人工智能系统之专家系统
- 格式:doc
- 大小:79.50 KB
- 文档页数:5
人工智能专家系统人工智能(Artificial Intelligence,简称AI)专家系统是一种基于计算机技术和人类专家经验的智能化系统。
它能够模拟和实现人类专家在特定领域的问题解决能力,可以用于辅助决策、问题诊断和解决方案推荐等方面。
本文将从专家系统的定义、原理、组成和应用等四个方面进行论述。
一、专家系统的定义专家系统是一种基于知识工程的人工智能系统,它通过模拟和利用领域专家的经验和知识来解决特定领域的问题。
专家系统主要由知识库、推理机和用户界面三部分组成。
知识库存储了经验和知识,推理机则对知识进行推理和运算,用户界面则提供了用户与系统进行交互的接口。
二、专家系统的原理专家系统的原理可以概括为知识获取、知识表示、知识推理和知识应用四个步骤。
知识获取是指将专家的经验和知识进行提取和整理,并存储到系统的知识库中;知识表示是指将知识以适当的形式进行表达和组织,以便系统能够理解和推理;知识推理是指根据系统中的知识,通过推理机对问题进行分析和推理;知识应用是指将推理得到的结果转化为实际解决方案,供用户使用。
三、专家系统的组成专家系统主要由知识库、推理机和用户界面三部分组成。
知识库是专家系统存储知识和经验的地方,常见的形式包括规则库、案例库和模型库等。
推理机是专家系统进行推理和运算的核心组件,它能够根据知识库中的知识进行逻辑推理和问题求解。
用户界面则提供了用户与系统进行交互的接口,使用户能够方便地向系统提供问题并获取解决方案。
四、专家系统的应用专家系统在各个领域都有广泛的应用。
在医疗领域,专家系统可以用于辅助疾病诊断和治疗方案选择;在金融领域,专家系统可以用于风险评估和投资决策;在工业领域,专家系统可以用于故障诊断和维修指导。
此外,专家系统还可以应用于法律、教育、交通等领域,为人们提供更加智能化和便捷化的服务。
综上所述,人工智能专家系统是一种基于计算机技术和人类专家经验的智能化系统。
它能够模拟和实现人类专家在特定领域的问题解决能力,具有广泛的应用前景。
人工智能的专家系统与规则推理专家系统与规则推理是人工智能领域中的两个重要概念,它们在解决复杂问题、进行推理和决策过程中发挥着重要作用。
本文将深入探讨专家系统和规则推理的定义、原理、应用以及未来发展方向。
一、专家系统的概念和原理专家系统是通过模拟人类专家的知识和经验,以解决特定问题为目标的计算机程序。
它由知识库、推理机和用户界面三个主要组成部分构成。
知识库包含了专家知识的各种表达形式,这些知识可以是规则、事实、概念、关系等。
推理机是专家系统的核心,其作用在于根据知识库中的规则和事实,进行推理和判断,并提供解决问题的答案。
用户界面则是用户与专家系统进行交互的桥梁,使用户能够输入问题并接收系统的回答。
专家系统的原理基于规则推理,即依据一系列前提条件推导出结论的思维过程。
规则推理是基于规则库中的规则进行的,规则库是知识库的一个重要组成部分。
规则库中的规则通常采用条件-结论形式来表示,它由一个前提和一个结论组成。
前提是一个或多个条件,表示问题的特征或状态;结论是根据前提条件推导出来的结论或行动。
推理机会根据用户提供的前提条件,在规则库中寻找匹配的规则,并根据规则中的结论向用户提供答案或行动建议。
二、专家系统的应用领域专家系统的应用领域非常广泛,涵盖了医疗、金融、工业、农业等多个领域。
以下是几个典型的应用案例。
1. 医疗诊断:专家系统可以根据患者提供的症状和疾病数据库,通过规则推理的方式诊断患者疾病,给出相应的治疗建议。
2. 金融风险评估:专家系统可以根据海量的金融数据和分析模型,通过规则推理的方式评估客户的信用风险,为银行提供贷款决策的建议。
3. 工业故障诊断:专家系统可以根据设备传感器数据和故障数据库,通过规则推理的方式判断设备是否存在故障,并提供相应的维修建议。
4. 农业植物识别:专家系统可以根据植物图像和植物数据库,通过规则推理的方式识别出植物的种类以及相应的养护方法。
三、规则推理的概念和原理规则推理是基于规则库中的规则进行的推理过程,它是专家系统中的核心方法之一。
专家系统的名词解释
专家系统是一种人工智能系统,通过学习和分析大量专家知识和经验,为非专家用户提供智能化的建议和决策支持。
专家系统通常由以下几个部分组成:
1. 专家知识库:存储了专家的经验和知识,包括领域知识、规则、方法、技能等。
2. 模型:对专家知识库进行建模,建立一个可以识别和提取知识的方法,以便系统能够从数据中学习。
3. 推理引擎:根据用户提供的问题或输入,通过模型对专家知识库进行推理,并生成相应的建议或决策。
4. 用户界面:提供一个友好的用户界面,让用户可以方便地获取和使用系统提供的建议和决策。
专家系统的应用非常广泛,例如医疗诊断、金融风险评估、工业过程控制、项目管理等。
在医疗领域,专家系统可以帮助医生为患者提供个性化的治疗方案,在金融领域,专家系统可以帮助银行家评估投资风险并提供合适的投资建议,在工业领域,专家系统可以帮助工程师制定优化的工艺方案。
虽然专家系统已经取得了很大的进展,但仍然存在一些挑战和限制,例如知识库的更新和维护、模型的可解释性和安全性等。
因此,未来专家系统的发展将更加注重智能化、自动化和可解释性,以提高系统的实用性和可靠性。
人工智能中的专家系统与推理机制在人工智能领域,专家系统和推理机制是两个重要的概念。
专家系统是一种模拟人类专家知识与推理能力的计算机系统,而推理机制则是专家系统实现知识推理和问题求解的核心机制。
本文将深入探讨人工智能中的专家系统与推理机制,并分析其在现实生活中的应用。
一、专家系统的概念与特点专家系统是一种基于人工智能技术构建的软件系统,旨在模拟人类专家的知识和推理能力,用于解决特定领域的问题。
其特点主要包括以下几点:1. 知识库:专家系统通过建立一个包含大量领域知识的专家知识库,其中包括实际专家的决策过程、经验和实践等。
这些知识以规则、事实、案例等形式存储。
2. 推理机制:专家系统利用专门的推理机制对知识库中的知识进行推理和解决问题。
推理机制是根据领域知识和逻辑规则,通过一系列的推理过程来实现对问题的求解。
3. 解释能力:专家系统不仅能够给出问题的答案,还可以解释其推理过程和结果。
这种解释功能使其在实际应用中更加可信和可靠。
4. 学习能力:专家系统可以通过学习和训练不断提升自身的解决问题能力。
例如,通过与领域专家的交互学习新的知识和经验。
二、推理机制的分类与应用推理机制是专家系统实现问题求解的核心机制,根据其实现方式和思想,可以分为经典推理机制和概率推理机制。
1. 经典推理机制:经典推理机制是基于逻辑推理和规则匹配的方法,主要包括前向推理、后向推理和混合推理。
前向推理从已知事实出发,根据规则逐步推导出结论;后向推理从目标结论出发,反向推导出需要的事实;混合推理结合前向和后向推理的特点,在求解过程中进行动态调整。
2. 概率推理机制:概率推理机制基于概率和统计理论,将不确定性引入问题求解过程中。
主要包括贝叶斯推理、马尔可夫链推理和模糊推理等。
概率推理机制更适用于处理信息不完备或存在不确定性的问题。
这些推理机制在各个领域中都有广泛应用。
例如,在医疗领域,专家系统可以根据患者的症状和病历数据,利用推理机制给出疾病的诊断和治疗建议;在金融领域,专家系统可以分析市场数据和投资策略,帮助投资者做出决策;在工业生产中,专家系统可以根据生产数据和经验知识,优化生产过程并提高效率。
读书报告院系计算机学院专业年级班级学生姓名学号报告题目专家系统完成时间2013 年12月1 绪论 (3)1.1 课题背景 (3)1.2 专家系统与人工智能的关系 (3)1.3 技术现状 (4)2 系统设计方案的研究 (4)2.1 系统的特点与优点 (4)2.1.1 专家系统的特点 (4)2.1.2 专家系统的优点 (4)2.2 专家系统的结构 (5)2.3 专家系统的类型 (6)3 专家系统的开发和工作过程 (7)3.1 开发过程 (7)3.1.1 开发步骤 (7)3.1.2 知识获取 (7)3.1.3 开发工具与环境 (7)3.2 工作过程 (7)4 专家系统的实际应用 (8)5 专家系统的现状和发展前景 (8)6 总结 (9)专家系统(11科技1班)摘要:专家系统,是一种模拟人类专家解决领域问题的计算机程序系统,它应用人工智能技术和计算机技术,根据某领域一个或多个专家提供的知识和经验,进行推理和判断,模拟人类专家的决策过程,以便解决那些需要人类专家处理的复杂问题。
关键词:专家系统;程序系统;人类专家;模拟Expert systemAbstract:Expert system,is a computer program system to simulate the humanexperts to solve the problems,the application of artificial intelligence technologyand computer technology,according to one or more experts in a field of knowledgeand experience,reasoning and judgment,simulate the decision process of humanexperts,in order to solve complex problems that require a human expert treatment.Keywords:Expert system;Program system;The human expert;Simulation1 绪论1.1 课题背景专家系统能为它的用户带来明显的经济效益。
人工智能的专家系统技术导言:人工智能(Artificial Intelligence,AI)是一门研究如何使计算机可以像人一样智能地执行任务的学科。
专家系统是其中一种应用广泛的人工智能技术,它模仿人类专家的知识和推理能力,通过计算机实现对复杂问题的解决和决策。
一、专家系统的概述专家系统是一种基于知识的计算机系统,能够模拟人类专家的决策过程,对特定领域的问题进行分析和解决。
它主要由知识库、推理机和用户界面组成。
专家系统的知识库是存储各种领域专家知识的地方,包括事实、规则、经验、案例等。
知识库使用特定的语言表示和存储知识,使得专家系统能够在特定领域中模拟专家的决策过程。
推理机是专家系统的核心,它通过使用专家系统的知识库和推理规则对问题进行推理和决策。
推理机根据用户输入的问题和已有的知识,进行搜索和匹配,产生一系列推理结果。
推理机还可以根据问题的特点,使用不同的推理方式,如正向推理、反向推理、混合推理等。
用户界面是专家系统与用户之间的桥梁,用户通过界面与专家系统交互,输入问题和获取答案。
用户界面可以是命令行界面、图形界面或自然语言界面等,使得用户能够方便地使用专家系统。
二、专家系统的组成1. 知识获取知识获取是专家系统开发的第一步,它通过采访领域专家、查阅文献、观察现场等方式,收集专家知识并转化为计算机可识别的形式。
知识获取的关键是提取和表示知识,需要选择适当的表示方法和知识表示语言。
2. 知识表示知识表示是将采集到的知识以适当的形式表示和存储,使得计算机可以理解和使用这些知识。
常用的知识表示方法有规则表示、语义网络表示、框架表示等。
规则表示是最常用的方法,将知识表示为一系列条件-动作规则,通过匹配规则,实现对问题的推理和决策。
3. 知识推理知识推理是专家系统的核心功能,它利用知识库和推理规则对问题进行推理和决策。
专家系统的推理机通常采用基于规则的推理方法,通过匹配规则和问题,产生推理结果。
推理过程可以是正向推理、反向推理或混合推理,根据问题的特点,选择合适的推理方式。
人工智能--专家系统(ES)专家系统是人工智能走向实际应用的一个成功典范,它是人工智能的一个发展分支,自1968年费根鲍姆等人研制成功第一个专家系统DENDEL以来,专家系统获得了飞速的发展,并且运用于医疗、军事、地质勘探、教学、化工等领域,产生了巨大的经济效益和社会效益。
现在,专家系统已成为人工智能领域中最活跃、最受重视的领域。
一、人工智能的简介人工智能(Artificial Intelligence) ,英文缩写为AI。
它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
人工智能的传说可以追溯到古埃及,但随着1941年以来电子计算机的发展,技术已最终可以创造出机器智能,“人工智能”(Artificial Intelligence)一词最初是在1956年Dartmouth学会上提出的,从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展,在它还不长的历史中,人工智能的发展比预想的要慢,但一直在前进,从40年前出现到现在,已经出现了许多AI程序,并且它们也影响到了其它技术的发展。
二、专家系统的概念与简单介绍专家系统(Expert System)是一种在特定领域内具有专家水平解决问题能力的程序系统。
它能够有效地运用专家多年积累的有效经验和专门知识,通过模拟专家的思维过程,解决需要专家才能解决的问题。
专家系统是人工智能中最重要的也是最活跃的一个应用领域,它实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。
20世纪60年代初,出现了运用逻辑学和模拟心理活动的一些通用问题求解程序,它们可以证明定理和进行逻辑推理。
但是这些通用方法无法解决大的实际问题,很难把实际问题改造成适合于计算机解决的形式,并且对于解题所需的巨大的搜索空间也难于处理。
专家系统名词解释
专家系统是一种人工智能系统,旨在模拟人类专家在特定领域
的知识和推理能力。
这种系统利用专家的知识来解决复杂的问题,
通常通过规则、推理和逻辑推断来进行决策和问题求解。
专家系统
通常包括知识库、推理引擎和用户接口三个主要部分。
知识库存储
了领域专家的知识和经验,推理引擎利用这些知识进行推理和决策,用户接口则使用户能够与系统进行交互并得到解决方案。
专家系统
被广泛应用于医疗诊断、工程设计、金融分析、客户服务等领域,
以辅助人类专家进行决策和问题解决。
专家系统的发展使得人们能
够利用计算机技术来处理复杂的知识和问题,为各种领域的专业人
士提供了强大的工具和支持。
随着人工智能技术的不断发展,专家
系统也在不断演进和完善,成为了现代智能化应用中的重要组成部分。
人工智能ai系统人工智能(AI)系统人工智能(AI)系统是一种具有智能思维能力的计算机系统,可以模拟人类的智能行为和决策过程。
随着科技的不断进步,人工智能系统在各个领域的应用越来越广泛,对社会和经济的发展产生了深远影响。
本文将探讨人工智能系统的定义、应用和未来发展趋势。
一、人工智能(AI)系统的定义和分类人工智能系统是一种能够解决问题和执行任务的计算机系统,其核心是模拟人类智能的行为和决策过程。
根据其功能和任务,可以将人工智能系统分为以下几类:1. 专家系统:这种系统基于专家的知识和经验,模拟专家在特定领域中的决策过程和解决问题能力。
专家系统主要用于辅助决策和解决复杂问题。
2. 机器学习系统:机器学习是人工智能的一个重要分支,其目标是通过从数据中学习和提取规律,使计算机系统能够主动适应新的情况和问题。
机器学习系统广泛应用于图像识别、语音识别和智能推荐等领域。
3. 自然语言处理系统:这种系统可以理解和处理人类的自然语言,实现人机之间的自然交互。
自然语言处理系统被广泛应用于机器翻译、语音助手和智能客服等领域。
4. 智能机器人系统:智能机器人系统结合了感知、决策和执行功能,可以模拟人类的智能行为和处理能力。
智能机器人系统广泛建立在机器学习和自然语言处理等技术基础上,逐渐应用于家庭、医疗和工业等领域。
二、人工智能(AI)系统的应用领域随着人工智能技术的日益成熟,人工智能系统在各个领域的应用也越来越广泛。
以下是人工智能系统的几个主要应用领域:1. 医疗健康:人工智能系统可以通过分析医学影像、诊断病情和辅助手术等方式,提升医疗诊断的准确性和效率,改善病人的治疗效果。
2. 交通运输:人工智能系统可以通过分析交通数据、优化路线和调度交通资源等方式,提升交通系统的效率和安全性,减少交通拥堵和事故发生。
3. 金融服务:人工智能系统可以通过分析金融数据、预测市场趋势和风险等方式,提供智能的投资建议和风险控制,优化金融服务的效果和效率。
人工智能与专家系统人工智能(Artificial Intelligence,)AI 是一门旨在模拟、延伸和扩展人类智能的学科,涉及机器学习、自然语言处理、计算机视觉、知识表示和推理等领域。
而专家系统(Expert System)则是人工智能的一个重要应用领域,它通过运用专家知识和推理技术,模拟人类专家的思维过程,解决具有专门知识领域的问题。
一、人工智能的发展与应用从最早的机器学习算法到如今的深度学习网络,人工智能技术已经取得了巨大的突破。
人工智能已广泛应用于自动驾驶、语音识别、图像识别、机器翻译等领域,成为当今科技发展的关键驱动力。
人工智能的快速发展使得专家系统在各个领域中有了更广泛的应用。
二、专家系统的基本原理与结构专家系统是一种模拟专家决策过程的计算机程序。
它由知识库、推理机和解释器三个主要部分组成。
知识库储存专家的知识和规则,推理机根据知识库中的知识和规则进行推理和决策,而解释器则负责解释推理结果并与用户进行交互。
三、专家系统在医疗领域的应用专家系统在医疗领域的应用十分广泛。
例如,利用专家系统可以帮助医生进行疾病诊断与治疗方案的选择,提高医疗效率和诊断准确性。
专家系统还可以用于监测患者的生理参数,实时预警并提供相应的治疗建议。
四、专家系统在金融领域的应用在金融领域,专家系统可以帮助投资人进行投资决策、风险评估和资产配置。
通过分析市场数据和行业动态,专家系统可以提供准确的投资建议,辅助投资人做出更明智的决策。
五、专家系统在工业制造中的应用专家系统在工业制造中的应用也非常广泛。
它可以通过分析生产数据和设备状态,实现智能化生产调度和故障预测。
借助专家系统,企业可以提高生产效率、降低生产成本,并实现工业制造的智能化转型。
六、专家系统的优势与挑战专家系统具有快速决策、高效率和可靠性等优势,可以有效提高工作效率和决策准确性。
然而,专家系统在知识获取、知识表示和知识更新等方面仍面临挑战。
由于领域知识的复杂性和不断变化,专家系统需要不断学习和更新知识,以保持其应用的准确性和可靠性。
人工智能之专家系统摘要:人工智能有许多备受关注的领域,如:自然语言理解,人工神经系统,专家系统。
专家系统是目前人工智能中最活跃最有成效的一个研究领域。
专家系统是一种基于知识的计算机知识系统,它从人类领域专家那里获取知识,并用来解决只有领域专家才能解决的困难问题。
因此可以这样定义专家系统:专家是一种具有特定领域内大量知识和经验的程序系统,它应用人工智能技术根据某个一个或多个人类专家提供的知识和经验进行推理和判断,模拟人类专家求解问题的思维过程,已解决该领域内的各种问题。
关键词:获取知识推理和判断解决问题1. 专家系统的类型解释型专家系统诊断型专家系统调试型专家系统维修型专家系统教育型专家系统预测型专家系统规划型专家系统设计型专家系统监测型专家系统控制型专家系统2. 专家系统的一般特点2.1 知识的汇集一个专家系统汇集了某个领域多位专家的经验和知识及他们协作解决重大问题的能力。
2.2启发性推理专家系统运用专家的经验和知识进行启发式推理,对问题作出判断和决策。
2.3 推理和解释的透明性用户无需了推理过程,就能从专家系统获得问题的结论,而且推理过程对用户是透明的。
2.4知识获取与更新专家系统能够不断的获取知识,增加新的知识,修改原有知识。
3 专家系统的结构专家系统的结构是指专家系统各组成部分的构造和组织形式。
3.1知识库知识库以某种存储结构存储领域专家的知识,例如,求解领域问题所需的操作与规则等。
为了建立知识库,首先要解决知识表示问题,即要确定知识表示的外部模式和内部模式。
3.2 全局数据库全局数据库亦称为“黑板”,它用于存储求解问题的初始数据和推理过程中得到的中间数据,以及最终的推理结论。
3.3 推理机根据全局数据库的当前内容,从知识库中选择匹配成功的可用规则,并通过执行可用规则来修改数据库中的内容,直至推理出问题的结论。
推理机包含如何从知识库中选择可用规则的策略和当有多个可用规则时如何消除规则冲突的策略。
天津财经大学
TIANJIN UNIVERSITY OF FINANCIAL
AND ECONOMY
论文题目人工智能系统之专家系统
学生姓名秦健应
学生学号201011148
所在班级计算机学科学与技术1002班
院系名称理工学院信息科学与技术系
总论
人工智能又称机器智能,是计算机科学中的一门边缘科学。
专家系统是人工智能中最重要的也是最活跃的一个应用领域,它实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。
专家系统是早期人工智能的一个重要分支,它可以看作是一类具有专门知识和经验的计算机智能程序系统,一般采用人工智能中的知识表示和知识推理技术来模拟通常由领域专家才能解决的复杂问题。
起源与发展
20世纪60年代初,出现了运用逻辑学和模拟心理活动的一些通用问题求解程序,它们可以证明定理和进行逻辑推理。
但是这些通用方法无法解决大的实际问题,很难把实际问题改造成适合于计算机解决的形式,并且对于解题所需的巨大的搜索空间也难于处理。
1965年,f.a.费根鲍姆等人在总结通用问题求解系统的成功与败经验的基础上,结合化学领域的专门知识,研制了世界上第一个专家系统dendral ,用其可以推断化学分子的结构。
20多年来,知识工程的研究,专家系统的理论和技术不断发展,应用渗透到几乎各个领域,开发了几千个的专家系统,其中不少在功能上已达到,甚至超过同领域中人类专家的水平,并在实际应用中产生了巨大的经济效益。
专家系统的发展已经历了3个阶段,正向第四代过渡和发展。
第一代专家系统(dendral、macsyma等)以高度专业化、求解专门问题的能力强为特点。
但在体系结构的完整性、可移植性等方面存在缺陷,求解问题的能力弱。
第二代专家系统(mycin、casnet、prospector、hearsay等)属单学科专业型、应用型系统,其体系结构较完整,移植性方面也有所改善,而且在系统的人机接口、解释机制、知识获取技术、不确定推理技术、增强专家系统的知识表示和推理方法的启发性、通用性等方面都有所改进。
第三代专家系统属多学科综合型系统,采用多种人工智能语言,综合采用各种知识表示方法和多种推理机制及控制策略,并开始运用各种知识工程语言、骨架系统及专家系统开发工具和环境来研制大型综合专家系统。
在总结前三代专家系统的设计方法和实现技术的基础上,已开始采用大型多专家协作系统、多种知识表示、综合知识库、自组织解题机制、多学科协同解题与并行推理、专家系统工具与环境、人工神经网络知识获取及学习机制等最新人工智能技术来实现具有多知识库、多主体的第四代专家系统。
构造与工作过程
专家系统通常由人机交互界面、知识库、推理机、解释器、综合数据库、知识获取等6个部分构成。
其中尤以知识库与推理机相互分离而别具特色。
专家系统的体系结构随专家系统的类型、功能和规模的不同,而有所差异。
为了使计算机能运用专家的领域知识,必须要采用一定的方式表示知识。
目前常用的知识表示方式有产生式规则、语义网络、框架、状态空间、逻辑模式、脚本、过程、面向对象等。
基于规则的产生式系统是目前实现知识运用最基本的方法。
产生式系统由综合数据库、知识库和推理机3个主要部分组成,综合数据库包含求解
〈前提〉,于是:
〈结果〉”问题的世界范围内的事实和断言。
知识库包含所有用“如果:
形式表达的知识规则。
推理机(又称规则解释器)的任务是运用控制策略找到可以应用的规则。
专家系统的基本结构如图所示,其中箭头方向为数据流动的方向。
专家系统结构图
专家系统的基本工作流程是,用户通过人机界面回答系统的提问,推理机将用户输入的信息与知识库中各个规则的条件进行匹配,并把被匹配规则的结论存放到综合数据库中。
最后,专家系统将得出最终结论呈现给用户。
领域专家或知识工程师通过专门的软件工具,或编程实现专家系统中知识的获取,不断地充实和完善知识库中的知识。
主要开发工具:Gensym G2, CLIPS,Prolog,Jess,MQL 4。
应用领域
最初的专家系统乃人工智能之一个应用,但由于其重要性及相关应用系统之迅速发展,它已是信息系统的一种特定类型。
由于在人类社会中,专家资源实相当稀少,有了专家系统,则可使此珍贵的专家知识获得普遍的应用。
近年来专家系统技术逐渐成熟,广泛应用在工程、科学、医药、军事、商业等方面,而且成果相当丰硕,甚至在某些应用领域,还超过人类专家的智能与判断。
其功能应用领域概括有:解释(Interpretation)-如测试肺部测试(如PUFF)。
预测(Prediction)-如预测可能由黑蛾所造成的玉米损失(如PLAN)。
诊断(Diagnosis)-如诊断血液中细菌的感染(MYCIN)。
又如诊断汽车柴油引擎故障原因之CATS系统。
故障排除(Fault Isolation)-如电话故障排除系统ACE。
除错(Debugging)-如侦查学生减法算术错误原因之BUGGY。
行程安排(Scheduling)-如制造与运输行称安排之专家系统ISA。
又如工作站(work shop)制造步骤安排系统。
分析(Analysis)-如分析油井储存量之专家系统DIPMETER及分析有机分子可能结构之DENDRAL系统。
它是最早的专家系统,也是最成功者之一。
维护(Maintenance)-如分析电话交换机故障原因之后,及能建议人类该如何维修之专家系统COMPASS。
架构设计(Configuration)-如设计VAX计算机架构之专家系统XCON以及设计新电梯架构之专家系统VT等。
除此之外,还有许多如教学、出错、监督等许多领域的专家系统,在此就不再做过多介绍。
预测趋势
现阶段国内外专家系统应用停留在相对狭义的以规则推理为基础的阶段,应用也更多针对的是实验室研究以及一些轻量级应用,远不能满足大型商业应用的需求,实现对实时智能推理以及大数据处理的需求。
专家系统的发展下一步的将以模型推理为主,以规则推理为辅,并切合商业应用需求,满足对实时以及大数据量处理的需求。
同时专家系统将朝更为专业化方向发展,针对具体方向性的需求提供针对性模型与产品,如基于因果有向图CDG的故障诊断模型,流程处理模型等。
计科1002
秦健应2010111148出师表
两汉:诸葛亮
先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。
然侍卫之臣不懈于内,忠志之士忘身于外者,盖追先帝之殊遇,欲报之于陛下也。
诚宜开张圣听,以光先帝遗德,恢弘志士之气,不宜妄自菲薄,引喻失义,以塞忠谏之路也。
宫中府中,俱为一体;陟罚臧否,不宜异同。
若有作奸犯科及为忠善者,宜付有司论其刑赏,以昭陛下平明之理;不宜偏私,使内外异法也。
侍中、侍郎郭攸之、费祎、董允等,此皆良实,志虑忠纯,是以先帝简拔以遗陛下:愚以为宫中之事,事无大小,悉以咨之,然后施行,必能裨补阙漏,有所广益。
将军向宠,性行淑均,晓畅军事,试用于昔日,先帝称之曰“能”,是以众议举宠为督:愚以为营中之事,悉以咨之,必能使行阵和睦,优劣得所。
亲贤臣,远小人,此先汉所以兴隆也;亲小人,远贤臣,此后汉所以倾颓也。
先帝在时,每与臣论此事,未尝不叹息痛恨于桓、灵也。
侍中、尚书、长史、参军,此悉贞良死节之臣,愿陛下亲之、信之,则汉室之隆,可计日而待也。
臣本布衣,躬耕于南阳,苟全性命于乱世,不求闻达于诸侯。
先帝不以臣卑鄙,猥自枉屈,三顾臣于草庐之中,咨臣以当世之事,由是感激,遂许先帝以驱驰。
后值倾覆,受任于败军之际,奉命于危难之间,尔来二十有一年矣。
先帝知臣谨慎,故临崩寄臣以大事也。
受命以来,夙夜忧叹,恐托付不效,以伤先帝之明;故五月渡泸,深入不毛。
今南方已定,兵甲已足,当奖率三军,北定中原,庶竭驽钝,攘除奸凶,兴复汉室,还于旧都。
此臣所以报先帝而忠陛下之职分也。
至于斟酌损益,进尽忠言,则攸之、祎、允之任也。
愿陛下托臣以讨贼兴复之效,不效,则治臣之罪,以告先帝之灵。
若无兴德之言,则责攸之、祎、允等之慢,以彰其咎;陛下亦宜自谋,以咨诹善道,察纳雅言,深追先帝遗诏。
臣不胜受恩感激。
今当远离,临表涕零,不知所言。