高一数学排列
- 格式:pdf
- 大小:1.25 MB
- 文档页数:9
高一排列组合知识点排列组合是高中数学中的重要内容之一,它是组合数学的基础概念,也是解决许多实际问题的数学工具。
在高一阶段,排列组合的学习主要集中在基本的知识点上。
本文将为大家介绍高一阶段排列组合的基础知识点及其应用。
一、排列与组合的概念排列和组合是组合数学中的两个基本概念。
排列是指从一组元素中有序地选出若干个元素进行排列,排列中的元素不能重复使用;而组合则是从一组元素中无序地选出若干个元素进行组合,组合中的元素可以重复使用。
排列和组合的计算方法也有所不同,下面分别介绍。
二、排列的计算方法排列的计算方法有两种情况:有放回和无放回的排列。
1. 有放回的排列有放回的排列是指从一组元素中有序地选出若干个元素进行排列,并且选过的元素可以重新放回原来的组合中。
假设有n个元素,要选出k个元素进行排列,则有放回的排列数为n^k。
2. 无放回的排列无放回的排列是指从一组元素中有序地选出若干个元素进行排列,并且选过的元素不能重新放回原来的组合中。
假设有n个元素,要选出k个元素进行排列,则无放回的排列数为n!/(n-k)!,其中“!”表示阶乘。
三、组合的计算方法组合的计算方法也有两种情况:有放回和无放回的组合。
1. 有放回的组合有放回的组合是指从一组元素中无序地选出若干个元素进行组合,并且选过的元素可以重新放回原来的组合中。
假设有n个元素,要选出k个元素进行组合,则有放回的组合数为C(n+k-1, k),其中C表示组合数。
2. 无放回的组合无放回的组合是指从一组元素中无序地选出若干个元素进行组合,并且选过的元素不能重新放回原来的组合中。
假设有n个元素,要选出k个元素进行组合,则无放回的组合数为C(n, k)。
四、排列组合的应用排列组合不仅是一种数学工具,也是许多实际问题的解决方法。
在高一数学中,排列组合的应用主要包括以下几个方面:1. 判断有关事件发生顺序的概率问题。
排列可以用于计算事件发生的不同顺序,从而求解事件发生的概率。
高一数学公式:排列组合同学们都在忙碌地复习自己的功课,为了关心大伙儿能够在考前对自己多学的知识点有所巩固,下文整理了这篇高一数学公式:排列组合,期望能够关心到大伙儿!1.排列及运算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m (m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示.p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1).2.组合及运算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m) 表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).排列(Pnm(n为下标,m为上标))Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标) =n!;0!=1;Pn1(n为下标1为上标)=n要练说,得练听。
听是说的前提,听得准确,才有条件正确仿照,才能不断地把握高一级水平的语言。
我在教学中,注意听说结合,训练幼儿听的能力,课堂上,我专门重视教师的语言,我对幼儿说话,注意声音清晰,高低起伏,抑扬有致,富有吸引力,如此能引起幼儿的注意。
当我发觉有的幼儿不用心听别人发言时,就随时夸奖那些静听的幼儿,或是让他重复别人说过的内容,抓住教育时机,要求他们用心听,用心记。
高中数学重点知识点:排列高中数学重点知识点:排列排列组合公式/排列组合计算公式排列P------和顺序有关组合C-------不牵涉到顺序的问题排列分顺序,组合不分例如把5本不同的书分给3个人,有几种分法."排列"把5本书分给3个人,有几种分法"组合"1.排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示.p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(规定0!=1). 2.组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m)表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数?A1:123和213是两个不同的排列数。
即对排列顺序有要求的,既属于“排列P”计算范畴。
上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。
计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积)Q2:有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”?A2:213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。
即不要求顺序的,属于“组合C”计算范畴。
上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1排列、组合的概念和公式典型例题分析例1设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法?解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法.(2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法.点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算.例2排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种?解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出:∴符合题意的不同排法共有9种.点评按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型.例3判断下列问题是排列问题还是组合问题?并计算出结果.(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?(2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?(4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法?分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析.(1)①是排列问题,共用了封信;②是组合问题,共需握手(次).(2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法.(3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积.(4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法.例4证明.证明左式右式.∴等式成立.点评这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化.例5化简.解法一原式解法二原式点评解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形过程得以简化.例6解方程:(1);(2).解(1)原方程解得.(2)原方程可变为∴原方程可化为.即,解得第六章排列组合、二项式定理一、考纲要求1.掌握加法原理及乘法原理,并能用这两个原理分析解决一些简单的问题.2.理解排列、组合的意义,掌握排列数、组合数的计算公式和组合数的性质,并能用它们解决一些简单的问题.3.掌握二项式定理和二项式系数的性质,并能用它们计算和论证一些简单问题.二、知识结构三、知识点、能力点提示(一)加法原理乘法原理说明加法原理、乘法原理是学习排列组合的基础,掌握此两原理为处理排列、组合中有关问题提供了理论根据.。
高中数学知识点总结第十章排列组合和二项式定理高中数学知识点总结:第十章——排列组合和二项式定理排列组合和二项式定理是高中数学中重要的概念和工具,它们在各个领域都有广泛的应用。
本文将对这两个知识点进行总结和说明。
1. 排列与组合排列是指从一组元素中按照一定顺序取出一部分元素的方式。
组合是指从一组元素中不考虑顺序地取出一部分元素的方式。
排列和组合都涉及到元素的选择和顺序,但它们在选择的要求上有所不同。
1.1 排列排列的计算公式为:P(n, m) = n! / (n-m)!,其中n表示元素总数,m表示需要选择的元素个数,n!表示n的阶乘。
1.2 组合组合的计算公式为:C(n, m) = n! / (m!(n-m)!),其中n表示元素总数,m表示需要选择的元素个数,n!表示n的阶乘。
2. 二项式定理二项式定理是数学中一个非常重要的定理,它描述了一个二项式的幂展开式。
二项式是一个形如(a+b)^n的表达式,而二项式定理则给出了(a+b)^n的展开形式。
二项式定理的表达式为:(a+b)^n = C(n, 0)a^n b^0 + C(n, 1)a^(n-1)b^1 + ... + C(n, n-1)a^1 b^(n-1) + C(n, n)a^0 b^n。
其中C(n, k)表示从n个元素中选择k个元素的组合数。
二项式定理的展开形式中包含了n+1个项,每一项的系数是组合数C(n, k),指数是a和b的幂。
二项式定理的应用非常广泛,在数值计算、概率统计、组合数学等领域中都得到了广泛的运用。
它可以用来快速计算幂次方的结果,也可以用来求解概率问题或者排列组合问题。
3. 相关例题在学习排列组合和二项式定理的过程中,我们可以通过解决一些典型的例题来加深对这两个知识点的理解。
例题1:某班有10名学生,要从中选择3名学生组成一个小组,问有多少种不同的选择方式?解析:根据排列的计算公式,可以得到答案:P(10, 3) = 10! / 7! = 720。
高中数学排列组合计算技巧在高中数学中,排列组合是一个重要的概念,它涉及到很多实际问题的计算。
掌握排列组合的计算技巧对于解题非常有帮助。
本文将介绍一些常见的排列组合计算技巧,并通过具体的题目来说明其考点和解题方法。
一、排列计算技巧排列是指从一组元素中取出若干个元素按照一定的顺序进行排列的方式。
在排列计算中,有两种常见的情况:全排列和部分排列。
1. 全排列全排列是指从一组元素中取出所有的元素按照一定的顺序进行排列的方式。
在全排列中,元素的顺序非常重要,每个元素都会占据一个位置。
例如,有4个元素A、B、C、D,要求从中取出3个元素进行全排列。
根据排列的定义,第一个位置可以有4种选择,第二个位置可以有3种选择,第三个位置可以有2种选择,因此总的全排列数为4×3×2=24。
在解决全排列问题时,可以使用乘法原理来计算。
即每个位置的选择数相乘即可得到总的全排列数。
2. 部分排列部分排列是指从一组元素中取出一部分元素按照一定的顺序进行排列的方式。
在部分排列中,元素的顺序同样重要,但不是每个元素都会占据一个位置。
例如,有4个元素A、B、C、D,要求从中取出2个元素进行部分排列。
根据排列的定义,第一个位置可以有4种选择,第二个位置可以有3种选择,因此总的部分排列数为4×3=12。
在解决部分排列问题时,可以使用乘法原理来计算。
即每个位置的选择数相乘即可得到总的部分排列数。
二、组合计算技巧组合是指从一组元素中取出若干个元素进行组合的方式。
在组合计算中,元素的顺序不重要,只关注元素的选择。
1. 组合的计算公式在组合计算中,有一个重要的公式可以用来计算组合数。
组合数表示从n个元素中取出r个元素进行组合的方式的总数,记作C(n, r)。
组合数的计算公式为:C(n, r) = n! / (r! × (n-r)!)其中,n!表示n的阶乘,即n! = n × (n-1) × (n-2) × ... × 2 × 1。
第10章排序10.1基本概念排序(Sorting)是计算机程序设计中的一种重要操作,其功能是对一个数据元素集合或序列重新排列成一个按数据元素某个项值有序的序列。
作为排序依据的数据项称为“排序码”,也即数据元素的关键码。
为了便于查找,通常希望计算机中的数据表是按关键码有序的。
如有序表的折半查找,查找效率较高。
还有,二叉排序树、B-树和B+树的构造过程就是一个排序过程。
若关键码是主关键码,则对于任意待排序序列,经排序后得到的结果是唯一的;若关键码是次关键码,排序结果可能不唯一,这是因为具有相同关键码的数据元素,这些元素在排序结果中,它们之间的的位置关系与排序前不能保持。
若对任意的数据元素序列,使用某个排序方法,对它按关键码进行排序:若相同关键码元素间的位置关系,排序前与排序后保持一致,称此排序方法是稳定的;而不能保持一致的排序方法则称为不稳定的。
排序分为两类:内排序和外排序。
内排序:指待排序列完全存放在内存中所进行的排序过程,适合不太大的元素序列。
外排序:指排序过程中还需访问外存储器,足够大的元素序列,因不能完全放入内存,只能使用外排序。
10.2插入排序10.2.1直接插入排序设有n个记录,存放在数组r中,重新安排记录在数组中的存放顺序,使得按关键码有序。
即r[1].key≤r[2].key≤……≤r[n].key先来看看向有序表中插入一个记录的方法:设1<j≤n,r[1].key≤r[2].key≤……≤r[j-1].key,将r[j]插入,重新安排存放顺序,使得r[1].key≤r[2].key≤……≤r[j].key,得到新的有序表,记录数增1。
【算法10.1】①r[0]=r[j];//r[j]送r[0]中,使r[j]为待插入记录空位i=j-1;//从第i个记录向前测试插入位置,用r[0]为辅助单元,可免去测试i<1。
②若r[0].key≥r[i].key,转④。
//插入位置确定③若r[0].key < r[i].key时,r[i+1]=r[i];i=i-1;转②。
高中数学排列问题教案
目标:学生能够理解排列的概念,掌握排列的计算方法,并能灵活运用排列解决实际问题。
一、认识排列
1. 什么是排列?
排列是指从给定的若干对象中按照一定的顺序取出一部分(或全部)对象,然后按照一定
的规则进行排列的过程。
2. 排列的基本概念
排列分为有重复的排列和无重复的排列。
有重复的排列:所有的对象不相同。
无重复的排列:对象中有重复的元素。
二、排列的计算方法
1. 无重复的排列计算公式
当从n个不同的对象中取出m个对象进行排列时,排列的个数为:P(n,m)=n!/(n-m)!
2. 有重复的排列计算公式
当从n个相同的对象中取出m个对象进行排列时,排列的个数为:n^m
三、排列问题解题步骤
1. 确定问题类型,是有重复的排列还是无重复的排列。
2. 找出给定的对象数量n和要取出的对象数量m。
3. 代入对应的计算公式,得出排列的个数。
4. 根据实际问题进行排列的运用,解决问题。
练习题:
1. 从A、B、C、D四个字母中任取两个字母排成一对,共有几种排法?
2. 一本书共有8页,要将图画插在前两页之间,那么插图有多少种排列方式?
3. 有6个球,上面标有数字1、2、3、4、5、6,要从中取出4个排成一行,求共有几种
排法?
师生互动:
1. 请总结本节课的重点知识点。
2. 学生可以自主设计一个排列问题,并让同学进行解答,培养学生的解决问题能力。
结束语:通过本节课的学习,相信大家对排列的概念和计算方法有了更深入的了解。
在今后的学习和生活中,能够灵活运用排列的知识解决实际问题。
高一排列组合知识点总结排列组合是数学中的一个重要概念,也是高中数学的一项重要内容。
在高一学年的数学教学中,排列组合是一个必须掌握的知识点。
下面将对高一排列组合的相关知识点进行总结。
一、排列的概念及性质1. 排列的定义:从n个不同元素中取出m(1≤m≤n)个元素,按照一定的顺序排列起来,称为从n个元素中取出m个元素的排列。
2. 排列的计算公式:当元素可以重复取出时,排列数为 n^m;当元素不重复取出时,排列数为 A(n,m)=n!/(n-m)!。
二、组合的概念及性质1. 组合的定义:从n个不同元素中取出m(1≤m≤n)个元素,不考虑元素的顺序,称为从n个元素中取出m个元素的组合。
2. 组合的计算公式: C(n,m)=n!/((n-m)!m!)。
三、排列组合的应用1. 排列组合在概率论中的应用:通过排列组合的算法,可以计算出事件发生的可能性,从而进行概率计算。
2. 排列组合在选择问题中的应用:从一组元素中选取若干个元素,根据排列组合的原理,可以计算出选择的可能性。
3. 排列组合在密码学中的应用:通过排列组合的算法,可以生成不同排列组合的密码,提高密码的安全性。
四、排列组合的解题技巧1. 排列组合的分析:首先明确题目中的条件,确定问题所涉及的元素数量和选取的数量。
2. 使用排列组合公式:根据题目的条件和问题的要求,使用相应的排列组合公式进行计算。
3. 注意特殊情况:在解决排列组合问题时,要特别关注元素是否可以重复取出、是否考虑元素的顺序等特殊情况。
4. 灵活运用公式:对于一些复杂的问题,可通过将问题进行转化,利用排列组合的公式来求解。
五、典型例题分析1. 从10个人中选出3个人组成委员会,求不同的组合数。
解答:根据组合的计算公式C(n,m),将n=10,m=3带入公式,得到结果C(10,3)=10!/((10-3)!3!)=120。
2. 一个三位数,各位上的数字都不相同,共有多少种排列方式?解答:根据排列的计算公式A(n,m),将n=9(0不能作首位),m=3带入公式,得到结果A(9,3)=9!/(9-3)!=504。
高考数学排列知识点大全在高考数学中,排列是一个重要的知识点。
它不仅在数学学科中具有重要意义,也在现实生活中有着广泛的应用。
通过掌握排列的概念、性质和计算方法,我们可以更好地理解数学的规律,为解决实际问题提供有效的思路和方法。
一、排列的概念和符号排列是从一组不同的元素中,按照一定的顺序选取若干元素的方式。
元素的选取顺序不同,排列的结果也不同。
假设有n个元素,则从中选取r个元素进行排列,可以表示为P(n,r)。
其中,n为总的元素个数,r为选取的元素个数。
排列的结果数目可以通过公式P(n,r) = n!/(n-r)! 计算得出,其中"!"表示阶乘运算。
二、排列的性质排列具有一些重要的性质,这些性质在解题过程中起到了关键的作用。
1. 互斥性:在排列中,每个元素只能出现一次,即一个元素在同一个排列中不能出现多次。
2. 有序性:排列中的元素按照一定的顺序进行排列,不同的顺序会得到不同的排列结果。
3. 全面性:排列包含了所有可能的选取顺序,即每个元素都参与到了排列的过程中。
4. 数量关系:根据排列的计算公式,我们可以了解到排列的数量与元素个数和选取个数的关系,这对于解决实际问题有着重要的指导作用。
三、排列的计算方法在实际应用中,我们常常需要计算给定元素集合的排列数目。
对于这个问题,有以下几种常用的计算方法。
1. 直接计算法:根据排列的计算公式,可以直接计算出所需的排列数目。
这种方法适用于元素个数较少的情况。
2. 迭代计算法:通过逐步迭代计算,实现对排列的逐步拓展,最终得到所需的排列数目。
这种方法适用于元素个数较多的情况。
3. 组合计算法:排列的计算可以与组合相互转化,利用组合的计算方法也能得到排列的结果。
这种方法适用于一些特殊的排列问题。
四、排列的应用排列在现实生活中有着广泛的应用。
下面介绍几个常见的应用场景。
1. 简历筛选:在人才招聘过程中,人力资源部门常常需要按照一定的条件筛选出合适的候选人。
1.排列与排列数(1)排列:从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.(2)排列数:从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,记作A m n.2.组合与组合数(1)组合:从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合.(2)组合数:从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,记作C m n.排列数、组合数的公式及性质顺序有关,组合问题与顺序无关.一、排列问题排列典型例题:有3名男生、4名女生,在下列不同条件下,求不同的排列方法总数.(1)选5人排成一排;(2)排成前后两排,前排3人,后排4人;(3)全体排成一排,甲不站排头也不站排尾;(4)全体排成一排,女生必须站在一起;(5)全体排成一排,男生互不相邻.解:(1)从7人中选5人排列,有A57=7×6×5×4×3=2 520(种).(2)分两步完成,先选3人站前排,有A37种方法,余下4人站后排,有A44种方法,共有A37·A44=5 040(种).(3)法一:(特殊元素优先法)先排甲,有5种方法,其余6人有A66种排列方法,共有5×A66=3 600(种).法二:(特殊位置优先法)首尾位置可安排另6人中的两人,有A26种排法,其他有A55种排法,共有A26A55=3 600(种).(4)(捆绑法)将女生看作一个整体与3名男生一起全排列,有A44种方法,再将女生全排列,有A44种方法,共有A44·A44=576(种).(5)(插空法)先排女生,有A44种方法,再在女生之间及首尾5个空位中任选3个空位安排男生,有A35种方法,共有A44·A35=1 440(种).1.用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为()A.324 B.648C.328 D.3602.用1,2,3,4这四个数字组成无重复数字的四位数,其中恰有一个偶数夹在两个奇数之间的四位数的个数为________.3.甲、乙两人要在一排8个空座上就坐,若要求甲、乙两人每人的两旁都有空座,则不同的坐法有()A.10种B.16种C.20种D.24种二、组合问题组合典型例题:某运动队有男运动员6名,女运动员4名,若选派5人外出比赛,在下列情形中各有多少种选派方法?(1)男运动员3名,女运动员2名;(2)至少有1名女运动员.解:(1)任选3名男运动员,方法数为C36,再选2名女运动员,方法数为C24,共有C36·C24=120(种)方法.(2)法一:(直接法)至少1名女运动员包括以下几种情况:1女4男,2女3男,3女2男,4女1男,由分类加法计数原理可得总选法数为C14C46+C24C36+C34C26+C44C16=246(种).法二:(间接法)“至少有1名女运动员”的反面是“全是男运动员”,因此用间接法求解,不同选法有C510-C56=246(种).1.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中至少有1门不相同的选法共有()A.30种B.36种C.60种D.72种2.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有()A.60种B.63种C.65种D.66种三、排列组合综合问题(1)简单的排列与组合的综合问题;(2)分组、分配问题.1.将标号为1,2,3,4的四个篮球分给三位小朋友,每位小朋友至少分到一个篮球,且标号1,2的两个篮球不能分给同一个小朋友,则不同的分法种数为()A.15 B.20C.30 D.422.将5位同学分别保送到大学、交通大学、大学这3所大学就读,每所大学至少保送1人,则不同的保送方法共有()A .150种B .180种C .240种D .540种此题是高考出现频率最高的题型,我把他称为均分问题:对于部分均分,解题时注意重复的次数是均匀分组的阶乘数,即若有m 组元素个数相等,则分组时应除以m !,分组过程中有几个这样的均匀分组,就要除以几个这样的全排列数.(3)涂色问题:涂色的规则是“相邻区域涂不同的颜色”,在处理涂色问题时,可按照选择颜色的总数进行分类讨论,每减少一种颜色的使用,便意味着多出一对不相邻的区域涂相同的颜色(还要注意两两不相邻的情况),先列举出所有不相邻区域搭配的可能,再进行涂色即可。