体运行的轨道和速度的不同,宇宙速度可以分为三种:第一宇宙速度、第二宇宙速度和第三宇宙速度。
【第一宇宙速度】
第一宇宙速度,也被称为“轨道速度”,是指物体在近地轨道上运行的速度。
根据地球的质量和半径,第一宇宙速度的数值约为7.9 千米/秒。
只有达到这个速度,物体才能绕地球运行,而不会坠落回地球表面。
【第二宇宙速度】
第二宇宙速度,也被称为“逃逸速度”,是指物体需要达到的速度,才能完全摆脱地球引力,进入太阳系空间。
根据地球的质量和半径,第二宇宙速度的数值约为11.2 千米/秒。
【第三宇宙速度】
第三宇宙速度,也被称为“太阳系逃逸速度”,是指物体需要达到的速度,才能完全摆脱太阳引力,进入银河系空间。
根据太阳的质量和半径,第三宇宙速度的数值约为16.7 千米/秒。
【宇宙速度与参考系的关系】
宇宙速度是相对于地球参考系而言的。
在不同的参考系下,物体的宇宙速度会有所不同。
例如,在月球表面,由于月球的质量和半径较小,物体的第一宇宙速度也会相应减小。
而对于更远的天体,如行星或恒星,宇宙速度的数值则会更大。
高考物理三种宇宙速度知识点精讲宇宙速度是从地球表面向宇宙空间发射人造地球卫星、行星际和恒星际飞行器所需的最低速度,下面是编辑老师整理的三种宇宙速度知识点精讲,希望对您提高学习效率有所帮助.
三种宇宙速度巧分辨
1.第一宇宙速度
第一宇宙速度是卫星在星球表面附近匀速圆周运动时必须
具有的线速度,是所有做圆周运动的卫星中最大的线速度.理解第一宇宙速度,要抓住两个要点,一是在星球表面附近,卫星的轨迹半径r与星球的半径R相等;二是匀速圆周运动,卫星所受的向心力由万有引力提供,即,得,又星球表面万有引力约等于重力,即,故 .地球的第一宇宙速度约为7.9km/s,月球的第一宇宙速度约为1.8km/s.
2.第二宇宙速度
第二宇宙速度,是指在星球表面附近发射飞行器,使其克服该星球的引力永远离开该星球所需的最小速度,也是能绕该星球做椭圆运动的卫星在近地点的最大速度.地球的第二宇宙速度vⅡ=11.2km/s.我国发射嫦娥一号探月卫星时,卫星在地月转移轨道的近地点(离地面高度约600km)时的速度约为10km/s.
3.第三宇宙速度.
第三宇宙速度,是指在地面附近发射飞行器,能够挣脱太阳引力的束缚飞到太阳系外的最小速度.地球的第三宇宙速度vⅢ=16.7km/s.
4.三个宇宙速度之间的对比
以地球为例,三个宇宙速度和相应轨道间的关系如图所示.当卫星在地面附近做圆周运动时,其运行速度即为第一宇宙速度7.9km/s,当卫星到达地面附近时,其速度介于
7.9km/s--11.2 km/s之间,则卫星沿椭圆轨道绕地球运动;当卫星到达地面附近时,其速度介于11.2km/s--16.7 km/s 之间,则卫星沿椭圆轨道飞离地球,成为绕太阳运动的卫星;当卫星到达地面附近时,其速度超过16.7 km/s,则卫星能飞出太阳系成为太阳系外的卫星.
三种宇宙速度知识点精讲就介绍完了,更多信息请关注高考频道!。