电极式液位计控制水泵电路图
- 格式:pdf
- 大小:127.28 KB
- 文档页数:1
GKY 液位控制现在很多家庭使用简易水箱,用一个单相泵或电磁阀向水箱里供水或排水。
如何实现自动控制呢?下面介绍一种简单的控制方案(如果是电磁阀则直接将图中水泵换为电磁阀)。
该方案采用通用液位控制报警器(UGKY
),接线原理如下图:
UGKY 通用液位控制报警器外形尺寸长150宽90高70mm ,继电器触点负荷均为220V10A ,两组触电可以并联使用,直接控制一台单相泵或电磁阀。
UGKY 可以用于供水或排水,设置水满/缺水报警或不报警,使用灵活。
UGKY 采用的是GKY 液位传感器,使用寿命长,三年内包换。
西安祥天和电子商务有限公司专门从事液位控制的安装、维修服务二十多年,熟悉各类液位控制器的性能。
最早,我们使用传统的电极探头,价格很便宜,但用一段时间后,电极就会吸附很多杂质,寿命极短。
后来用UQK/GSK 干簧管,但水位波动,触点频繁吸合,使用寿命也短。
目前质量好一些的液位传感器可以用一年多,差的只能用几个月。
而现代微电子产品使用寿命可达十年以上,所以我们结合传统浮子和现代微电子技术研发了GKY 液位传感器,使用
西安祥天和电子商务有限公司
(原名:西安祥和电子科技有限公司)
详情请咨询网站:
寿命长,三年内包换。
GKY液位传感器也是目前唯一可以在污水中长期使用的传感器,欢迎登录本公司网站了解详情。
电路工作原理该液位自动控制器电路由电源电路、液位检测电路和控制执行电路组成,如图所示。
电源电路由刀开关Q、熔断器FU、电源变压器T、整流二极管VD1~VD4、限流电阻器R1与R5、滤波电容器C1和稳压二极管VS组成。
液位检测电路由高液位电极H、低液位电极L和主电极M组成。
控制执行电路由晶体管V、继电器K、时基集成电路IC、二极管VD5~VD8和外围阻容元件组成。
接通刀开关Q,交流380V电压经T降压后,在储液池内无液体或液位低于低液位电极L时,整流电路中无电流,控制执行电路无工作电压,继电器K 处于释放状态,其常闭触头接通,交流接触器KM通电吸合,加液泵电动机M通电工作,开始加液。
当储液池内液位达到低液位电极L时,低液位电极L通过液体与主电极M 相接,整流电路有直流电压输出。
该直流电压经C1滤波、R5限流降压及VS 稳压后,产生12V直流电压,供给控制执行电路。
此时,V处于截止状态,IC 的2脚和6脚均为高电平,3脚输出低电平,继电器K不动作,加液泵电动机M继续加液。
图液位自动控制器电路当储液池内液位到达高液位电极H时,高液位电极H通过液体与主电极贩接通,使V导通,IC的2脚和6脚变为低电平,3脚输出高电平,继电器K吸合,其常闭触头K断开,使交流接触器KM断电释放,切断加液泵电动机M的工作电源,加液泵停止加液。
当储液池内的液位下降至低液位电极L以下时,整流电路的输人回路又断开,使控制执行电路失去工作电源,继电器K释放,加液泵又开始加液。
如此周而复始,可实现无人值守自动供液。
元器件选择R1和R5选用2\7的线绕电阻器;R2~M选用1/4W金属膜电阳器。
C1选用耐压值为50V的铝电解电容器;C2选用耐压值为25V的铝电解电容器;C3选用独石电容器或涤纶电容器。
VD1~VD8选用1N4001或1N4007型硅整流二极管。
VS选用1W、12V的稳压二极管,例如1N4742等型号。
V选用C8050或58050、3DG8050硅NPN型晶体管。
DF-96系列全自动水位控制器工作原理一、整机工作原理该型全自动水位控制器电路原理如下图所示。
由图可知,本控制器电路主要由电源电路、水位信号检测电路、输出驱动电路三部分组成,下面分别加以介绍。
1.电源电路AC220V电压经变压器T降压,其次级输出近13V左右交流电加至由D1~D4 构成的整流桥输入端,整流后经电容CI滤波得到约10.5V直流电压。
该电压经Rl加到红色发光管LEDI上,将LEDI点亮,表示电源正常。
该电压除了为ICI及继电器提供工作电源外还直接送到水位检测电极C.作为水位检测的公共电位。
2.水位信号检测电路该部分是以四二输入与门电路CD4081为核心并配以五根水位检测电极A—E构成的。
其作用是根据电极实测水位的变化CD4081相应引脚的电平随之变化,满足与门条件时相应输出端电平改变,以驱动输出电路。
其中R2是ICI的电源输入限流电阻,D5与R3及D6与R8起隔离自锁作用,当相应输出端即ICI(10)脚、(3)脚为高电平时将(8)脚、(1)脚锁死,其状态的翻转取决于(9)脚和(2)脚。
C2—C5及R4_R6、R12的作用是滤除干扰信号意外进入控制器引起误动作。
3.输出驱动电路该部分主要由驱动管VTI,继电器Jl、功能选择开关K及输出状态指示绿发光管LED2组成。
功能选择开关K处于“开?位时,继电器Jl被强制动作.其相应触点Jl-I闭合,外接负荷(单相电动水泵或控制接触器)开始工作,输出状态指示绿发光管LED2也被点亮;处于“关”位时,触点Jl-I断开,外接负荷被切断;处于“自动”位置时.Jl动作与否受驱动管VTI的控制.当VTI基极电位高于0.7V以上时则饱和导通,继电器儿得电动作,其触点Jl-I闭合,反之则断开。
二.实际应用分析下图是该型全自动水位控制器实际应用的四种接法,分别对应单控上水池、单控下水池、缺水保护和上下水池联合控制。
1.单控上水池此时电D(绿线)、E(黄线)与电极C(黑线)并接置入水池的最低点,与水池底部接触作为水池(水塔)地线(公共电位);电极A(红线卜一为上水池(水塔)上限液位控制点,水位上升达到A点水位,水与探头接触,水位控制器自动关泵;B隘线卜一为上水池(水塔下限液位控制点,水位下降到B点水位以下,水与探头脱离接触,水位控制器自动开泵,水池充水。
方便可靠的电极式水位自控电路该电路控制的是选矿过滤工段将铁精粉中的水份排出的电控排液桶,当然稍加改动用于控制供给贮水池的水泵电机也可以。
电路工作原理下图是电路原理图,L1、L2是低水位电极,H是高水位电极。
不论水池中没有水或有些水,合上闸刀开关DK后,380V交流电经继电器J的常闭接点J使交流接触器CJ线圈得电,CJ闭合,水泵电机运转向水池供水。
控制回路接的是220V电压,经变压器B降压,D3整流,C2滤波为电路提供12V直流电。
当水池内的水位逐渐上升到高水位电极H点时,由于水的导电作用,通过R2、W为晶体管开关电路提供偏置电流,使V导通,继电器J得电吸合,其常闭接点J断开.CJ线圈失电,水泵停止运转。
当用户用水使水池中水位下降后,即使低于高水位点H,由于L2和H靠交流接触器CJ的一对常闭辅助触点相连,晶体管电路仍有偏置电流,J保持吸合状态。
这段时间内水泵电机停转不工作,只有水池中的水位低于L1、L2的低水位时,晶体管V失去偏置电流而截止,J失电释放,其常闭触点再启动水泵电机运行。
此电路中晶体管的偏置电路与普通电路有所不同,见下图。
这是V的偏置电流流通方向路径示意图。
在交流电的正半周设变压器B的次级绕组3端为正、4端为负。
其电流通路为:绕组3端一电极L1一水电阻R水-电极L2-CJ-4-R—W—V的be结一绕组4端,V有偏置电流而导通;在交流电负半周绕组4端为正、3端为负,电流通路为4一D1一W—R-H-CJ-4一L2-R水一L1一绕组3端。
这样流过水位电极的便是交流电了,可避免铜电极在导电液体中长期通过直流电,因电化学作用造成腐蚀和导电不良,大大提高了电极的作用寿命,减小了维修量。
这是本电路的特点之一。
在电路中由于开关管的基极电流只在交流电的半个周期存在,流过其集电极回路中继电器的也是半波电流。
为使开关管工作稳定可靠并避免继电器接点的抖动,采取了如下措施:1.给晶体管V较大的基极偏流,可由W调整,使晶体管工作在过饱和状态。
西安祥天和电子科技有限公司详情咨询官网主营产品:液位传感器水泵控制箱报警器GKY仪表液位控制系统,液位控制器,无线传输收发器等水泵液位控制电路原理图水泵液位自动控制系统的主要由以下三个部分组成:液位信号的采集液位信号的传输水泵控制系统1.液位信号的采集液位信号的采集主要是选择合适的液位传感器。
液位传感器的发展从最早的电极式、UQK/GSK传统浮子、到现在的压力式、光电式和GKY液位传感器等,形成了多种液位控制方式。
电极式便宜简单,但在水中会吸附杂质,使用寿命短。
传统浮子与相对滑动轨道之间只有1mm 左右的细缝,很容易被脏东西卡住,可靠性较低。
这些是不能在污水中使用的。
光电式也不能用于污水,因为玻璃反射面脏了就会出现误判断。
GKY液位传感器可以弥补这些缺陷,在污水和清水中可以使用。
所以液位控制的系统设计应该根据具体使用环境慎重选择传感器,如果选择不当,将会导致控制系统故障频发,甚至瘫痪,这是导致现有很多液位自动控制系统使用不到一年就失灵的重要原因。
不同液位传感器检测液位的原理是不同的,具体可参见百度文库中“如何选择液位传感器”“什么是液位开关液位开关原理”等文章。
2.液位信号的传输液位信号的传输可以有有线和无线两种方式。
有线就是通过普通电缆线或屏蔽线传输,大部分传统液位传感器通过普通的BV线就可以了,传输信号易受干扰的压力式、电容式传感器需要用屏蔽线传输而且距离不能太远。
在传输距离远或不方便铺设传输线路的场所,需要使用无线液位传输系统。
无线液位传输系统可以有多种方式:第一种是直接采用无线收发设备传输液位信号,如GKY-WX。
第二种是借助于通讯网络的短信收发功能将液位信号传达到目的地,如GKY-DXSF。
第三种是目前最流行一种传输方式,就是借助中间服务器平台,采用流量卡来传输液位信号,如GKY-GPRSSF。
无线液位传输系统具体可参见百度文库中“无线液位控制器”“无线传输液位控制有哪些方式?”等文章。
西安祥天和电子科技有限公司主营产品:液位传感器控制箱报警器GKY仪表液位控制系统,液位控制器,无线传输收发器等详情咨询官网什么是液位开关液位开关原理液位开关,顾名思义,就是根据液位来自动开关水泵。
实现这种功能的方式有很多,主要由所采用的液位传感器来决定。
现在的液位传感器无外乎电极式、UQK/GSK式、光电式、压力式、GKY式等几种。
分析其基本原理就能够发现这些传感器的优缺点。
有些固有的缺点,无论怎么做都无法避免。
当然传感器的制造工艺和材质也会影响其性能,所以市场上有不同品质和价格的液位传感器。
我们先从其实现原理分析,再从其制造工艺和材质来探讨。
液位控制的核心在于液位传感器,它决定了液位控制系统的可靠性、稳定性及使用寿命。
所以应该根据使用环境来慎重选择。
至于如何开关水泵?可以有各种设计方案,实现不同的功能。
具体设计方案可以登录本公司官网的“资料免费下载”栏目下载。
一、电极式液位控制传感器电极式是最早的液位控制方式,其控制原理很简单:因为水是导体,有水的时候两个电极间导电,交流接触器吸合。
图1.1为电极式在水中控制原理示意图。
但是电极在水中会分解而且会吸附很多杂质。
如果不及时清理,电极就会失去作用,这是电极式液位传感器固有的缺陷。
电极式液位传感器的制造非常简单,有人将导线外皮拨开,插到水里就可以做成电极式液位控制器。
所以电极式液位控制器造价很低,价格便宜,但使用寿命很短。
当然,如果采用不锈钢做电极,硬度较强,分解得就会慢一点。
如果表面再处理光滑一些,电镀一下,吸附的杂质就会少一些,使用寿命就会长一点。
但是无论怎么做,其品质都不可能超过干簧管。
二、UQK液位控制原理干簧管将电极触点密封在玻璃管内,接近磁铁,触点就会吸合。
所以人们在浮球里放一块磁铁和上、下两个干簧管,通过导线将浮球固定于水池中,如图2.1。
这就是UQK的液位控制方式。
当水池无水的时候,浮球下垂,磁铁在下限干簧管处,故下限干簧管吸合。
当水池有水的时候如图2.2,浮球上翻,磁铁在上限干簧管处,故上限干簧管吸合。
锅炉电极式双位水位控制系统原理保持锅炉的正常水位,主要是控制给水量,使进入锅炉的给水量等于炉的蒸发量,以适应锅炉负荷的变化。
在蒸发量较小、汽压力较低的辅锅炉中,大多数采用双位式水位自动控制系统。
所谓双位式水位控制系统是指锅炉的水位在允许的上、下限之间波动。
当水位下降到允许的下限水位时,自动起动给水泵向锅炉供水,锅炉水位逐渐升高;当水位达到允许的上限水位时,自动切断给水泵,停止向锅炉供水,因此水位不会稳定在某一水位上。
这种水位控制系统的水位检测元件常采用浮子式或电极式。
下图为电极式双位水位控制系统原理图。
电极室水位代表锅炉的实际水位。
由于炉水有一定的盐分,所以它是导电的电极室中的电极1、2分别控制允许的上、下限水位,电极8用于危险低水位报警。
1和2Z是二极管桥式整流电路。
电话继电器3Y和4Y工作电源是直流电,而电极经炉水导电是交流电。
当水位下降到允许下限水位以下时,电极1和2均露出水面。
1断路,3JY断电,常闭触头3JY1闭合,接触器1CJ通电动作,其触头10J1~iCJ闭合,电机带动给水泵向锅炉供水,水位升高。
由于3JY的常开触头3JY2已经断开,所以当水位超过电极2时,1仍断路,水泵继续向锅炉供水。
当水位升高到上限水位,即电极1底端以上时,3JY通电,其常闭触头3Y,断开,停止向锅炉供水。
由于常开触头3JY2已经闭合,所以水位下降到低于电极底端以下时,水泵不会向锅炉供水,显然调整电极1和2的位置可以改变允许的上、下限水位。
一般调整电极1和2之间的距离不要太小,太小了给水泵电机起动会很频繁。
如果供水系统发生故障,水位下降直到电极8露出水面时,4JY断电,发出声光报警。
双位式锅炉水位控制系统比较简单,这里不再详述。
水位液位控制器开关水塔水池自动抽水排水缺水保护控制电路板水位液位控制器开关水塔水池自动抽水排水缺水保护控制电路板接线参考图::液位自动控制器电路图本例介绍的液位自动控制器采用分立元件制作而成,其特点是液位检测电极上只通过微弱的交流电流,电极不会产生电解反应,使用寿命较长。
电路工作原理该液位自动控制器电路由电源电路和液位检测控制电路组成,如图所示。
图液位自动控制器电路电源电路由电源开关S1、电源变压器T、整流桥堆UR1、UR2和滤波电容器C1、C2组成。
液位检测控制电路由检测电极a~c、控制按钮S2、S3、电阻器R1~M、晶体管V1、V2、发光二极管VL1、VL2、继电器K、交流接触器KM和二极管VD组成。
接通电源后,交流220V电压经T降压后,在T的W2绕组和W3绕组上分别产生交流6V电压和交流12V电压。
交流12V电压经UR2整流及C2滤波后,为Κ及其驱动电路提供+12V工作电压,同时将VL1点亮。
在储液池内液位低于下限时,电极a~c均悬空,T的二次绕组与整流滤波电路之间的回路处于开路状态,V2处于截止状态,V1饱和导通,K通电吸合,其常闭触头K1断开,常开触头K2接通,KM吸合,加液泵电动机M通电开始工作,同时VL2点亮。
当储液池内液位上升至电极c处时,电极a和电极c通过液体的电阻接通,T的V2绕组上的交流6V电压经URI整流、C1滤波及R1限流后加至V2的基极,使V2导通,V1截止,K和KM释放,加液泵电动机M停转。
同时VL2熄灭,K的常闭触头K1又接通。
当液位再次下降至电极a、b以下时,K和KM再次通电工作,电路进人下一个工作循环下。
S2为手动停止按钮,S3为手动强制运行按钮。
在液位处于上、下限之间时,通过S2和S3可任意停止或起动加液泵电动机。
元器件选择R1~R4选用1/4W的金属膜电阻器或碳膜电阻器。
C1和C2均选用耐压值为25V的铝电解电容器。
VD选用1N4007型硅整流二极管。
VL1和VL2均选用φ5mm的发光二极管。
GKY 液位控制现在很多家庭使用简易水箱,用一个单相泵或电磁阀向水箱里供水或排水。
如何实现自动控制呢?下面介绍一种简单的控制方案(如果是电磁阀则直接将图中水泵换为电磁阀)。
该方案采用通用液位控制报警器(UGKY
),接线原理如下图:
UGKY 通用液位控制报警器外形尺寸长150宽90高70mm ,继电器触点负荷均为220V10A ,两组触电可以并联使用,直接控制一台单相泵或电磁阀。
UGKY 可以用于供水或排水,设置水满/缺水报警或不报警,使用灵活。
UGKY 采用的是GKY 液位传感器,使用寿命长,三年内包换。
西安祥天和电子商务有限公司专门从事液位控制的安装、维修服务二十多年,熟悉各类液位控制器的性能。
最早,我们使用传统的电极探头,价格很便宜,但用一段时间后,电极就会吸附很多杂质,寿命极短。
后来用UQK/GSK 干簧管,但水位波动,触点频繁吸合,使用寿命也短。
目前质量好一些的液位传感器可以用一年多,差的只能用几个月。
而现代微电子产品使用寿命可达十年以上,所以我们结合传统浮子和现代微电子技术研发了GKY 液位传感器,使用
西安祥天和电子商务有限公司
(原名:西安祥和电子科技有限公司)
详情请咨询网站:
寿命长,三年内包换。
GKY液位传感器也是目前唯一可以在污水中长期使用的传感器,欢迎登录本公司网站了解详情。
水位控制电路图水位控制器原理1.本电路能自动控制水泵电动机,当水箱中的水低于下限水位时,电动机自动接通电源而工作;当水灌满水箱时,电动机自动断开电源。
该控制电路只用一只四组双输入与非门集成电路(CD4011),因而控制电路简单,结构紧凑而经济。
供电电路采用12V直流电源,功耗非常小。
控制器电路如图1所示.指示器电路如图2所示。
图1是控制器电路图,在水箱中有两只检测探头"A”和"B",其中”A”是下限水位探头,”B"是上限水位探头,12V直流电源接到探头”C",它是水箱中储存水的最低水位。
下限水位探头”A”连接到晶体管T1(BC547)的基极,其集电极连到12V电源,发射极连到继电器RL1,继电器RL l接入与非门N3第○13脚。
同样,上限水位探头”B”接到晶体管T2的基极(BC547),其集电极连到12V电源,发射极经电阻R3接地,并接入与非门N1第①、②脚,与非门N2的输出第④脚和与非门N3的第○12脚相连,N3第①脚输出端接到N2第⑥脚输入端,并经电阻R4与晶体管T3的基极相连,与晶体管T3发射极相连的继电器RL2用来驱动电动机M。
当水箱向水位在探头A以下,晶体管T1与T2均不导通,N3输出高电平,晶体管T3导通,使继电器RL2有电流通过而动作,因而电动机工作,开始将水抽入水箱.当水箱的水位在探头A以上、探头B以下时,水箱中的水给晶体管T1提供了基极电压,使T1导通,继电器RLl得电吸合N3第○13 脚为高电平,由于晶体管T2并无基极电压,而处于截止状态,N1第①、②脚输入为低电平,第③脚输出则为高电平,而N2第⑥脚输入端仍为高电平,因而N2第④脚输出则为低电平,最终N3第11脚输出为高电平,电动机继续将水抽入水箱。
当水箱的水位超过上限水位B时,晶体管T1仍得到基极电压,继电器RLl吸合。
N3第○13脚仍为高电平,同时,水箱中的水也给晶体管T2提供基极电压使其导通,Nl 第①、②脚输入端为高电平,第②脚输出端为低电平,N2第③脚输出端为高电平,N3第○11脚第终输出低电平,使T3截止,电动机停止抽水。
利用液位继电器、电接点压力表控制的自动供水电路朋友工厂里有一套电接点压力控制自动供水设备出现故障,在检修时发现有十几个液位继电器放在那没用,还有两块电接点压力表,询问他们也不知道是好的还是坏的,后来我就拿回来帮他检修,两块压力表一块是触点氧化,另一块是触点烧毁,现在两块都修好了。
液位继电器是正泰产品,其中有两个坏的,还有两个是 380V 的属于电压不符,剩下的经过检查全是好的(220V),闲来无事我就把两个坏的液位继电器拆开检查,发现是电源变压器原线圈烧毁了,控制电路完好,换了变压器顺便按照实物把电路图画了出来。
一、液位继电器:图 1 液位继电器电路图工作原理:当水池里的水浸过高水位传感器 a 点时,电源正极与 7 脚相连的低水位传感器 c 点通过水电阻和 a 点接通, VT2 正向偏置导通, C 极输出低电位, VT1 基极也变成低电位而截止,继电器 K1 、K2 得不到电源其常开触点不闭合,经 K1 控制的水泵电路无电源,所以水泵停止打水。
当水位下降至 b 点时, K2 常闭触点仍未打开电路维持原始状态,当水位继续下降低于b 点时, VT2 上偏置电路开路失去偏置电流而截止, C 极输出高电位, VT1 基极变成高电位而导通,继电器 K1、 K2 得电吸合, K1 常开触点 K1-3、 K1-2 闭合接通了水泵控制电路,水泵开始打水,当水位上升到 b 点时,由于 K2 常闭触点打开 VT2 仍保持截止,水泵继续打水,当水位继续上升至 a 点时 c、a 两点通过水电阻相连,给 VT2 提供了偏置电流, VT2 导通使 VT1 截止, K1、K2 失电,水泵停止打水。
这样水泵在液位继电器的控制下周而复始的运行。
图 2二、电接点压力表:电接点压力表就是在普通压力表上安装了一套可调控制压力的装置,结构见图 3,它有两个静触点,一个是压力上限接点装在压力上限调整指针上,通过红色导线与外部控制电路相连,一个是压力下限接点装在压力下限调整指针上,通过绿色导线与外部控制电路相连,还有两个活动触点,就是压力上、下限活动接点,这两个活动触点通过游丝连在一起构成公共端用黄色导线与控制电路的电源火线相连,正常工作时活动触点由压力指示指针带动上下移动。
水位自动控制器电路图目前市售水位控制器大都没有水塔(池)进水指示与保护、报警功能,当水源无水或水泵故障时,不能自动停泵,既浪费电能,又容易烧毁电机。
当水位低于下水位且泵无水时,不能及时停泵报警,提醒用户。
因此,其安全性与可靠性尚有不足。
本文介绍的两种水位自动控制器,都是为解决上述问题而设计的。
图1是S Z K-Ⅱ型水位自动控制器电原理图。
同相器I C3、I C4组成大回差施密特触发器。
R12、C4为积分电路,能有效地消除交流电源引入的干扰。
R14、R13使I C4输出呈施密特特性。
通过水塔地电极与下、上水位电极跟水顺序接触,改变I C3输入电压,实现水位自动控制。
I C1、I C2、I C3的输出共同控制三极管V T1。
V T1导通时,C3放电,I C5输出为负。
V T1截止时,V D7反偏,电源经R10向C3充电,延时开始。
到达延时时间后,I C5输出变正,电路进入保护或报警状态。
延时时间应调整为略大于开泵至水塔有进水所需的时间。
V T1截止有两种情况:1、I C1与I C2输出都为正,即水位在上水位电极以上和进水口仍有水流。
这是专为自来水压力不正常须装加压泵或自来水与井、河水并用的环境而设计的报警。
当自来水压力能自流上水塔时,水满报警,提醒用户关闭水阀。
如果水塔加装水位浮球阀,并使浮球阀关水线在上水位电极上方,则不需报警便能自动控制。
这时应拆去V D5、V D6,并将V T1发射极接电源负极,使I C2输出开路以消除本项报警。
2、I C1、I C2、I C3输出都为负,即水位在上水位电极以下、水泵工作和水抽不(未)上水塔时的状态。
这时,在延时时间内,水塔进水口若有水流,则I C1输出变正,V T1导通;若仍无水流,则I C5输出因C4充电电压上升而变正。
V D8、R15能加速I C5翻转和消除电源波动的影响。
I C5的输出分两路,一路为V T2提供基极电流,产生鸟叫声报警;一路通过V D9加至I C4输入端,使其输出变正,水泵停泵,同时通过R11作用于I C3输入端。
GKY3X是三台泵循环启动设计方案,采用GKY液位传感器和仪表来控制三台泵的手动、自动,具有液位显示、三台泵循环使用、水泵故障报警等功能。
现在的液位(水位)传感器种类很多,但使用寿命一般不超过三年,而且大部分不能于污水和热水。
详细分析可参见本文附录“各类液位传感器检测原理和性能分析”。
GKY液位(水位)传感器可以在污水、清水和温度不高的热水中使用。
但在80、90度高温的热水中还是建议采用传统玻璃管液位计加装光电监控探头的方法比较好。
选择GKY液位传感器的原因是因为,GKY液位(水位)传感器是目前液位传感器市场上唯一一款敢于承诺三年内包换的液位传感器。
GKY3X水泵控制箱采用直接启动方式,具有液位显示,供水排水选择,手动,三台泵循环工作,应急时同时启动的功能。
直接启动一般用于功率较小的水泵,如小于22KW。
因为功率大的水泵,直接启动会对电网产生冲击波,影响周围的用电同时对电机也会造成伤害,影响水泵寿命。
所以功率较大的水泵可以通过软启方式或变频方式启动。
GKY3X具体设计方案如下:1、GKY3X控制箱一般配超高、上限、下限、超低4个GKY液位传感器,如果需要配多个传感器,则在其后标注传感器数量就可以了。
如需要配5个传感器,则在其后增加标注“-5T”。
如果不标传感器数量则默认为4个传感器。
2、该控制箱具有排水或供水选择功能。
选择排水型则高液位启动,低液位停泵。
选择供水型则低液位启动,高液位停泵。
3、该控制箱具有水泵故障报警功能。
控制箱热继电器的常开触点接入GKY仪表,当水泵电流过大,触点吸合,仪表发出声光报警。
这时应断开电源,排除故障,再按下热继电器复位按钮即可。
4、GKY液位传感器适用于污水、清水和70°C以下的热水。
如果要用于控制高温热水,则需采用传统玻璃管液位计加装光电监控探头的方式,在其后加标“-BLR”。
5、三台泵循环使用是指开泵时可以逐台逐步投入工作,关泵时按先开先停的顺序逐步停止工作,最多可以3台泵同时启动。
液位控制/水位控制的核心在于液位传感器,它决定了液位控制系统的可靠性、稳定性及使用寿命。
液位控制显示仪表做得好坏,可以起到景上添花的作用,可以增加很多功能,但并不是决定液位控制系统寿命的核心。
目前大部分液位传感器在清水中使用寿命最长。
一般一年多,好一点的两年,一般不超过三年,差的仅几个月。
在热水中绝大部分液位传感器不能使用,在污水中液位传感器的使用寿命会大打折扣。
所以,现有的液位自动控制系统使用寿命一般就是一两年,这和现代微电子技术的发展形成鲜明对比。
现代微电子技术如我们的冰箱彩电等使用寿命至少都在七八年以上。
因此我们有必要对现有液位传感器技术,如电极式、光电式、GSK/UQK/GKY、压力传感器、超声波传感器等的原理分析一下,这样我们就知道使用时该注意什么了。
一、电极式液位控制/水位控制原理电极式是最早的液位控制/水位控制方式,其控制原理很简单:因为水是导体,有水的时候两个电极间导电,交流接触器吸合。
图1.1为电极式在水中控制原理示意图。
但是电极在水中会分解而且会吸附很多杂质。
如果不及时清理,电极就会失去作用。
所以电极式液位传感器在清水中使用也只有几个月的寿命,在污水和热水中均不能使用。
电极式液位控制技术,简单便宜,但使用寿命较短。
为了弥补电极式液位控制技术的缺陷,人们想办法将电极和水分离出来,于是出现了干簧管,形成了UQK和GSK两种液位控制技术。
二、UQK液位控制/水位控制原理干簧管将电极触点密封在玻璃管内,接近磁铁,触点就会吸合。
所以人们在浮球里放一块磁铁和上、下两个干簧管,通过导线将浮球固定于水池中,如图2.1。
这就是UQK的液位控制/水位控制方式。
当水池无水的时候,浮球下垂,磁铁在下限干簧管处,故下限干簧管吸合。
当水池有水的时候如图2.2,浮球上翻,磁铁在上限干簧管处,故上限干簧管吸合。
将干簧管触点串接交流接触器,就可以控制水泵启动,见图2.3。
这种方式依靠水的浮力使浮球上下翻转,上限、下限间的距离依据导线的长度来决定。
双(两)台泵交替循环使⽤电路图GKY2X是双台泵交替使⽤循环⼯作的设计⽅案,采⽤GKY液位传感器和仪表来控制两台⽔泵的⼿动、⾃动,具有液位显⽰、双台泵交替使⽤、应急时同时⾃动、⽔泵故障报警等功能。
现在的液位(⽔位)传感器种类很多,但使⽤寿命⼀般不超过三年,⽽且⼤部分不能于污⽔和热⽔。
详细分析可参见本⽂附录“各类液位传感器检测原理和性能分析”。
GKY液位(⽔位)传感器可以在污⽔、清⽔和温度不⾼的热⽔中使⽤。
但在80、90度⾼温的热⽔中还是建议采⽤传统玻璃管液位计加装光电监控探头的⽅法⽐较好。
为什么选择GKY液位传感器?是因为GKY 液位(⽔位)传感器是⽬前液位传感器市场上唯⼀⼀款敢于承诺三年内包换的液位传感器。
GKY2X⽔泵控制箱采⽤直接启动⽅式,具有液位显⽰,供⽔排⽔选择,⼿动,⾃动控制双台泵交替使⽤,应急时同时启动的功能。
直接启动⼀般⽤于功率较⼩的⽔泵,如⼩于22KW。
因为功率⼤的⽔泵,直接启动会对电⽹产⽣冲击波,影响周围的⽤电同时对电机也会造成伤害,影响⽔泵寿命。
所以功率较⼤的⽔泵可以通过软启⽅式或变频⽅式启动。
GKY2X具体设计⽅案如下:1、GKY2X控制箱⼀般配上限、中间、下限3个GKY液位传感器,如果需要配更多,则在其后标注传感器数量就可以了。
如需要配4个传感器,则在其后增加标注“-4T”。
如果不标传感器数量则默认为3个传感器。
2、该控制箱具有排⽔或供⽔选择功能。
选择排⽔型则⾼液位启动,低液位停泵。
选择供⽔型则低液位启动,⾼液位停泵。
3、该控制箱具有⽔泵故障报警功能。
控制箱热继电器的常开触点接⼊GKY仪表,当⽔泵电流过⼤,触点吸合,仪表发出声光报警。
这时应断开电源,排除故障,再按下热继电器复位按钮即可。
4、GKY液位传感器适⽤于污⽔、清⽔和70°C以下的热⽔。
如果要⽤于控制⾼温热⽔,则需采⽤传统玻璃管液位计加装光电监控探头的⽅式,在其后加标“-BLR”。
5、双台泵交替使⽤是指这次⾃动启动⼀台泵,下次⾃动启动另⼀台泵,交替使⽤。
GKYX2A/1是两台泵一用一备直接启动设计方案,采用GKY液位传感器和仪表来实现。
现在的液位(水位)传感器种类很多,但使用寿命一般不超过三年,而且大部分不能于污水和热水。
详细分析可参见本文附录“各类液位传感器检测原理和性能分析”。
GKY液位(水位)传感器可以在污水、清水和温度不高的热水中使用。
但在80、90度高温的热水中还是建议采用传统玻璃管液位计加装光电监控探头的方法比较好。
为什么选择GKY液位传感器?是因为GKY液位(水位)传感器是目前液位传感器市场上唯一一款敢于承诺三年内包换的液位传感器。
GKYX2A/1水泵控制箱采用直接启动方式,具有液位显示,供水排水选择,手动、自动控制双台泵,手动自动转换的功能。
其中,A为水泵功率等级。
直接启动一般用于功率较小的水泵,如小于22KW。
因为功率大的水泵,直接启动会对电网产生冲击波,影响周围的用电同时对电机也会造成伤害,影响水泵寿命。
所以功率较大的水泵可以通过软启方式或变频方式启动。
GKYX2A/1具体设计方案如下:1、GKYX2A/1控制箱一般配上限、下限2个GKY液位传感器,如果需要配更多,则在其后标注传感器数量就可以了。
如需要配4个传感器,则在其后增加标注“-4T”。
如果不标传感器数量则默认为2个传感器。
2、该控制箱具有排水或供水选择功能。
选择排水型则高液位启动,低液位停泵。
选择供水型则低液位启动,高液位停泵。
3、GKY液位传感器适用于污水、清水和70°C以下的热水。
如果要用于控制高温热水,则需采用传统玻璃管液位计加装光电监控探头的方式,在其后加标“-BLR”。
4、一用一备是指转换开关打在中间位置时,双台泵可以手动控制。
转换开关打在左边位置时,1号泵自动。
转换开关打在右边位置时,2号泵自动。
5、如果需要配通讯接口的仪表,则在其后加标传感器数量和“TR”。
比如,3个传感器加标“-3TR”,4个传感器加标“-4TR”等。
这类控制箱的仪表支持MODBUS通信协议,具有RS485接口。
西安祥天和电子科技有限公司详情咨询官网主营产品:液位传感器水泵控制箱报警器GKY仪表液位控制系统,液位控制器,无线传输收发器等液位控制电路图和原理液位控制系统的主要由以下三个部分组成:液位信号的采集液位信号的传输水泵控制系统1.液位信号的采集液位信号的采集主要是选择合适的液位传感器。
液位传感器的发展从最早的电极式、UQK/GSK传统浮子、到现在的压力式、光电式和GKY液位传感器等,形成了多种液位控制方式。
电极式便宜简单,但在水中会吸附杂质,使用寿命短。
传统浮子与相对滑动轨道之间只有1mm 左右的细缝,很容易被脏东西卡住,可靠性较低。
这些是不能在污水中使用的。
光电式也不能用于污水,因为玻璃反射面脏了就会出现误判断。
GKY液位传感器可以弥补这些缺陷,在污水和清水中可以使用。
所以液位控制的系统设计应该根据具体使用环境慎重选择传感器,如果选择不当,将会导致控制系统故障频发,甚至瘫痪,这是导致现有很多液位自动控制系统使用不到一年就失灵的重要原因。
不同液位传感器检测液位的原理是不同的,具体可参见百度文库中“如何选择液位传感器”“什么是液位开关液位开关原理”等文章。
2.液位信号的传输液位信号的传输可以有有线和无线两种方式。
有线就是通过普通电缆线或屏蔽线传输,大部分传统液位传感器通过普通的BV线就可以了,传输信号易受干扰的压力式、电容式传感器需要用屏蔽线传输而且距离不能太远。
在传输距离远或不方便铺设传输线路的场所,需要使用无线液位传输系统。
无线液位传输系统可以有多种方式:第一种是直接采用无线收发设备传输液位信号,如GKY-WX。
第二种是借助于通讯网络的短信收发功能将液位信号传达到目的地,如GKY-DXSF。
第三种是目前最流行一种传输方式,就是借助中间服务器平台,采用流量卡来传输液位信号,如GKY-GPRSSF。
无线液位传输系统具体可参见百度文库中“无线液位控制器”“无线传输液位控制有哪些方式?”等文章。
3.液位控制电路图和原理传统的控制方式就是传感器将液位信号传到电气控制箱,再由控制箱控制水泵的开关。
GKY2X是双台泵交替使用循环工作的设计方案,采用GKY液位传感器和仪表来控制两台水泵的手动、自动,具有液位显示、双台泵交替使用、应急时同时自动、水泵故障报警等功能。
现在的液位(水位)传感器种类很多,但使用寿命一般不超过三年,而且大部分不能于污水和热水。
详细分析可参见本文附录“各类液位传感器检测原理和性能分析”。
GKY液位(水位)传感器可以在污水、清水和温度不高的热水中使用。
但在80、90度高温的热水中还是建议采用传统玻璃管液位计加装光电监控探头的方法比较好。
为什么选择GKY液位传感器?是因为GKY液位(水位)传感器是目前液位传感器市场上唯一一款敢于承诺三年内包换的液位传感器。
GKY2X水泵控制箱采用直接启动方式,具有液位显示,供水排水选择,手动,自动控制双台泵交替使用,应急时同时启动的功能。
直接启动一般用于功率较小的水泵,如小于22KW。
因为功率大的水泵,直接启动会对电网产生冲击波,影响周围的用电同时对电机也会造成伤害,影响水泵寿命。
所以功率较大的水泵可以通过软启方式或变频方式启动。
GKY2X具体设计方案如下:1、GKY2X控制箱一般配上限、中间、下限3个GKY液位传感器,如果需要配更多,则在其后标注传感器数量就可以了。
如需要配4个传感器,则在其后增加标注“-4T”。
如果不标传感器数量则默认为3个传感器。
2、该控制箱具有排水或供水选择功能。
选择排水型则高液位启动,低液位停泵。
选择供水型则低液位启动,高液位停泵。
3、该控制箱具有水泵故障报警功能。
控制箱热继电器的常开触点接入GKY仪表,当水泵电流过大,触点吸合,仪表发出声光报警。
这时应断开电源,排除故障,再按下热继电器复位按钮即可。
4、GKY液位传感器适用于污水、清水和70°C以下的热水。
如果要用于控制高温热水,则需采用传统玻璃管液位计加装光电监控探头的方式,在其后加标“-BLR”。
5、双台泵交替使用是指这次自动启动一台泵,下次自动启动另一台泵,交替使用。
GKY 液位控制现在很多家庭使用简易水箱,用一个单相泵或电磁阀向水箱里供水或排水。
如何实现自动控制呢?下面介绍一种简单的控制方案(如果是电磁阀则直接将图中水泵换为电磁阀)。
该方案采用通用液位控制报警器(UGKY
),接线原理如下图:
UGKY 通用液位控制报警器外形尺寸长150宽90高70mm ,继电器触点负荷均为220V10A ,两组触电可以并联使用,直接控制一台单相泵或电磁阀。
UGKY 可以用于供水或排水,设置水满/缺水报警或不报警,使用灵活。
UGKY 采用的是GKY 液位传感器,使用寿命长,三年内包换。
西安祥天和电子商务有限公司专门从事液位控制的安装、维修服务二十多年,熟悉各类液位控制器的性能。
最早,我们使用传统的电极探头,价格很便宜,但用一段时间后,电极就会吸附很多杂质,寿命极短。
后来用UQK/GSK 干簧管,但水位波动,触点频繁吸合,使用寿命也短。
目前质量好一些的液位传感器可以用一年多,差的只能用几个月。
而现代微电子产品使用寿命可达十年以上,所以我们结合传统浮子和现代微电子技术研发了GKY 液位传感器,使用
西安祥天和电子商务有限公司
(原名:西安祥和电子科技有限公司)
详情请咨询网站:
寿命长,三年内包换。
GKY液位传感器也是目前唯一可以在污水中长期使用的传感器,欢迎登录本公司网站了解详情。
1电极式液位计控制水泵电路图
电极式是最早的液位控制方式,其控制原理很简单:因为水是导体,有水的时候两个电极间导电,交流接触器吸合。
图1.1为电极式在水中控制原理示意图。
但是电极在水中会分解而且会吸附很多杂质。
如果不及时清理,电极就会失去作用,这是电极式液位传感器固有的缺陷。
电极式液位传感器的制造非常简单,有人将导线外皮拨开,插到水里就可以做成电极式液位控制器。
所以电极式液位控制器造价很低,价格便宜,但使用寿命很短。
当然,如果采用不锈钢做电极,硬度较强,分解得就会慢一点。
如果表面再处理光滑一些,电镀一下,吸附的杂质就会少一些,使用寿命就会长一点。
电极式液位传感器只能用于清水中,而且是容易维修的场所,因为过几个月需要清理一下电极。
污水中电极
很快会被杂质包裹住,所以不能在污水中使用。
图1.2是电极式液位计控制水泵电路图。
因为自动控制水泵至少有上限、下限二个点,所以需2对电极。
供水时在下限电极无水时开泵,上限有水时关泵;排水时在上限电极有水时开泵,下线无水时关泵。
因为电极只在有水时接通,所以需要2个继电器触点倒换。
如果电极1为上限,电极2为下限时供水;如果电极2为上限,电极1为下限时排水。
注意该电路图直接使用22V 交流电,具有一定的安全隐患。
因为水中直接通220V 强电,人不能接触水面,否则有触电危险。
所以一般需将电压降低为24、12V 来使用,但原理图一样。
当然,如果直接采用GKY 通用液位控制器则控制电路就简单多了,如图1.3,二者成本差不多。
GKY 系列的液位控制仪表、控制器和报警器均可以接入电极探头,采用12V
电压,安全可靠,且具备多种功能。