浅谈爬杆机器人原理
- 格式:doc
- 大小:26.00 KB
- 文档页数:3
爬杆作业机器人设计1.选题背景及其意义随着国民经济的飞速增长,人民生活水平的提高,城镇中随之矗立起无数电线杆、路灯杆、大桥斜拉钢索等高层建筑。
这些高层建筑壁面多采用油漆、电镀、玻璃铜结构等,长期以来会形成灰尘层,酸污染影响城市的美观,同时空气中混合的酸性物质也会对这些城市建筑特别是金属杆件造成损坏,加快它们的生锈,并缩短它们的使用寿命,需要定期进行壁面维护工作。
它们通常高5-30米,有的甚至高达百米,会给操作人员带来不便和危险。
因此本课题拟设计一爬杆机器人,可以在没有障碍的光杆上爬行,代替人工进行这些高空危险作业,从而把人从危险、恶劣、繁重的劳动环境中解脱出来。
具有良好的经济效益和社会效益。
2 文献综述(国内外研究现状与发展趋势)机器人技术是近30年来迅速发展起来的一门综合学科。
它综合了力学、机构学、机械设计学、计算机工程、自动控制、传感技术、电液驱动技术、人工智能、仿生学等学科的有关知识和最新研究成果,代表了机电一体化的最高成就。
尤其是进入80年代以来,机器人技术的进步与其在各个领域的广泛应用,引起了各国专家学者的普遍关注。
许多发达国家均把机器人技术的开发、研究列入国家高新技术发展计划。
移动机器人作为机器人学的一个重要分枝,其研究工作始于20世纪60年代。
移动机器人的最成功应用是自动化生产系统中的物料搬运,用于完成机床之间、机床与自动仓库之间的工件工具传送。
移动机器人的运动灵活性能,大大增加了生产系统的柔性和自动化程度。
现在,移动式机器人的研究开发除上述应用外,还涉及许多其他应用领。
如在建筑领域完成混凝土的铺平、壁面的装修、检查和清洗:采矿业中行隧道的掘进和矿藏的开采、农林业中从事水果采摘、树枝修剪、圆木搬运;军事上用于探测侦察、爆炸物处理。
福利方面进行盲人引导,病员护理等。
爬行机器人是机器人大家族中的一员,爬升机器人因为需要克服重力的作用而可靠地依附于爬升表面上并自主移动,完成特定条件下的作业,区别于平面移动机器人,故爬升机器人是机器人领域的一个重要研究分支,从运动方式上来表征的一种机器人,形式是多种多样的。
爬杆机器人
一.设计背景
现在大多数高压电线杆是不容易检测器损坏程度的。
于是我们设计了一种爬行机器人,可以沿电力电线自主行走、跨越障碍,装上携带的传感仪器可以对杆塔、导线及避雷线、绝缘子、线路金具、线路通道等实施接近检测。
二.方案构思
爬杆机器人这要分为两个动作,一是加紧,二是向上的爬升或下降。
我们通过两个手臂来抓紧杆件再通过手臂上的电机来实现机器人的爬升和下降。
三.整体的结构
1.总装图
爬行机器人分为两个部分,分别为上下手臂和中间的上升机构
2.机械的手臂
我们设计的机械手臂采用的是曲柄滑块机构,通过电机带动齿轮转动,齿轮和滑块之间用丝杠螺母连接从而使滑块运动,当滑块向上移动时,杆子将向内移动,最终实现两个手臂的夹持。
松开时,齿轮反转,滑块向下移动,杆子向外,实现松开。
3.上升装置
上升的装置,我们还是采用了丝杠螺母机构,丝杠用电机通过齿轮带动,正转时,上手臂上升,反转时下手臂上升。
下降时,就反之。
4.运动流程
5.运动过程的各个阶段
1、上手臂A和下手臂B位置离的较近
2.下手臂B夹紧不动,丝杠转动使A上升
3、上手臂A夹紧,丝杠反转使下手臂B上升
这样就实现了向上爬行。
四、电机选择
我们的爬杆机器人一共有3个电机,分别是控制手臂的两个和上升或下降部分的电机,由于每个电机都需要正反转,且运动要能控制,所以,控制部分我们选用了单片机来控制。
由于我们的爬杆机器人是全封闭的,电机控制方面的用电问题是个麻烦,经过讨论,我们决定用干电池来提供电。
五.渲染图。
++ 爬杆机器人理论方案设计说明书学校名称:中国计量学院学生队长:学生队员:指导教师:联系方式:二0 0五年一月目录一.方案构思---------------------------------------------1 二.机械部分---------------------------------------------3 三. 电控部分---------------------------------------------17 四.设计小结---------------------------------------------19一方案构思我们通过三个手臂来抓紧杆件再通过手臂上的电机来实现机器人的爬升和下降。
原理上两个就能实现,但三个手臂是一作联结,二可起稳定作用。
手臂上升下降是通过齿轮齿条来实现的。
二.机械部分1.机器人的整体装配图如下:图1我们是通过三个手臂爬杆的,上手臂装在一个齿条的最上端,并且固定,在具体设计时我们可以使上手臂有一定的上下和左右转动范围,具体的设计将在下面介绍。
下手臂装在下杆C上齿条的下端,中间手臂固定在滑槽上,上手臂的上升和下降是通过装在滑槽上端的电动机带动齿轮啮合齿条来实现的.下手臂的上升和下降是通过装在滑槽下端的电动机带动齿轮啮合齿条来实现的,中间手臂的升降是通过上下两对齿轮齿条反转来实现的。
2.路面行走结构在地上行走,我们通过装在下手臂上的三个车轮来实现地面上的行走,动力由后车轮上的两个电机来提供,用两个电机主要是为了能实现走弯路,具体的三视图形如下:图2 底部车轮结构2 机器手臂的设计图3 机械手的结构我们设计的这个机器手采用了曲柄滑块机构,A,B,C点处安装了橡胶皮,1,2两点固定在支撑板上,当滑块W向前移动时,根据杆子的结构,A,B,C点将向中心收缩,产生一个收缩的趋势,就抓紧杆件。
当滑块W 向后移动时,A,B,C点会张开,即松开杆件。
再配合机构的移动构件,机械手就能很好的实现上升和下降。
爬杆机器人的自锁原理爬杆机器人的自锁原理指的是在停止电机运动时,能够使机器人保持固定位置而不下滑的一种机械装置或设计。
这种自锁原理的主要目的是为了满足爬杆机器人在工作中的稳定性和安全性需求。
一般而言,爬杆机器人的自锁原理可分为几个方面来进行解析和说明。
首先,爬杆机器人的自锁原理可以通过惰性锁实现。
所谓惰性锁,指的是利用杆件与锁爪之间的斜面作用,通过自锁机构使得机械系统在停止电机驱动时,仍然能够保持固定的位置。
其原理是在斜面上施加的力可以将锁爪向内部移动,从而实现松开锁爪的目的。
当杆件停止运动时,惰性锁会自动锁住杆件,使得爬杆机器人能够稳定停留在一定的位置上。
其次,爬杆机器人的自锁原理还可以通过齿轮自锁机构来实现。
齿轮自锁机构是利用斜面型轮齿的作用实现自锁的一种机械装置。
当电机停止转动时,齿轮会自动进入自锁状态,从而避免杆件下滑。
齿轮自锁机构通常由锁爪、轮齿、推力弹簧等组成。
推力弹簧的作用是将锁爪与轮齿紧密连接,当齿轮转动时,锁爪会向外移动。
而当电机停止转动时,推力弹簧的作用会使得锁爪自动卡在轮齿上,从而实现自锁的效果。
另外,爬杆机器人的自锁原理还可以通过离合器自锁机构来实现。
离合器自锁机构是将电机和爬杆机构连接起来的装置。
当电机停止转动时,离合器会自动进入自锁状态,从而在不需要额外电源的情况下锁定杆件。
这种自锁原理的优点是结构简单,操作方便。
离合器自锁机构通常由离合器齿圈、离合器凸轮、扭簧等组成。
当电机停止转动时,扭簧的作用会使得离合器凸轮自动锁定住离合器齿圈,从而实现自锁的效果。
总之,爬杆机器人的自锁原理是通过各种机构和装置实现的,其中包括惰性锁、齿轮自锁机构和离合器自锁机构等。
这些自锁原理的设计和应用可以使爬杆机器人在停止电机驱动时,保持固定位置而不下滑,提高机器人的工作稳定性和安全性。
这些自锁原理的应用也是爬杆机器人能够顺利完成各种高空作业任务的关键因素之一。
爬杆机器人运动原理及动力学研究的开题报告一、选题的背景意义随着机器人技术的不断发展,越来越多的机器人应用于工业、军事、医疗等领域。
其中爬杆机器人是一种具有特殊功能和特点的机器人,可以在直立杆、倾斜杆、曲线杆等多种杆状环境中实现机器人运动,具有较高的适应性和实用性。
然而,爬杆机器人的动力学问题是一个重要的问题,影响着机器人的运动性能和稳定性,而针对这个问题的研究还比较薄弱,因此有必要对爬杆机器人的运动原理和动力学问题进行深入研究,为机器人的设计与控制提供理论基础和技术支持。
二、研究内容爬杆机器人的运动原理和动力学问题是一个涉及机器人力学、控制等多学科交叉的问题,本文将从以下几个方面展开研究:1、分析爬杆机器人的运动原理与结构,建立机器人运动模型。
2、分析机器人在杆上运动的动力学特性,包括运动稳定性、杆面摩擦力、杆面反弹力等因素的影响。
3、研究机器人的控制策略,设计合理的控制算法,提高机器人的运动性能和稳定性。
三、研究方法和技术路线本文将采用分析理论、数值模拟、模型实验等多种方法,建立机器人运动模型和控制算法,进行仿真分析和实验验证,实现对爬杆机器人运动原理和动力学问题的深入研究。
具体的技术路线如下:1、理论分析:分析机器人的运动原理和结构特点,建立机器人运动模型,并对机器人运动的动力学方程进行推导和分析。
2、数值模拟:采用多体动力学软件ADAMS进行模拟计算,模拟机器人在杆上的运动,分析机器人的运动稳定性和摩擦力等因素的影响。
3、模型实验:通过在实验室制造机器人样机,开展相关实验研究,验证理论和模拟结果的有效性和可行性。
四、研究预期结果与意义本文的研究将有助于深入掌握爬杆机器人的运动原理和动力学问题,提高机器人的运动性能和稳定性,具有重要的理论和实用价值。
具体的预期研究结果如下:1、建立爬杆机器人的运动模型,分析机器人运动的动力学特性和影响因素。
2、设计合理的控制算法,提高机器人的运动性能和稳定性。
浅谈爬杆机器人原理作者:李传敏王萌杰来源:《科学导报·学术》2017年第12期摘要:本文选取了国内自主研制的几类爬杆机器人作以比较。
得出大都采用凸轮夹紧机构,由于凸轮的不可伸缩性,一个爬行器只能爬行直径的等直径杆件。
爬行机器人体积小重量轻易于操作和维修。
由于目前对于爬杆机器人的研究探索的初步阶段的局限性,因此在今后还有很大的发展空间。
为今后爬杆机器人的发展。
奠定一定的基础。
关键词:机器人;爬杆【中图分类号】TP242【文献标识码】A【文章编号】2236-1879(2017)12-0313-011研制背景及意义随着我国国民经济的飞速发展,人民生活不断提高,城镇中矗立起无数的高层城市建筑,各类即实用又美观的电线杆、路灯杆、桥上斜拉钢索、广告牌立柱,壁面通常多采用油漆、电镀、玻璃钢结构,通常其又长又高,环境危险,由于常年裸露在大气之中,长时间的风吹日晒,会影响到它的美观,同时复杂的空气成分也会对金属杆件腐蚀和破坏,使他们快速生锈缩短寿命。
传统的清理办法有人工清理和使用化学药剂,不仅费时费力有污染,而且效率低下,耗资巨大,爬杆机器人在广泛的需求下孕育而生。
2案例分析因此本文选取了国内自主研制的几类爬杆机器人作以比较:清华大学学生研发的自重式锁紧机构,框架由两根连在一起的运动杆及运动杆两端的自重锁紧机构构成,由电机驱动。
垂直爬行时自重和运动方向相反,靠机构自重和反向推力使钢球被锁紧机构中倾斜的滑块和爬杆紧密夹紧在一起,从而达到锁紧目的。
该结构简单,可以垂直爬行范围变化较小的变直径杆,缺点是只适合向上爬行运动,反向爬行自重与运动方向一致,无法进行自锁。
该机构改进后由微型气缸推动钢球解锁,能够在垂直杆进行往复运动,但需要加上一套气动控制设备,目前要实现变直径杆的爬行和返回只能依靠气动蠕行式爬行器来解决,上升和下降的需要气压调节,造价较大,因此该方法还处于理论研究阶段。
上海交通大学机器人研究所研究开发的斜拉桥缆索涂装维护用气动蠕动式爬缆机器,可在有斜度的缆索上爬行,具有实用性,能够完成检测,清洁缆索等功能。
一 设计题目:爬杆机器人为代替人高空作业,设计出爬上和爬下干装的机器人。
1.1设计目的目前全国日益加快的现代化建设步伐,除了2008年8月在北京举办的奥运会、2010年将要在上海举办的世博会之外,随着我国国民经济的飞速增长、人民生活水平日益提高,城镇中随之矗立起无数的高层城市建筑,各类集实用性与美观性一体的市政、商业工程诸如电线杆、路灯杆、大桥斜拉钢索、广告牌立柱等(图1-1),它们通常5~30米,有的甚至高达百米,壁面多采用油漆、电镀、玻璃钢结构等,由于常年裸露在大气之中,风沙长年累月的积累会形成灰尘层,该污染影响城市的美观,同时空气中混合的酸性物质也会对这些城市建筑特别是金属杆件造成损坏,加快它们的生锈,并缩短它们的使用寿命,需要定期进行壁面维护工作。
为保持清洁,许多国际性城市如厦门、深圳、香港等地规定,每年至少清洗数次。
目前传统的清洗技术主要分为人工清洗(化学药剂清洗)和高压水枪清洗等方法。
其中人工清洗是由清洁工人搭乘吊篮进行高空作业来完成,工人的工作环境恶劣,具有很大程度上的危险性,工作效率也很低,耗资巨大。
化学药剂中所用的去污剂具有很强的毒副作用会对人造成潜在的危害,并易造成环境的二次污染;高压水枪清洗耗能比较大、成本高,且对周边环境有很大的影响。
在利用高压水进行清洗时,它的周边不能有车辆、行人通过,且不能有过近的建筑物。
其它高空作业诸如:各种杆状城市建筑的油漆、喷涂料、检查、维护,电力系统架设电缆、瓷瓶清洁等工作主要由人工和大型设备来完成,但它们都集中表现出效率低、劳动强度大、耗能高、二次污染严重等问题。
随着机器人技术的出现和发展以及人们自我安全保护意识的增强,迫切希望能用机器人代替人工进行这些高空危险作业,从而把人从危险、恶劣、繁重的劳动环境中解脱出来。
1.2设计条件攀爬对象为直径150毫米左右的等直径杆(学有余力的同学可以考虑攀爬对象为变截面杆,如电线杆)。
可以用电动机,液压站,气压站其中的任意一种做动力源,但要分析其应用场合和优缺点。
登山机器人原理一、引言登山是一项令人兴奋却也充满危险的运动,需要面对复杂的地形、严酷的气候和高度的挑战。
为了保护人类的安全,科学家们研发出了登山机器人,它们能够辅助人类登山,减少风险并提供支持。
本文将探讨登山机器人的原理。
二、登山机器人的组成2.1 机械结构登山机器人通常包括以下部分的机械结构: 1. 轮式底盘:用于提供移动和平衡功能的底盘,通常具有足够的防滑性能和承重能力。
2. 机械手臂:用于抓握、支撑和攀爬的机械手臂,具备灵活的运动能力和足够的抓握力。
3. 导航系统:包括传感器、摄像头等设备,用于感知环境和导航机器人的运动。
4. 动力系统:通常采用电池或燃料电池提供能量,驱动机器人运动和执行任务。
2.2 传感与控制系统为了实现对环境的感知和对机器人的控制,登山机器人配备了多种传感器和控制系统: 1. 视觉传感器:用于检测前方地形、距离以及伴随的危险状况,以帮助机器人做出适当的动作。
2. 气象传感器:测量高度、温度、气压等气候参数,提供重要的气象信息,以便机器人调整策略和行动计划。
3. 重力传感器:用于检测机器人的倾斜角度,确保机器人保持平衡并避免倾倒。
4. 控制系统:负责处理传感器数据、规划路径和控制机器人的动作执行,确保机器人能够按照预定的任务完成工作。
三、登山机器人的工作原理3.1 高度适应性登山机器人需要具备适应不同高度环境的能力。
为了实现这一点,机器人通常会根据气压和氧浓度等气象数据来判断当前高度,并做出相应的调整。
比如,在高海拔地区,气压和氧浓度较低,机器人可能会自动增加供氧量,以提供足够的氧气给使用者,并调整其运动速度和动作策略,以适应高海拔环境下的缺氧状态。
3.2 地形识别与攀爬登山机器人必须能够识别不同类型的地形,并做出相应的应对措施。
通过视觉传感器的帮助,机器人能够识别出陡峭的山峰、崎岖的岩石和泥泞的山路等地形,并根据其特点选择适当的动作策略,比如使用机械手臂攀爬、足够的摩擦力来保持平衡等。
爬行机器人的工作原理
爬行机器人是一种多功能的机械设备,运用它们可以在水下、陆地或空气中搜集信息、完成检查任务和其他少数特殊任务。
它们也可以被用作人员或物品携带机器人。
爬行机器人由底部移动系统、控制系统和传感器系统组成,其中连接的各个零件之间通过电缆链接。
通过机器人的底部移动装置,它可以以多种不同的形式运动,包括弹性轮、有限状态机、滚筒和其他类型的运动装置。
爬行机器人的控制系统可以使机器人实现有效的运动运行,并控制它的传感器系统来收集信息和检查环境。
传感器系统是爬行机器人能够完成任务的关键部分,它包括视觉传感器、距离传感器、温度传感器和湿度传感器等,允许机器人获取它所需要的信息,并根据获取的信息做出及时的反应。
在特殊情况下,在爬行机器人的模型中,还会安装有针对性的传感器,例如气体传感器、汽水分析仪等,用于特定的任务。
浅谈爬杆机器人原理
本文选取了国内自主研制的几类爬杆机器人作以比较。
得出大都采用凸轮夹紧机构,由于凸轮的不可伸缩性,一个爬行器只能爬行直径的等直径杆件。
爬行机器人体积小重量轻易于操作和维修。
由于目前对于爬杆机器人的研究探索的初步阶段的局限性,因此在今后还有很大的发展空间。
为今后爬杆机器人的发展。
奠定一定的基础。
标签:机器人;爬杆
1研制背景及意义
随着我国国民经济的飞速发展,人民生活不断提高,城镇中矗立起无数的高层城市建筑,各类即实用又美观的电线杆、路灯杆、桥上斜拉钢索、广告牌立柱,壁面通常多采用油漆、电镀、玻璃钢结构,通常其又长又高,环境危险,由于常年裸露在大气之中,长时间的风吹日晒,会影响到它的美观,同时复杂的空气成分也會对金属杆件腐蚀和破坏,使他们快速生锈缩短寿命。
传统的清理办法有人工清理和使用化学药剂,不仅费时费力有污染,而且效率低下,耗资巨大,爬杆机器人在广泛的需求下孕育而生。
2案例分析
因此本文选取了国内自主研制的几类爬杆机器人作以比较:
清华大学学生研发的自重式锁紧机构,框架由两根连在一起的运动杆及运动杆两端的自重锁紧机构构成,由电机驱动。
垂直爬行时自重和运动方向相反,靠机构自重和反向推力使钢球被锁紧机构中倾斜的滑块和爬杆紧密夹紧在一起,从而达到锁紧目的。
该结构简单,可以垂直爬行范围变化较小的变直径杆,缺点是只适合向上爬行运动,反向爬行自重与运动方向一致,无法进行自锁。
该机构改进后由微型气缸推动钢球解锁,能够在垂直杆进行往复运动,但需要加上一套气动控制设备,目前要实现变直径杆的爬行和返回只能依靠气动蠕行式爬行器来解决,上升和下降的需要气压调节,造价较大,因此该方法还处于理论研究阶段。
上海交通大学机器人研究所研究开发的斜拉桥缆索涂装维护用气动蠕动式爬缆机器,可在有斜度的缆索上爬行,具有实用性,能够完成检测,清洁缆索等功能。
机器结构简单,由爬升结构加装相应的作业模块,爬升机构分为上下两部分,两部分之间用提升气缸和两组导向轴副相连接,可相对移动一个行程的距离。
上下两部分各沿圆周均匀分布有3个能够调节的安装块,用于夹紧缸,夹紧爪,导向缸和导向轮总成在不同直径的缆索上安装。
哈尔滨工程大学研发的沿桅杆或绳索爬行的机器人,传动机构采用曲柄连杆机构,机器人由两个形状相似的圆形套筒内嵌由一对活动v块卡爪、一对槽型凸轮、铰链、压力传感器与滑块镶嵌而成。
其工作原理在曲柄与连杆的两端分别铰接上两个滑块作为自锁套,当机构具有向下运动的趋势时,下自锁套因受到自锁机构的限制而固定不动,把其受到的向下的力转化为向上的反作用力,推动机构向上运动。
(如右上图所示)
北京理工大学研发出了,一种步进式管线爬行机构。
该机构的组成由两个爪,臂装置和机体组成,通过转动关节和滑块关节连接,这种机构可以避免法兰障碍。
爬行时爪1抓住管道外径,爪2张开,两块机体之间相对移动,爪2抓住管道外径,爪1松开,两块集体相对移动,爬行机构就这样交替前行,当爬行过程中爬行机构的中心发生偏转,能够通过两机体间的侧向滑轨矫正机构及其运动方向。
3分析总结
因此本文選取了国内自主研制的几类爬杆机器人作以比较:
在设计移动爬杆机器人系统时,首先应考虑爬杆机器人的用途,因为用途决定了机器人的构造,此外还应考虑机器人的工作环境有无特殊要求,使用年限的疲劳校核,外观尺寸,材质和制造费用,以便更符合生产实际劳动。
通过上诉几类爬行机构不难得知,他们大都采用凸轮夹紧机构,由于凸轮的不可伸缩性,一个爬行器只能爬行直径的等直径杆件。
目前要实现变直径杆的爬行则只能依靠气动蠕行式爬行器来解决,单其上升和下降由气压控制,还需要气源和气动控制,因此设备成本和维护费用较高。
由于爬行设备的特殊性及提高运动性和安全性方面考虑,需尽量使爬行机器人体积小重量轻易于操作和维修;从系统的工作性能考虑,应使爬行机器人的工作冲击较小运行稳;从作业环境来看,由于在杆上爬行,在结构设计时应细致考虑对结构尺寸的限制,各组件的合理布置,力求机构简单可靠;由于最终爬行机构是要解决实际生产劳动的,因此各零件和材料的加工制造和选择,尽量采用市场上可采购的材料和已有的标准化小部件,减少自行设计和加工元件,以减少设计难度和提高可靠性,降低制造成本。
结构原理分析尺蟆的运动方式是一种蠕动爬行,蠕动是一种周期性的动作,蠕动体的姿态呈现某种规律性的变化。
机器人的本体是指机器人移动作业的部分。
我们所设计的尺镬式爬行机器人的本体部分主要由三个机械单元组成,分为上、下夹紧机构和传动机构,传动机构在中间分别与上、下夹紧机构相连接。
上、下夹紧机构分别起着保持器的作用,而躯干部分则起着推进器的作用。
对于夹紧机构分析,其夹紧方式主要有两种:机械式和液气压式。
机械式夹紧装置调节简易,制作成本低,但精确度不高,适应类型也有限;液气压式夹紧
装置夹紧力调节方便、工作状态稳定可靠,但需要液气源和液气动控制系统支持,体积庞大、噪音污染大并且其设备成本和维护费用较高。
二者目前均处于探索开发阶段。
由于目前对于爬杆机器人的研究探索的初步阶段的局限性,因此在今后还有很大的发展空间。
参考文献
[1]双手爪爬杆机器人对杆件的位姿检测与自主抓夹.胡杰.
[2]爬杆机器人运动原理及动力学研究.陈明森.
[3]孙成通.机械制造技术基础[M].山东人民出版社:王晶/马洁,2012:3-13.。