生物化学(三大物质代谢)..
- 格式:ppt
- 大小:329.50 KB
- 文档页数:77
生物化学讲义第十章物质代谢的联系和调节 【目的与要求】1.熟悉三大营养物质氧化供能的通常规律与相互关系。
2.熟悉糖、脂、蛋白质、核酸代谢之间的相互联系。
3.熟悉代谢调节的三种方式。
掌握代谢途径、关键酶(调节酶)的概念;掌握关键酶(调节酶)所催化反应的特点。
熟悉细胞内酶隔离分布的意义。
熟悉酶活性调节的方式。
4.掌握变构调节、变构酶、变构效应剂、调节亚基、催化亚基的概念;5.掌握酶的化学修饰调节的概念及要紧方式。
6.熟悉激素种类及其调节物质代谢的特点。
7.熟悉饥饿与应激状态下的代谢改变。
【本章重难点】1.物质代谢的相互联系2.物质代谢的调节方式及意义3.酶的变构调节、化学修饰、阻遏与诱导4.作用于细胞膜受体与细胞内受体的激素学习内容第一节物质代谢的联系第二节物质代谢的调节第一节物质代谢的联系一、营养物质代谢的共同规律物质代谢:机体与环境之间不断进行的物质交换,即物质代谢。
物质代谢是生命的本质特征,是生命活动的物质基础。
二、三大营养物质代谢的相互联系糖、脂与蛋白质是人体内的要紧供能物质。
它们的分解代谢有共同的代谢通路—三羧酸循环。
三羧酸循环是联系糖、脂与氨基酸代谢的纽带。
通过一些枢纽性中间产物,能够联系及沟通几条不一致的代谢通路。
对糖、脂与蛋白质三大营养物质之间相互转变的关系作简要说明:㈠糖可转变生成甘油三酯等脂类物质(除必需脂肪酸外),甘油三酯分解生成脂肪酸,脂肪酸经β-氧化生成乙酰CoA,乙酰CoA或者进入三羧酸循环或者生成酮体,因此甘油三酯的脂肪酸成分不易生糖,但甘油部分能够转变为磷酸丙糖而生糖,但是甘油只有三个碳原子,只占甘油三酯的很小部分。
㈡多数氨基酸是生糖或者生糖兼生酮氨基酸。
因此氨基酸转变成糖较为容易。
糖代谢的中间产物只能转变成非必需氨基酸,不能转变成必需氨基酸。
㈢少数氨基酸能够生酮,生糖氨基酸生糖后,也可转变为脂肪酸(除必需脂肪酸外),因此氨基酸转变成脂类较为容易。
脂肪酸经β-氧化生成乙酰CoA进入三羧酸循环后,即以CO2形式被分解。
第八章生物氧化1. 生物氧化:物质在生物体内进行氧化称生物氧化,主要指糖、脂肪、蛋白质等在体内彻底分解时逐步释放能量,最终生成C02和H2O的过程。
2. 生物氧化中的主要氧化方式:加氧、脱氢、失电子3. CO2的生成方式:体内有机酸脱羧4. 呼吸链:代谢物脱下的成对氢原子通过位于线粒体内膜上的多种酶和辅酶所催化的连锁反应逐步传递,最终与氧结合生成水,这一系列酶和辅酶称为呼吸链,又称电子传递链。
组成(1) N ADH 氧化呼吸链:苹果酸-天冬氨酸穿梭NADH —复合物I —CoQ —复合物III —Cyt c —复合物IV f O 产2.5个ATP(2) 琥珀酸氧化呼吸链:3-磷酸甘油穿梭琥珀酸—复合物II —CoQ —复合物III —Cyt c —复合物IV —O 产1.5个ATP含血红素的辅基:血红蛋白、肌红蛋白、细胞色素、过氧化物酶、过氧化氢酶5. 细胞质NADH 的氧化:胞液中NADH必须经一定转运机制进入线粒体,再经呼吸链进行氧化磷酸化。
转运机制(1 ) 3-磷酸甘油穿梭:主要存在于脑和骨骼肌的快肌,产生 1.5个ATP(2 )苹果酸-天冬氨酸穿梭:主要存在于肝、心和肾细胞;产生2.5个ATP6. ATP的合成方式:(1 )氧化磷酸化:是指在呼吸链电子传递过程中偶联ADP磷酸化,生成ATP,又称为偶联磷酸化。
偶联部位:复合体I、III、IV(2 )底物磷酸化:是底物分子内部能量重新分布,通过高能基团转移合成ATP。
磷/氧比:氧化磷酸化过程中每消耗1摩尔氧原子(0.5摩尔氧分子)所消耗磷酸的摩尔数或合成ATP的摩尔数。
7. 磷酸肌酸作为肌肉中能量的一种贮存形式第九章糖代谢寸一、糖的生理功能:(1 )氧化供能(2 )提供合成体内其它物质的原料(3 )作为机体组织细胞的组成成分吸收速率最快的为-半乳糖二、血糖1. 血糖:指血液中的葡萄糖正常空腹血糖浓度:3.9~6.1mmol/L2. 血糖的来源:(1)食物糖消化吸收(2)肝糖原分解(3)糖异生去路:(1 )氧化分解供能(2)合成糖原(3)转化成其它糖类或非糖物质3. 血糖调节:肝脏调节、肾脏调节(肾糖阈)、神经调节、激素调节体内主要升血糖激素:胰高血糖素、糖皮质激素、肾上腺素、生长激素、甲状腺素三、糖代谢1. 无氧酵解(无氧或缺氧;生成乳酸;释放少量能量)关键酶:己糖激酶、6- 磷酸果糖激酶1、丙酮酸激酶反应部位:胞液产能方式:底物磷酸化净生成2ATP⑴ 葡萄糖磷酸化为6- 磷酸葡萄糖-1ATP⑵ 6- 磷酸葡萄糖转变为6- 磷酸果糖⑶ 6- 磷酸果糖转变为1,6- 二磷酸果糖-1ATP⑷ 1,6- 二磷酸果糖裂解⑸ 磷酸丙糖的同分异构化⑹ 3- 磷酸甘油醛氧化为1,3- 二磷酸甘油酸【脱氢反应】⑺ 1,3- 二磷酸甘油酸转变成3- 磷酸甘油酸【底物磷酸化】+1*2ATP⑻ 3- 磷酸甘油酸转变为2- 磷酸甘油酸⑼ 2- 磷酸甘油酸转变为磷酸烯醇式丙酮酸⑽ 磷酸烯醇式丙酮酸转变成丙酮酸,并通过底物水平磷酸化+1*2ATP(11)丙酮酸加氢转变为乳酸生理意义:(1)是机体在缺氧情况下获取能量的有效方式。
第九章 物质代谢的联系与调节名词解释物质代谢(metabolism)限速酶(1imitingvelocityenzymes)变构酶(Allostericenzyme)与变构调节(Allostericregulation)酶的化学修饰(chemicalmodifacation)泛素(Ubiquitin反馈控制(feedback)蛋白激酶(ProteinKinase)酶的诱导剂(enzymeinducer)变构调节(Allostericregulation)调节酶(regulatoryenzyme)问答题1. 简述丙酮酸在代谢中的作用。
2. 试述乙酰CoA在代谢中的作用。
3. 脂肪能否进行糖异生?4. 简述甘氨酸的生化作用。
5. 列出至少8种维生素的辅酶形式及其参与的生化代谢。
6. 简述酶的化学修饰的特点。
7 简述人体在长期饥饿状态下,物质代谢有何变化。
8. 体内脂肪酸可否转变为葡萄糖?为什么?9. 糖、脂、蛋白质在机体内是否可以相互转变?简要说明其转变的途径或不能转变的原因。
10. 为何称三羧酸循环是物质代谢的中枢,有何生理意义?11. 讨论下列物质能否相互转变?简述其理由。
12. 试述体内草酰乙酸在物质代谢中有什么作用?13. 试述丙酮酸在体内物质代谢中的重要作用。
14. 三大营养物质,即糖、脂肪和蛋白质在机体内可以相互转变吗?简述其理由。
15. 为什么减肥的人也要限制糖类的摄入量?试从营养物质代谢的角度加以解释。
16. 请列举5种肝脏特有的代谢途径(在正常情况下,其他组织器官很难或很少进行的代谢过程),并分别说明其主要生理意义。
17. 比较脑、肝、骨骼肌在糖、脂代谢和能量代谢上的主要特点。
18. 短期饥饿时,机体如何进行三级水平调节的?19. 试述人体在短期饥饿和长期饥饿情况下,糖、脂、蛋白质代谢有何特点?20. 试比较酶的变构调节和化学修饰调节的不同。
参考答案:名词解释物质代谢(metabolism)[答案]机体在生命活动过程中不断摄人O2及营养物质,在细胞内进行中间代谢,同时不断排出CO2及代谢废物,这种机体和环境之间不断进行的物质交换即物质代谢,包括分解、合成和能量代谢。
请列举细胞内乙酰CoA的代谢去向。
答案要点:三羧酸循环;乙醛酸循环;从头合成脂肪酸;酮体代谢;合成胆固醇等。
酿酒业是我国传统轻工业的重要产业之一,其生化机制是在酿酒酵母等微生物的作用下从葡萄糖代谢为乙醇的过程。
请写出在细胞内葡萄糖转化为乙醇的代谢途径。
答案要点:在某些酵母和某些微生物中,丙酮酸可以由丙酮酸脱羧酶催化脱羧变成乙醛,该酶需要硫胺素焦磷酸为辅酶。
乙醛继而在乙醇脱氢酶的催化下被NADH还原形成乙醇。
葡萄糖+2Pi+2ADP+2H+ 生成2乙醇+2CO2+2ATP+2H2O(6分)脱氢反应的酶:3-磷酸甘油醛脱氢酶(NAD+),醇脱氢酶(NADH+H+)(2分)底物水平磷酸化反应的酶:磷酸甘油酸激酶,丙酮酸激酶(Mg2+或K+)(2分)试述mRNA、tRNA和rRNA在蛋白质合成中的作用。
答案要点:①mRNA是遗传信息的传递者,是蛋白质生物合成过程中直接指令氨基酸掺入的模板。
(3分)②.tRNA在蛋白质合成中不但为每个三联体密码子译成氨基酸提供接合体,还为准确无误地将所需氨基酸运送到核糖体上提供运送载体。
(4分) ③. rRNA与蛋白质结合组成的核糖体是蛋白质生物合成的场所(3分)。
为什么说三羧酸循环是糖、脂、蛋白质三大物质代谢的共同通路!!!!!!!!!哪些化合物可以被认为是联系糖、脂、蛋白质和核酸代谢的重要环节!!!!!!!!!为什么答案要点:①三羧酸循环是糖、脂、蛋白质三大物质代谢的共同氧化分解途径(2分);三羧酸循环为糖、脂、蛋白质三大物质合成代谢提供原料(1分),要举例(2分)。
②列举出糖、脂、蛋白质、核酸代谢相互转化的一些化合物(3分),糖、脂、蛋白质、核酸代谢相互转化相互转化途径(2分)写出天冬氨酸在体内彻底氧化成CO2和H20的反应历程,注明其中催化脱氢反应的酶及其辅助因子,并计算1mol天冬氨酸彻底氧化分解所净生成的ATP 的摩尔数。
答案及要点:天冬氨酸+α酮戊二酸--→(谷草转氨酶)草酰乙酸+谷氨酸谷氨酸+NAD+H2O→(L谷氨酸脱氢酶)α酮戊二酸+NH3+NADH 草酰乙酸+GTP→(Mg、PEP羧激酶)PEP+GDP+CO2PEP+ADP→(丙酮酸激酶)丙酮酸+ATP 丙酮酸+NAD+COASH→(丙酮酸脱氢酶系)乙酰COA+NADH+H+CO2 乙酰COA+3NAD+FAD+GDP+Pi+2H2O→(TCA循环)2CO2+COASH+3NADH+3H+FADH2+GTP ①耗1ATP 生2ATP5NADH+1FADH2+1GTP=1ATP净生成1+2+2.5×5+1.5×1=15ATP②耗1ATP生成2ATP+3NADH+1FADH+1NADPH净生成1+2+2.5×4+1•5×1=12.5ATP 脱氢反应的酶:L-谷氨酸脱氢酶(NAD+),丙酮酸脱氢酶系(CoA,TPP,硫辛酸,FAD,Mg2+),异柠檬酸脱氢酶(NAD+,Mg2+),a-酮戊二酸脱氢酶系(CoA,TPP,硫辛酸,NAD+,Mg2+),琥珀酸脱氢酶(FAD,Fe3+),苹果酸脱氢酶(NAD+)。
物质代谢的联系与调节一、选择题(一) A 型题1 .关于三大营养物质代谢相互联系错误的是 :A .乙酰辅酶 A 是共同中间代谢物B . TCA 是氧化分解成 H 2 O 和 CO 2 的必经之路C .糖可以转变为脂肪D .脂肪可以转变为糖E .蛋白质可以代替糖和脂肪供能2 .胞浆中不能进行的反应过程是A .糖原合成和分解B .磷酸戊糖途径C .脂肪酸的β - 氧化D .脂肪酸的合成E .糖酵解途径3 .关于机体物质代谢特点的叙述,错误的是A .内源或外源代谢物共同参与物质代谢B .物质代谢不断调节以适应外界环境C .合成代谢与分解代谢相互协调而统一D .各组织器官有不同的功能及代谢特点E .各种合成代谢所需还原当量是 NADH4 .在胞质内进行的代谢途径有A .三羧酸循环B .脂肪酸合成C .丙酮酸羧化D .氧化磷酸化E .脂肪酸的β - 氧化5 .关于糖、脂类代谢中间联系的叙述,错误的是A .糖、脂肪分解都生成乙酰辅酶 AB .摄入的过多脂肪可转化为糖原储存C .脂肪氧化增加可减少糖类的氧化消耗D .糖、脂肪不能转化成蛋白质E .糖和脂肪是正常体内重要能源物质6 .关于肝脏代谢的特点的叙述,错误的是A .能将氨基酸脱下的氨合成尿素B .将糖原最终分解成葡萄糖C .糖原合成及储存数量最多D .是脂肪酸氧化的重要部位E .是体内唯一进行糖异生的器官7 .乙酰辅酶 A 羧化酶的变构激活剂是A .软脂酰辅酶 A 及其他长链脂酰辅酶 AB .乙酰辅酶 AC .柠檬酸及异柠檬酸D .丙二酰辅酶 AE .酮体8 .在生理情况下几乎以葡萄糖为唯一能源,但长期饥饿时则主要以酮体供能的组织是A .脑B .红细胞C .肝脏D .肌肉E .肾脏9 .关于变构调节叙述有误的是A .变构效应剂与酶共价结合B .变构效应剂与酶活性中心外特定部位结合C .代谢终产物往往是关键酶的变构抑制剂D .变构调节属细胞水平快速调节E .变构调节机制是变构效应剂引起酶分子构象发生改变10 .关于酶化学修饰调节叙述不正确的是A .酶一般都有低 ( 无 ) 活性或高 ( 有 ) 活性两种形式B .就是指磷酸化或脱磷酸C .酶的这两种活性形式需不同酶催化才能互变D .一般有级联放大效应E .催化上述互变反应的酶本身还受激素等因素的调节11 .经磷酸化后其活性升高的酶是A .糖原合成酶B .丙酮酸脱氢酶C .乙酰辅酶 A 羧化酶D .丙酮酸羧激酶E .糖原磷酸化酶 b 激酶12 .糖与甘油代谢之间的交叉点是A . 3- 磷酸甘油醛B .丙酮酸C .磷酸二羟丙酮D .乙酰辅酶 AE .草酰乙酸13 .既在胞浆又在线粒体进行的代谢途径是A .糖酵解B .糖原合成C .氧化磷酸化D .磷脂合成E .血红素合成14 .下列属于膜受体激素的是A .甲状腺素B .类固醇激素C .甲状旁腺素D . 1,25-(OH) 2 -D 3E .视黄醇15 .作用于细胞内受体的激素是A .儿茶酚胺类激素B .生长激素C .胰岛素D .类固醇激素E .多肽类激素16 .关于糖、脂代谢联系的叙述,错误的是A .脂肪酸合成原料主要来自糖B .脂肪酸不能异生成糖C .糖不能为胆固醇合成提供原料D .甘油可异生成糖E .作为营养素糖是不能完全取代脂肪的17 .糖异生、酮体生成及尿素合成都可发生于A .肾B .肝C .肌肉D .脑E .心脏18 .饥饿时代谢或生成减弱的是A .肝脏糖异生B .脂肪组织的动员C .肌肉蛋白降解D .胰高血糖素分泌E .胰岛素分泌19 .情绪激动时,机体会出现A .血糖降低B .血糖升高C .蛋白质分解减少D .脂肪动员减少E .血中脂肪酸减少20 .葡萄糖在体内代谢时,通常不会转变生成的化合物是A .丙氨酸B .乙酰乙酸C .胆固醇D .核糖E .脂肪酸21 .关于酶含量调节的叙述,错误的是A .属于酶活性的快速调节B .属于细胞水平的代谢调节C .底物常可诱导酶的合成D .产物常可阻遏酶的合成E .属于酶活性的迟缓调节22 .底物对酶含量的影响,通常的方式是A .促进酶蛋白降解B .诱导酶蛋白合成C .阻遏酶蛋白合成D .抑制酶蛋白降解E .使酶蛋白磷酸化23 .不受酶变构作用影响的是A .酶促反应速度B .酶促反应平衡点C . Km 值D .酶与底物的亲和力E .酶的催化活性24 .使糖酵解减弱或糖异生增强的主要调节因素是A . ATP/ADP 比值减少B . ATP/ADP 比值增高C . 6- 磷酸果糖浓度增高D .柠檬酸浓度降低E .乙酰辅酶 A 水平下降25 .为成熟的红细胞提供能量的主要途径是A .三羧酸循环B .糖酵解C .磷酸戊糖途径D .有氧氧化E .脂肪酸β - 氧化26 .酶的磷酸化修饰多发生于下列哪种氨基酸的 - R 基团A .半胱氨酸的巯基B .组氨酸咪唑基C .谷氨酸的羧基D .赖氨酸的氨基E .丝氨酸的羟基27 .糖与脂肪及氨基酸三者代谢的交叉点是A .丙酮酸B .琥珀酸C .延胡索酸D .乙酰辅酶 AE .磷酸烯醇式丙酮酸(二) B 型题A . ATP /ADP 比值增加B . ATP /ADP 比值降低C . UTP 浓度增加D .乙酰 CoA/CoA 比值增大E .乙酰 CoA/CoA 比值减小1 .使丙酮酸羧化酶活性降低2 .促进氧化磷酸化3 .使糖的有氧氧化减弱4 .丙酮酸脱氢酶活性降低A .蛋白质合成B .核酸合成C .尿素合成D .糖酵解E .脂肪酸β - 氧化5 .在线粒体进行6 .在细胞浆和线粒体进行7 .在细胞核进行8 .在细胞浆进行A 、 6 - 磷酸葡萄糖B 、 N - 乙酰谷氨酸C 、柠檬酸D 、 PRPPE 、乙酰 CoA9 .丙酮酸羧化酶的变构激活剂10 .磷酸果糖激酶的变构抑制剂11 .氨基甲酰磷酸合成酶Ⅰ的变构激活剂12 .糖原合成酶的变构激活剂A 、乙酰 CoAB 、 AMPC 、 ADPD 、 G - 6 - PE 、柠檬酸13 .柠檬酸合成酶的变构激活剂14 .丙酮酸羧化酶的变构激活剂15 .糖原合成酶的变构激活剂16 .乙酰 CoA 羧化酶的变构激活剂A .糖皮质激素B .前列腺素C .生长激素D .胰岛素E .肾上腺素17 .可以降低血糖浓度18 .氨基酸衍生物19 .以激素 - 受体复合物在胞核作用20 .花生四烯酸衍生物(三) X 型题1 .关于酶变构调节的叙述正确的是A .酶大多有调节亚基和催化亚基B .体内代谢物可作为变构效应剂C .酶变构调节都能使酶活性降低D .酶变构调节都能使酶活性增高E .通过改变酶蛋白构象而改变酶的活性2 .酶的变构调节A .有构型变化B .有构象变化C .作用物或代谢物常是变构剂D .无共价键变化E .酶动力学遵守米氏方程3 .酶化学修饰的特点是A .调节过程有放大效应B .修饰变化是一种酶促反应C .调节时酶蛋白发生共价变化D .需要 ATP 参与,所以耗能多E .酶有低活性和高活性两种形式4 .属于细胞酶活性的代谢调节方式有A .酶的共价修饰调节B .酶的变构调节C .诱导酶的合成D .通过膜受体调节E .调节细胞内酶含量5 .可以诱导酶合成的是A .酶反应途径的产物B .酶反应途径的底物C .某些激素D .某些药物E .酶反应途径的中间产物6 .作为糖和脂肪代谢交叉点的物质有A .乙酰 CoAB . 6- 磷酸果糖C .磷酸二羟丙酮D . 3- 磷酸甘油醛E .草酰乙酸二、是非题1 .凡能使酶分子发生变构作用的物质都能使酶活性增加。
2、1分子软脂酸完全氧化成CO2和H2O可生成多少分子ATP?并说明计算过程。
1分子软脂酸经β-氧化,则生成8分子乙酰CoA,7分子FADH2和7分子NADH+H+。
1分子乙酰CoA在三羧酸循环中氧化分解,一个乙酰CoA生成12个ATP,所以12×8=96ATP。
7分子FADH2经呼吸链氧化可生成2×7=14 ATP。
7分子NADH+H+经呼吸链氧化可生成3×7=21ATP。
三者相加,减去消耗掉1个ATP,实得96+14+21-1=130mol/LATP。
所以1分子软脂酸完全氧化,即可生成130分子ATP。
3、简述遗传密码的基本性质。
1)密码子不重叠。
每3个核苷酸为一个单位,组成一个密码子,相互间不重复和交叉。
2)密码子的通用型。
所有的生物都共用一套密码子。
3)密码子的简并性。
除个别氨基酸外,一个氨基酸具有2个以上的密码子,且多是第三位的核苷酸不同。
4)密码子的连续性。
2个密码子之间没有任何核苷酸的间隔,是连续的进行排列的。
5)密码子的摆动性。
密码子与反密码子的配对关系,第一、二碱基的配对是标准的,第三个碱基为非标准配对,这种碱基的配对识别具有一定的摆动性。
简述Chargaff 定则。
在DNA的碱基组成规律为:嘌呤的总数等于嘧啶的总数(A+G=T+C);A+C=G+T;A=T,G=C;DNA分子的碱基组成具有种属的特异性,但不具有组织器官的特异性。
EMP途径在细胞的什么部位进行?它有何生物学意义?EMP途径在细胞的细胞质中进行。
其生物学意义为:为机体提供能量;是糖分解的有氧分解和无氧分解的共同途径;其中间产物是合成其他物质的原料;为糖异生提供基本的途径。
氨基酸脱氨后产生的氨和-酮酸有哪些主要的去路?氨的去路:在血液中通过丙氨酸,谷氨酰胺的形式进行转运,氨的再利用或储存;直接排出,或转变成尿酸、尿素而排出。
-酮酸的主要去路:合成氨基酸;氧化生成CO2及水;转变成脂肪和糖。
生物化学题目问答题:1、机体通过哪些因素调节糖的氧化途径与糖异生途径。
糖的氧化途径与糖异生具有协调作用,一条代谢途径活跃时,另一条代谢途径必然减弱,这样才能有效地进行糖的氧化或糖异生。
这种协调作用依赖于变构效应剂对两条途径中的关键酶相反的调节作用以及激素的调节. (1)变构效应剂的调节作用;(2)激素调节 2、机体如何调节糖原的合成与分解,使其有条不紊地进行糖原的合成与分解是通过两条不同的代谢途径,这样有利于机体进行精细调节。
糖原的合成与分解的关键酶分别是糖原合酶与糖原磷酸化酶。
机体的调节方式是通过同一信号,使一个酶呈活性状态,另一个酶则呈非活性状态,可以避免由于糖原分解、合成两个途径同时进行,造成ATP的浪费。
(1)糖原磷酸化酶:(2)糖原合酶:胰高血糖素和肾上腺素能激活腺苷酸环化酶,使ATP转变成cAMP,后者激活蛋白激酶A,使糖原合酶a磷酸化而活性降低。
蛋白激酶A还使糖原磷酸化酶b激酶磷酸化,从而催化糖原磷酸化酶b磷酸化,导致糖原分解加强,糖原合成受到抑制,血糖增高。
3、简述血糖的来源和去路血糖的来源:1、食物经消化吸收的葡萄糖;2、肝糖原分解3、糖异生血糖的去路:1、氧化供能2、合成糖原3、转变为脂肪及某些非必需氨基酸4、转变为其他糖类物质。
4、简述6-磷酸葡萄糖的代谢途径(1)6-磷酸葡萄糖的来源:1、己糖激酶或葡萄糖激酶催化葡萄糖磷酸化生成6-磷酸葡萄糖;2、糖原分解产生的1-磷酸葡萄糖转变为6-磷酸葡萄糖;3、非糖物质经糖异生由6-磷酸果糖异构成6-磷酸葡萄糖。
(2)6-磷酸葡萄糖的去路:1、经糖酵解生成乳酸;2、经糖有氧氧化生成CO2、H2O、ATP;3、通过变位酶催化生成1-磷酸葡萄糖,合成糖原;4、在6-磷酸葡萄糖脱氢酶催化下进入磷酸戊糖途经;5、在葡萄糖-6-磷酸酶催化下生成游离葡萄糖。
5、在糖代谢过程中生成的丙酮酸可以进入哪些代谢途径在糖代谢过程中生成的丙酮酸具有多条代谢途径。
生物化学考试问答题1、何谓三羧酸循环?它有何特点和生物学意义?特点。
1。
乙酰CoA进入三羧酸循环后,是六碳三羧酸反应2。
在整个循环中消耗2分子水,1分子用于合成柠檬酸,一份子用于延胡索酸的水和作用。
3在此循环中,最初草酰乙酸因参加反应而消耗,但经过循环又重新生成。
所以每循环一次,净结果为1个乙酰基通过两次脱羧而被消耗。
循环中有机酸脱羧产生的二氧化碳,是机体中二氧化碳的主要来源。
4在三羧酸循环中,共有4次脱氢反应,脱下的氢原子以NADH+H+和FADH2的形式进入呼吸链,最后传递给氧生成水,在此过程中释放的能量可以合成ATP。
5三羧酸循环严格需要氧气6。
琥珀CoA生成琥珀酸伴随着底物磷酸化水平生成一分子GTP,能量来自琥珀酰CoA的高能硫酯键意义。
1三羧酸循环是机体将糖或者其他物质氧化而获得能量的最有效方式2,三羧酸循环是糖,脂和蛋白质3大类物质代谢和转化的枢纽。
2、磷酸戊糖途径有何特点?其生物学意义何在?特点:无ATP生成,不是机体产能的方式。
1)为核酸的生物合成提供5-磷酸核糖,肌组织内缺乏6-磷酸葡萄糖脱氢酶,磷酸核糖可经酵解途径的中间产物3 - 磷酸甘油醛和6-磷酸果糖经基团转移反应生成。
2)提供NADPHa.NADPH是供氢体,参加各种生物合成反应,如从乙酰辅酶A合成脂酸、胆固醇;α-酮戊二酸与NADPH及氨生成谷氨酸,谷氨酸可与其他α-酮酸进行转氨基反应而生成相应的氨基酸。
b.NADPH是谷胱甘肽还原酶的辅酶,对维持细胞中还原型谷胱甘肽的正常含量进而保护巯基酶的活性及维持红细胞膜完整性很重要,并可保持血红蛋白铁于二价。
c.NADPH参与体内羟化反应,有些羟化反应与生物合成有关,如从胆固醇合成胆汁酸、类固醇激素等;有些羟化反应则与生物转化有关。
物学意义1,产生大量的NADPH,为细胞的各种合成反应提供还原力2,1 产生NADPH(注意:不是NADH!NADPH不参与呼吸链)2 生成磷酸核糖,为核酸代谢做物质准备3 分解戊糖意义:1 补充糖酵解2 氧化阶段产生NADPH,促进脂肪酸和固醇合成。
2、1分子软脂酸完全氧化成CO2和H2O可生成多少分子ATP?并说明计算过程。
1分子软脂酸经β-氧化,则生成8分子乙酰CoA,7分子FADH2和7分子NADH+H+。
1分子乙酰CoA在三羧酸循环中氧化分解,一个乙酰CoA生成12个ATP,所以 12×8=96ATP。
7分子FADH2经呼吸链氧化可生成2×7=14 ATP。
7分子NADH+H+经呼吸链氧化可生成3×7=21ATP。
三者相加,减去消耗掉1个ATP,实得96+14+21-1=130mol/LATP。
所以1分子软脂酸完全氧化,即可生成130分子ATP。
3、简述遗传密码的基本性质。
1)密码子不重叠。
每3个核苷酸为一个单位,组成一个密码子,相互间不重复和交叉。
2)密码子的通用型。
所有的生物都共用一套密码子。
3)密码子的简并性。
除个别氨基酸外,一个氨基酸具有2个以上的密码子,且多是第三位的核苷酸不同。
4)密码子的连续性。
2个密码子之间没有任何核苷酸的间隔,是连续的进行排列的。
5)密码子的摆动性。
密码子与反密码子的配对关系,第一、二碱基的配对是标准的,第三个碱基为非标准配对,这种碱基的配对识别具有一定的摆动性。
简述Chargaff 定则。
在DNA的碱基组成规律为:嘌呤的总数等于嘧啶的总数(A+G=T+C); A+C=G+T; A=T, G=C;DNA分子的碱基组成具有种属的特异性,但不具有组织器官的特异性。
EMP途径在细胞的什么部位进行? 它有何生物学意义?EMP途径在细胞的细胞质中进行。
其生物学意义为:为机体提供能量;是糖分解的有氧分解和无氧分解的共同途径;其中间产物是合成其他物质的原料;为糖异生提供基本的途径。
氨基酸脱氨后产生的氨和α-酮酸有哪些主要的去路?氨的去路:在血液中通过丙氨酸,谷氨酰胺的形式进行转运,氨的再利用或储存;直接排出,或转变成尿酸、尿素而排出。
α-酮酸的主要去路:合成氨基酸;氧化生成CO2及水;转变成脂肪和糖。