【八年级】2020北师大版数学八年级下册63三角形的中位线
- 格式:docx
- 大小:157.16 KB
- 文档页数:4
北师大版数学八年级下册6.3《三角形的中位线》教案一. 教材分析北师大版数学八年级下册6.3《三角形的中位线》是学生在学习了三角形的性质、角的计算、边的计算等知识后,进一步研究三角形的中位线的性质和应用。
本节内容通过引导学生探究三角形的中位线性质,培养学生的观察能力、推理能力和解决问题的能力。
教材通过丰富的情境图和实例,激发学生的学习兴趣,引导学生主动参与探究活动,感受数学的趣味性和应用性。
二. 学情分析学生在八年级上册已经学习了三角形的性质和角的计算,对三角形的基本概念和性质有了一定的了解。
但部分学生对概念的理解不够深入,对性质的推理能力有待提高。
此外,学生的空间想象能力和逻辑思维能力也存在一定的差异。
因此,在教学过程中,教师需要关注学生的个体差异,引导学生在探究活动中积极思考,提高学生的推理能力和解决问题的能力。
三. 教学目标1.理解三角形的中位线的概念,掌握三角形的中位线性质。
2.能够运用三角形的中位线性质解决实际问题。
3.培养学生的观察能力、推理能力和解决问题的能力。
4.激发学生学习数学的兴趣,培养学生的合作意识和创新精神。
四. 教学重难点1.三角形的中位线概念的理解和性质的掌握。
2.运用中位线性质解决实际问题。
五. 教学方法1.引导探究法:教师引导学生观察、思考、推理,发现三角形的中位线性质。
2.案例分析法:教师通过具体的实例,引导学生运用中位线性质解决问题。
3.小组合作法:学生分组讨论,共同完成探究任务,培养合作意识。
4.激励评价法:教师对学生的探究成果给予肯定和鼓励,提高学生的自信心。
六. 教学准备1.教学课件:制作课件,展示三角形的中位线性质和应用。
2.实例材料:准备一些具体的三角形实例,用于引导学生分析和解决问题。
3.学生活动材料:准备一些练习题,用于巩固所学知识。
七. 教学过程导入(5分钟)教师通过提问方式引导学生回顾三角形的基本性质,为新课的学习做好铺垫。
例如:“同学们,我们已经学习了三角形的哪些性质?它们有什么作用?”呈现(10分钟)教师利用课件呈现三角形的中位线性质,引导学生观察、思考。
北师大版八年级下册数学《6.3 三角形的中位线》教案一. 教材分析北师大版八年级下册数学《6.3 三角形的中位线》这一节主要介绍了三角形的中位线的性质和运用。
通过学习,学生能够掌握三角形中位线的定义、性质,并能运用中位线解决一些几何问题。
本节内容是学生学习几何知识的重要组成部分,也为后续学习其他几何图形奠定了基础。
二. 学情分析学生在学习本节内容前,已经掌握了平行线、相交线的相关知识,对图形的性质有一定的了解。
但部分学生对几何图形的理解和运用能力较弱,需要通过实例和练习来提高。
此外,学生对数学语言的表述和逻辑推理能力也需加强。
三. 教学目标1.理解三角形中位线的定义和性质;2.能够运用中位线解决一些简单的几何问题;3.培养学生的空间想象能力和逻辑推理能力;4.提高学生运用数学知识解决实际问题的能力。
四. 教学重难点1.三角形中位线的定义和性质;2.运用中位线解决几何问题。
五. 教学方法1.采用问题驱动法,引导学生探究三角形中位线的性质;2.利用几何画板和实物模型,直观展示中位线的特点;3.通过实例分析和练习,巩固所学知识;4.采用小组讨论和合作交流的方式,培养学生的团队合作能力。
六. 教学准备1.准备相关几何画板软件和实物模型;2.设计好教学问题和练习题;3.准备好黑板和粉笔。
七. 教学过程导入(5分钟)1.回顾上节课的内容,引导学生复习平行线和相交线的性质;2.提问:你们认为三角形有哪些特殊的线段?它们有什么性质?呈现(10分钟)1.引入三角形中位线的概念,让学生观察和描述三角形的中位线;2.利用几何画板展示三角形中位线的特点,引导学生发现中位线的性质;3.引导学生用数学语言表述中位线的性质。
操练(10分钟)1.让学生自主探究三角形中位线的性质,分组讨论;2.每组选取一名代表,向全班汇报讨论结果;3.教师点评并总结,强调中位线的性质。
巩固(10分钟)1.设计一些有关三角形中位线的练习题,让学生独立完成;2.教师挑选一些学生的作业,进行分析讲解;3.让学生互相交流解题心得,分享解决问题的方法。
【关键字】八年级
3 三角形的中位线
【知识与技能】
1.知道三角形中位线的概念,明确三角形中位线与中线的不同.
2.理解三角形中位线定理,并能运用它进行有关的论证和计算.
【过程与方法】
引导学生通过观察.实验.联想来发现三角形中位线的性质,培养学生观察问题.分析问题和解决问题的能力.
【情感态度】
创设问题情景,激发学生的热情和兴趣,激活学生思维.
【教学重点】
三角形中位线定理.
【教学难点】
三角形中位线定理的灵活应用.
一.情景导入,初步认知
怎样将一张三角形纸片剪成两部分,使分红的两部分能拼成一个平行四边形?
操作:(1)剪一个三角形,记为△ABC;
(2)分别取AB,AC中点D,E,连接DE;
(3)沿DE将△ABC剪成两部分,并将△ABC绕点E旋转180°,得四边形BCFD.
【教学说明】通过一个有趣的动手操作问题入手,激发学生学习兴趣.为后面中位线的证明做准备.
二.思考探究,获取新知
1.思考:四边形ABCD是平行四边形吗?你能证明吗?
2.探索新结论:若四边形ABCD是平行四边形,那么DE与BC有什么位置和数量关系呢?
【教学说明】激发了学生的求知欲和好奇心,激起了学生探究活动的兴趣.
【归纳结论】1.连接三角形两边中点的线段叫三角形的中位线;
2.三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半.
三.运用新知,深化理解
1.如图所示,DE是△ABC的中位线,BC=8,则DE=______.
答案:4.
2.如图所示,在□ABCD中,对角线AC,BD交于点O,OE∥BC交CD于E,若OE=3cm,则AD的长为()
A.3cm B.6cm C.9cm D.12cm
答案:B.
3.如图所示,已知E为□ABCD中DC边的延长线上的一点,且CE=DC,连接AE,分别交BC,BD于点F,G,连接AC交BD于点O,连接OF,求证:AB=2OF
证明:∵四边形ABCD是平行四边形,
∴ABCD,AD=BC.
∵CE=CD,∴ABCE,
∴四边形ABEC为平行四边形.
∴BF=FC,∴OFAB,即AB=2OF.
4.如图所示,在ABCD中,EF∥AB且交BC于点E,交AD于点F,连接AE,BF交于点M,连接CF,DE交于点N,求证:MN∥AD且MN=AD.
证明:∵四边形ABCD是平行四边形,
∴AB∥CD,AD∥BC.
又∵EF∥AB,∴EF∥CD.
∴四边形ABEF,ECDF均为平行四边形.
又∵M,N分别为□ABEF和□ECDF对角线的交点.
∴M为AE的中点,N为DE的中点,即MN为△AED的中位线.
∴MN∥AD且MN=AD.
5.如图所示,在四边形ABCD中,E,F,G,H分别是AB,BC,CD,AD的中点,则四边形EFGH是平行四边形吗?为什么
解:EFGH是平行四边形,连接AC 在△ABC中,∵EF是中位线,
∴EF 1
2
AC.同理,GH
1
2
AC
∴EF GH.
∴四边形EFGH为平行四边形
【教学说明】巩固三角形中位线定理,同时也兼顾平行四边形判定定理的熟练运用.
四.师生互动,课堂小结
1.了解三角形中位线的概念;
2.探索并掌握三角形中位线的性质,并能应用其性质求有关问题.
五.教学板书
布置作业:教材“习题6.6”中第1、2、3 题.
本节课以探究三角形中位线的性质及证明为主线,开展教学活动.在三角形中位线定理探究过程中,学生先是通过动手画图、观察、测量、猜想出三角形中位线的性质,然后师生利用几何画板的测量和动态演示功能验证猜想的正确性,再引导学生尝试构造平行四边形进行证明.通过知识的形成过程,使学生体会探
究数学问题的基本方法;通过定理的探究与证明,努力培养学生分析问题和解决问题的能力,提升学生数学的思维品质.
此文档是由网络收集并进行重新排版整理.word可编辑版本!。