【试卷】高中数学必修3综合测试题及答案
- 格式:doc
- 大小:311.50 KB
- 文档页数:5
必修3综合测试用最小二乘法求线性回归方程系数公式:一、选择题:本题共有10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1、程序框图符号可用于( )A、输出a=10 B 、赋值a=10 C 、判断a=10 D 、输入a=102、将两个数a=8,b=17交换,使a=17,b=8,下面语句正确一组是 ( )3、右边程序输出的结果是 ( ) A .5 B . x +5 C .10 D .14、在下列各数中,最大的数是( ) A 、)9(85 B 、)6(210 C 、)4(1000 D 、)2(111115、为了在运行下面的程序之后得到输出16,键盘输入x 应该是( ) INPUT xIF x<0 THEN y=(x+1)*(x+1) ELSEy=(x-1)*(x-1) END IF PRINT y ENDA 、 3或-3B 、 -5C 、5或-3D 、 5或-56.工人月工资y (元)与劳动生产率x (千元)变化的回归方程x y 8050^+=,x =5 y =1 x =x +5 y =x PRINT y END下列判断正确的是 ( )①劳动生产率为1千元时,工资为130元 ②劳动生产率提高1千元时,月工资提高80元 ③劳动生产率提高1千元时,月工资提高130元 ④当月工资为210元时,劳动生产率2千元A .① ②B .① ② ④C .② ④D .① ② ③ ④7、200辆汽车经过某一雷达地区,时速频率分布直方图如右图所示,则时速超过70km/h 的汽车数量为( ) A 、2辆 B 、10辆 C 、20辆 D 、70辆8、如果数据n x x x ,,,21 的平均数是 x , 方差是2S ,则32,,32,3221+++n x x x 的平均数和 方差分别是 ( )A.x 与2SB.2 x +3 和2SC. 2 x +3 和 42SD. 2x +3 和 42S +12S +99、某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为(1);在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为(2)。
高中数学必修三答案【篇一:高一数学必修3测试题及答案】ass=txt>数学第一章测试题一.选择题1.下面的结论正确的是()a.一个程序的算法步骤是可逆的b、一个算法可以无止境地运算下去的 c、完成一件事情的算法有且只有一种 d、设计算法要本着简单方便的原则 2、早上从起床到出门需要洗脸刷牙(5 min)、刷水壶(2 min)、烧水(8 min)、泡面(3 min)、吃饭(10 min)、听广播(8 min)几个步骤、从下列选项中选最好的一种算法 ( )a、 s1 洗脸刷牙、s2刷水壶、s3 烧水、s4 泡面、s5 吃饭、s6 听广播 b、 s1刷水壶、s2烧水同时洗脸刷牙、s3泡面、s4吃饭、s5听广播 c、 s1刷水壶、s2烧水同时洗脸刷牙、s3泡面、s4吃饭同时听广播 d、 s1吃饭同时听广播、s2泡面、s3烧水同时洗脸刷牙、s4刷水壶 3.算法 s1 m=as2 若bm,则m=b s3 若cm,则m=c s4 若dm,则 m=ds5 输出m,则输出m表示 ( ) a.a,b,c,d中最大值b.a,b,c,d中最小值c.将a,b,c,d由小到大排序d.将a,b,c,d由大到小排序 4.右图输出的是a.2005 b.65 c.64d.635、下列给出的赋值语句中正确的是( )a. 5 = mb. x =-x (第4题)c. b=a=3d. x +y = 06、下列选项那个是正确的()a、input a;bb. input b=3 c. print y=2*x+1d. print 7、以下给出的各数中不可能是八进制数的是() a.123 b.10 110 c.4724 d.7 8578、如果右边程序执行后输出的结果是990,那么在程序until后面的“条件”应为() a.i 10 b. i 8 c. i =9 d.i9 9.读程序甲: i=1 乙:i=1000s=0 s=0 while i=1000 do s=s+i s=s+i i=i+l i=i一1 wend loop until i1 print s prints4*xend end对甲乙两程序和输出结果判断正确的是( )a.程序不同结果不同b.程序不同,结果相同c.程序相同结果不同d.程序相同,结果相同10.在上题条件下,假定能将甲、乙两程序“定格”在i=500,即能输出i=500 时一个值,则输出结果()a.甲大乙小 b.甲乙相同 c.甲小乙大 d.不能判断二.填空题.11、有如下程序框图(如右图所示),则该程序框图表示的算法的功能是第(第11题)( 第12题)12、上面是求解一元二次方程ax?bx?c?0(a?0)的流程图,根据题意填写:(1);(2);(3)。
新人教版高中数学必修3 全册同步测试题及解析答案篇一:高一数学必修3全册各章节课堂同步习题(详解答案)第一章算法初步1.1算法与程序框图1.1.1算法的概念班次姓名[自我认知]:1.下面的结论正确的是().A.一个程序的算法步骤是可逆的B. 一个算法可以无止境地运算下去的C.完成一件事情的算法有且只有一种D. 设计算法要本着简单方便的原则2.下面对算法描述正确的一项是(). A.算法只能用自然语言来描述B.算法只能用图形方式来表示C.同一问题可以有不同的算法D.同一问题的算法不同,结果必然不同3.下面哪个不是算法的特征()A.抽象性B.精确性C. 有穷性D.唯一性4.算法的有穷性是指()A.算法必须包含输出B.算法中每个操作步骤都是可执行的C.算法的步骤必须有限D.以上说法均不正确5.早上从起床到出门需要洗脸刷牙(5min)、刷水壶(2min)、烧水(8min)、泡面(3min)、吃饭(lOmin)、听广播(8min)几个步骤,从下列选项中选最好的一种算法()A.S1洗脸刷牙、S2 刷水壶、S3烧水、S4泡面、S5吃饭、S6听广播 B.S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭、S5听广播 C. S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭同时听广播D.S1吃饭同时听广播、S2泡面;S3烧水同时洗脸刷牙;S4刷水壶6.看下面的四段话,其中不是解决问题的算法是()A.从济南到北京旅游,先坐火车,再坐飞机抵达B.解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1C.方程x2?l?0有两个实根D.求1+2+3+4+5的值,先计算1+2=3,再计算3+3=6,6+4=10,10+5=15,最终结果为15 7.已知直角三角形两直角边长为a,b,求斜边长c的一个算法分下列三步:①计算c?a,b的值;③输出斜边长c的值,其中正确的顺序是()A.①②③B.②③①C.①③②D.②①③[课后练习]:8.若f?x?在区间?a,b?内单调,且f?a??f?b??O,则f?x?在区间?a,b?内()A.至多有一个根B.至少有一个根C.恰好有一个根D.不确定9.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99.求他的总分和平均成绩的一个算法为:第一步:取A=89 ,B=96 ,C=99;第二步:①;第三步:②;第四步:输出计算的结果.10.写出求1+2+3+4+5+6+7+100的一个算法.可运用公式l+2+3+?+n= 第一步①;第二步②;第三步输出计算的结果.11.写出Ix2x3x4x5x6的一个算法.12.写出按从小到大的顺序重新排列x,y,z三个数值的算法. n(n?l)直接计算.21.1. 2程序框图[自我认知]:1 •算法的三种基本结构是()A.顺序结构、条件结构、循环结构B.顺序结构、流程结构、循环结构C.顺序结构、分支结构、流程结构D .流程结构、循环结构、分支结构2 .程序框图中表示判断框的是()A.矩形框B.菱形框D.圆形框D.椭圆形框3.如图⑴、(2),它们都表示的是输出所有立方小于1000的正整数的程序框图,那么应分别补充的条件为()(1)33(2)3A.⑴n>1000 ? (2)n<1000 ?B.⑴n<1000 ?⑵n>1000 ?C.(Dn<1000?⑵n>1000 ?D. (l)n<1000 ?(2)n<1000?4.算法共有三种逻辑结构,即顺序逻辑结构,条件逻辑结构和循环逻辑结构,下列说法正确的是()A.—个算法只能含有一种逻辑结构B.一个算法最多可以包含两种逻辑结构C. 一个算法必须含有上述三种逻辑结构D.—个算法可以含有上述三种逻辑结构的任意组合[课后练习]:5.给出以下一个算法的程序框图(如下图所示),该程序框图的功能是()A.求输出a,b,c三数的最大数B.求输出a,b,c三数的最小数3333C.将a,b,c按从小到大排列D.将a,b,c按从大到小排列第5题图第6题图6.右边的程序框图(如上图所示),能判断任意输入的数x 的奇偶性:其中判断框内的条件是A.m?O?B.x?O ?C.x?l ?D.m?l?7.在算法的逻辑结构中,要求进行逻辑判断,并根据结果进行不同处理的是哪种结构()A.顺序结构B.条件结构和循环结构C.顺序结构和条件结构D.没有任何结构?x2?l(x?0)8.已知函数f?x???,设计一个求函数值的算法,并画出其程序框图(x?0)?2x?l1.1.2程序框图(第二课时)[课后练习]:班次姓名1 . 如图⑴的算法的功能是.输出结果i=,i+2=.2.如图⑵程序框图箭头a指向①处时,输出s=.箭头a指向②处时,输出s=.3.如图⑷所示程序的输出结果为s=132,则判断中应填A、i>10? B、i>ll? C、i<ll?D、i>12? 4.如图⑶程序框图箭头b指向①处时,输出s=.箭头b指向②处时, 输出S= _________5、如图⑸是为求1-1000的所有偶数的和而设计的一个程序空白框图,将空白处补上。
必修3综合模块测试(人教A 版必修3)卷 Ⅰ(选择题,共60分)一、选择题:本大题共12小题,在下列每小题给出的四个结论中有且只有一个是正确的,请把正确的结论填涂在答题卡上.每小题5分,共60分 1.下列给出的赋值语句中正确的是:( )A.x+3=y-2B.d=d+2C.0=xD.x-y=5 2.在算法的逻辑结构中,要求进行逻辑判断,并根据结果进行不同处理的是哪种结构 ( ) A.顺序结构 B.条件结构和循环结构 C.顺序结构和条件结构 D.没有任何结构 3. 将389化成四进位制数的末位是 A 、0 B 、1 C 、2 D 、34. 当3a =时,右边的程序段输出的结果是 A 、9 B 、3 C 、10 D 、65.下面程序框图的基本结构中,当型循环结构指的是A B C D6.右面框图表示计算1×3×5×7×…×99的算法 在空白框中应填入A .2i i =+B .21i i =-C .21i i =+D .1i i =+7. 一个单位有职工160人,其中有业务员104人,管理人员32人,后勤服务人员24人,要从中抽取一个容量为20的样本,用分层抽样的方法抽取样本,则在20人的样本中应抽取管理人员人数为 ( )A. 3B. 4C. 5D. 68.一个容量为20的样本数据,分组后组距为10,区间与频数分布如下:(]10,20,2; (]20,30,3; (]30,40,4; (]40,50,5;(]50,60,4; (]60,70,2. 则样本在(],50-∞上的频率为 ( )A.120 B. 14 C.12 D.7109.把红、蓝、黑、白4张纸牌随机分给甲、乙、丙、丁4个人,每人分得一张,事件“甲分得红牌”与事件“乙分得红牌”是( ) A. 对立事件B. 互斥但不对立事件C. 不可能事件D. 以上都不对10. 从区间()0,1内任取两个数,则这两个数的和小于56的概率是A 、35B 、45C 、1625D 、257211.如图,在正方形中撒一粒豆子,则豆子落在正方形内切圆内部的概率为A .4πB .44π-C .41π-D .4π12.同时上抛三枚硬币,落地后,三枚硬币图案两正一反的概率是A .34 B .14 C .38 D .12二、填空题(每小题4分,共16分)13. 某初级中学领导采用系统抽样方法,从该校预备年级全体800名学生中抽50名学生做 牙齿健康检查。
本册综合测试(提升)人教A 版2019选择性必修第三册一、单选题(每题只有一个选项为正确答案,每题5分,8题共40分)1.(2021·山东无棣·高二期中)已知随机变量()8,B p ξ~,且()2E ξ=,则()2D ξ=( ) A .3 B .6 C .12 D .24【答案】B【解析】随机变量ξ~B (8,p ),且E (ξ)=2, ∴E (ξ)=8p =2,解得p =2184=, ∴D (ξ)=8×14×(1﹣14)=32,∴D (2ξ)=4D (ξ)=4×32=6.故选:B .2.(2021·广西·富川瑶族自治县高级中学 )下列说法正确的是( ) A .线性回归方程y bx a =+对应的直线至少经过其样本数据点中的一个点 B .概率为0的事件一定不可能发生C .某高中为了解在校学生对参加某项社会实践活动的意向,拟采用分层抽样的方法从该校三个年级的学生中抽取一个容量为60的样本,已知该校高一、高二、高三年级学生之比为6∶5∶4,则应从高二年级中抽取20名学生D .从装有2个红球和2个黑球的口袋内任取2个球,“至少有一个黑球”与“至少有一个红球”是互斥而不对立的事件 【答案】C【解析】对于A :线性回归方程y bx a =+对应的直线不一定经过其样本数据点中的一个点,但是一定经过中心对称点(),x y ,故A 错误;对于B :概率为0的事件不一定是不可能事件,但是,不可能事件的概率一定是0,故B 错误;对于C :某高中为了解在校学生对参加某项社会实践活动的意向,拟采用分层抽样的方法从该校三个年级的学生中抽取一个容量为60的样本,已知该校高一、高二、高三年级学生之比为6∶5∶4,即6,5,4x x x 则:1560x =,解得4x =,应从高二年级中抽,5420⨯=名学生,故C 正确;对于D :从装有2个红球和2个黑球的口袋内任取2个球,“至少有一个黑球”即一红一黑,或两黑;与“至少有一个红球”即一黑一红或两红是即不互斥又不对立的事件,故D 错误. 故选:C .3.(2021·广东顺德德胜学校高二期中)用5种不同颜色给图中的A 、B 、C 、D 四个区域涂色,规定一个区域只涂一种颜色,相邻的区域颜色不同,共有( )种不同的涂色方案.A .180B .360C .64D .25【答案】A【解析】第一步涂A ,有5种涂法, 第二步涂B ,和A 不同色,有4种涂法, 第三步涂C ,和AB 不同色,有3种涂法, 第四步涂D ,和BC 不同色,有3种涂法,由分步乘法技术原理可知,一共有5433180⨯⨯⨯=种涂色方案, 故选:A.4.(2021·江苏省外国语学校高二期中)在12nx ⎫⎪⎭的展开式中,只有第5项的二项式系数最大,则展开式中5x 的系数为( ) A .7- B .358-C .358D .7【答案】D【解析】因为在12nx ⎫⎪⎭的展开式中,只有第5项的二项式系数最大,所以15,82nn +==所以812x ⎫⎪⎭的展开式的通项88218811,0,1,2,,822rrrr rr r T C x C x r +-+⎛⎫⎛⎫=-=-= ⎪ ⎪⎝⎭⎝⎭令852r+=,得2r所以展开式中5x 的系数为2281128=724C ⎛⎫-=⨯ ⎪⎝⎭故选:D5.(2021·江苏东海·高二期中)()()()349111x x x +++⋅⋅⋅++展开式中3x 的系数是( ) A .80 B .84 C .120 D .210【答案】D【解析】()()()349111x x x +++⋅⋅⋅++的展开式中3x 的系数为3333333433333343456784456789910210C C C C C C C C C C C C C C C ++++++++=++++==.故选:D .6.(2021·河北大名·高二期中)已知甲、乙两地一年中雨天占的比例分别为25%,20%,两地同时下雨的概率为0.12,则下列说法正确的是( ) A .甲地为雨天时,乙地也为雨天的概率为0.52 B .乙地为雨天时,甲地也为雨天的概率为0.60 C .甲地为雨天时,乙地不为雨天的概率为0.32 D .乙地不为雨天时,甲地也不为雨天的概率为0.60 【答案】B【解析】设一年中甲地下雨记为事件A ,乙地下雨记为事件B ,则两地同时下雨记为事件AB . 由题意可得:()()()()()0.25,0.20,0.12,0.75,0.80P A P B P AB P A P B =====. 如图示:()()()0.250.120.13,0.200.120.08,10.130.120.080.67P AB P BA P AB =-==-==---=对于A :()()()0.12|0.480.25P AB P B A P A ===,故A 错误;对于B :()()()0.12|0.600.20P AB P A B P B ===,故B 正确; 对于C :()()()0.13|0.5225P ABP B A P A ===,故C 错误;对于D :()()()0.67|0.83750.80P ABP A B P B ===,故D 错误; 故选:B7.(2021·江苏省邗江中学高二期中)已知甲盒中仅有1个球且为红球,乙盒中有3个红球和4个蓝球,从乙盒中随机抽取(1,2)i i =个球放入甲盒中.(a )放入i 个球后,甲盒中含有红球的个数记为(1,2)i i ξ=;(b )放入i 个球后,从甲盒中取1个球是红球的概率记为(1,2)i p i =.则( ) A .1212,()()p p E E ξξ>< B .1212,()()p p E E ξξ<> C .1212,()()p p E E ξξ>> D .1212,()()p p E E ξξ<<【答案】A【解析】放入一个球后:()1417P ξ==,()1327P ξ==,则()1431012777E ξ=⨯+⨯=; 放入两个球后:()24227C 21C 7P ξ===,()1134227C C 42C 7P ξ===,()23227C 13C 7P ξ===,则()2241131237777E ξ=⨯+⨯+⨯=;所以()()12E E ξξ<.放入一个球为红球且从甲盒中取1个球是红球的概率为:33177⨯=;放入一个球为蓝球且从甲盒中取1个球是红球的概率为:412727⨯=;所以1325777p =+=; 放入2个球为两蓝且从甲盒中取1个球是红球的概率为:()21212137321P ξ=⨯=⨯=;放入2个球为一红一蓝且从甲盒中取1个球是红球的概率为:()22428237321P ξ=⨯=⨯=; 放入2个球为两红且从甲盒中取1个球是红球的概率为:()21131177P ξ=⨯=⨯=;所以2281132121721p =++=. 所以12p p >.综上可知12p p >,()()12E E ξξ<. 故选:A.8.(2021·浙江·学军中学高二期中)设20292100129012101010(12)(1)(1)x b b x b x b x a a x a x a x x x +++++=+++++++,则9a =( )A .0B .104C .10104⋅D .10904⋅【答案】A【解析】解:由题意得,202101001210(12)()(1)x a a x a x a x x +=+++⋅⋅⋅++290129()b b x b x b x ++++⋅⋅⋅+,左边19x 的系数为1919202C ⨯,右边19x 的系数为91010a a +,所以191920910210C a a ⨯=+,左边20x 的系数为2020202C ⨯,右边20x 的系数为10a ,所以202020102C a ⨯=,所以90a =, 故选:A二、多选题(每题至少有2个选项为正确答案,每题5分,4题共20分) 9.(2021·福建省泉州第一中学高二期末)下列说法中,正确的命题是()A .两个随机变量的线性相关性越强,则相关系数r 的绝对值越接近于1B .(23)2()3E X E X +=+,(23)2()D X D X +=C .用不同的模型拟合同一组数据,则残差平方和越小的模型拟合的效果越好.D .已知随机变ξ服从正态分布()21,N δ,(3)0.6P ξ<=,则(13)0.1P ξ<<=【答案】ACD【解析】解:对于A 选项,两个随机变量的线性相关性越强,则相关系数r 的绝对值越接近于1,正确; 对于B 选项,(23)2()3E X E X +=+,(23)4()D X D X +=,故B 选项错误; 对于C 选项,残差平方和越小的模型拟效果越好,故C 选项正确; 对于D 选项,因为随机变ξ服从正态分布()21,N δ,所以(1)0.5P ξ>=,又因为(3)0.6P ξ<=,所以(13)0.1P ξ<<=,故D 选项正确. 故选:ACD10.(2021·福建省泉州第一中学高二期末)对任意实数x ,有9290129(32)(1)(1)(1)x a a x a x a x -=+-+-++-.则下列结论成立的是()A .902a =-B .2324a =C .91294a a a ++⋯+= D .9012392a a a a a -+-+-=-【答案】BD【解析】A.令1x =,得01a =,故A 错误;B. ()99290129(32)311(1)(1)(1)x x a a x a x a x ⎡⎤-=-+=+-+-++-⎣⎦,所以含()21x -项的系数22293324a C =⋅=,故B 正确;C.令2x =,则90129...4a a a a ++++=,所以912941a a a ++⋯+-=,故C 错误;D.令0x =,则901239...2a a a a a -+-+-=-,故D 正确.故选:BD11.(2021·广东阳江·高二期末)设某车间的A 类零件的质量m (单位:kg )服从正态分布()210,N σ,且()10.10.2P m >=.( )A .若从A 类零件随机选取2个,则这2个零件的质量都大于10kg 的概率为0.25B .若从A 类零件随机选取3个,则这3个零件的质量恰有1个小于9.9kg 的概率为0.4C .若从A 类零件随机选取100个,则零件质量在9.9kg ∼10.1kg 的个数的期望为60D .若从A 类零件随机选取100个,则零件质量在9.9kg ∼10.1kg 的个数的方差为24 【答案】ACD【解析】对于A ,A 类零件中大于10kg 的概率为()100.5P m >=, 所以2个零件质量都大于10kg 的概率为0.50.50.25⨯=,A 正确; 对于B ,A 类零件中小于9.9kg 的概率为()()9.910.10.2P m P m <=>=,所以3个零件的质量恰有1个小于9.9kg 的概率为()2130.210.20.384C ⨯⨯-=,B 错误; 对于C ,A 类零件中质量在9.9kg ~10.1kg 的概率为()1210.10.6P m ->=,零件质量在9.9kg ∼10.1kg 的个数(100,0.6)B ξ,所以零件质量在9.9kg ~10.1kg 个数期望为1000.660⨯=,C 正确;对于D ,由选项C 的信息知,零件质量在9.9kg ~10.1kg 个数的方差为1000.6(10.6)24⨯⨯-=,D 正确; 故选:ACD12.(2021·江苏镇江·高二期末)一个不透明的口袋内装有若干张大小、形状完全相同的红色和黄色卡片,现从口袋内随机抽取卡片,每次抽取一张,随机变量ξ表示抽到黄色卡片的张数,下列说法正确的有( ) A .若口袋内有3张红色卡片,6张黄色卡片,从袋中不放回地抽取卡片,则第一次抽到红色卡片且第二次抽到黄色卡片的概率为14B .口袋内有3张红色卡片,6张黄色卡片,从袋中有放回地抽取6次卡片,则随机变量26,3B ξ⎛⎫⎪⎝⎭,且8(21)3D ξ-=C .若随机变量(6,,)H M N ξ~,且()4E ξ=,则口袋内黄色卡片的张数是红色卡片张数的2倍D .随机变量(3,)B p ξ,()22,N ησ-,若(1)0.784P ξ≥=,(24)P p η<<=,则(0)0.1P η<=【答案】ACD【解析】对于A ,131344P =⨯=,正确;对于B ,1216(21)4()46333D D ξξ-==⨯⨯⨯=,错误;对于C ,有6()4ME N ξ==,则23M N =,所以黄卡是红卡数量的2倍,正确; 对于D ,有3(1)10.7840.216p -=-=,得0.4p =,所以12(0)0.12pP η-<==,正确; 故选:ACD .三、填空题(每题5分,4题共20分)13.(2021·安徽·定远县育才学校 )511x x ⎛⎫++ ⎪⎝⎭展开式中的常数项为___________.【答案】51【解析】511x x ⎛⎫++ ⎪⎝⎭展开式的通项公式为555215555511rmrr m r mr m r mr rr T C x C CxC C xx x -----+--⎛⎫⎛⎫=⋅+=⋅⋅=⋅⋅ ⎪⎪⎝⎭⎝⎭.当0,5m r ==时,常数项为1;当1,3m r ==时,得常数项为315220C C ⋅=,当2,1m r ==时,得常数项为125430C C ⋅=,所以展开式中的常数项为1203051++=.故答案为:51.14.(2021·福建龙岩·高二期末)若1002100012100(21)x a a x a x a x +=++++,则()1359923a a a a ++++-被8整除的余数为___________. 【答案】5【解析】在已知等式中,取1x =得1000121003a a a a ++++=,取1x =-得0121001a a a a -+-+=, 两式相减得100135992()31a a a a +++=-,即()100135992334a a a a ++++-=-,因为()50100503494814-=-=+-0501495010505050505088884rr C C C C C -=⋅+⋅++⋅++⋅+-0501495015050505088883rr C C C C -=⋅+⋅++⋅++⋅-05014950150505050888885,rr C C C C r N -=⋅+⋅++⋅++⋅-+∈因为0501495015050505088888r r C C C C -⋅+⋅++⋅++⋅-能被8整除,所以05014950150505050888885r r C C C C -⋅+⋅++⋅++⋅-+被8整除的余数为5,即()1359923a a a a ++++-被8整除的余数为5,故答案为:5.15.(2021·陕西安康 )中国古典乐器一般按“八音”分类,这是我国最早按乐器的制造材料来对乐器进行分类的方法,最早见于《周礼·春官·大师》.八音分为“金,石,土,革,丝,木,匏、竹”,其中“金,石、木,革”为打击乐器,“土,匏,竹”为吹奏乐器,“丝”为弹拨乐器.某同学安排了包括“土,匏、竹”在内的六种乐器的学习,每种乐器安排一节,连排六节,并要求“土”与“匏”相邻排课,但均不与“竹”相邻排课,则不同的排课方式有__________种. 【答案】1440【解析】先从剩余5种乐器中任选3种全排列,再将“土”“匏”捆绑与“竹”插入全排的4个空中,∴共有322542··1440A A A =种. 故答案为:144016.(2021·黑龙江·哈尔滨市第六中学校 )有下列四个命题:①在回归分析中,残差的平方和越小,模型的拟合效果越好;②在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适; ③若数据1x ,2x ,,n x 的平均数为1,则12x ,22x ,,2n x 的平均数为2;④对分类变量x 与y 的随机变量2K 的观测值k 来说,k 越小,判断“x 与y 有关系”的把握越大; 其中真命题的个数为___________. 【答案】3【解析】根据残差的意义知,残差的平方和越小,模型的拟合效果越好,所以①为真命题;由残差的意义知,残差点比较均匀地落在水平带状区域内,说明选用的模型比较合适,所以②为真命题;若数据12,,,n x x x ⋅⋅⋅的平均数为1,则122,2,,2n x x x ⋅⋅⋅的平均数也扩大原来的2倍,即平均数为2,所以③为真命题;对分类变量x 与y 的随机变量2K 的观测值k 来说,应该k 越大,判断x 与y 有关系的把握越大,所以④为假命题.故答案为:3.四、解答题(17题10分,其余每题12分,共70分)17.(2021·吉林·梅河口市第五中学 )为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提供更好的调查方法来估计该地区老年人,需要志愿帮助的老年人的比例?说明理由附:22()()()()()n ad bc K a b c d a c b d -=++++.【答案】(1)14%;(2)有99%的把握;(3)答案见解析.【解析】(1)调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中,需要帮助的老年人的比例的估算值为7014%500=; (2)22500(4027030160)9.96720030070430K ⨯⨯-⨯==⨯⨯⨯,由于9.967>6.635,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关;(3)由(2)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好.18.(2021·山东莱西·高二期末)某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,两次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为0.5、0.6、0.4,经过第二次烧制后,甲、乙、丙三件产品格概率依次为0.6、0.5、0.75. (1)求第一次烧制后恰有一件产品合格的概率;(2)经过前后两次烧制后,记合格工艺品的件数为ξ,求随机变量ξ的分布列及数学期望. 【答案】(1)0.38;(2)分布列见解析;数学期望值为:0.9. 【解析】(1)第一次烧制后恰有一件产品合格的概率为:()()()()()()0.510.610.410.50.610.410.510.60.40.38p =⨯-⨯-+-⨯⨯-+-⨯-⨯=.(2)经过前后两次烧制后,甲、乙、丙三件产品合格的概率分别为: 10.50.60.3p =⨯=,20.60.50.3p =⨯=,30.40.750.3p =⨯=.所以1230.3p p p ===,故随机变量ξ的可能取值为0,1,2,3,且(3,0.3)B ξ.故()()334310.310000P ξ==-=;()()213441C 0.310.310100P ξ=⋅-==; ()()223189C 0.310.321000P ξ=⋅-==;()3270.033100P ξ===. 所以随机变量ξ的分布列为故随机变量ξ的数学期望()3434411892701230.91000100010001000E ξ=⨯+⨯+⨯+⨯=. (或者利用二项分布的期望值公式直接得到: ()30.30.9E ξ=⨯=)19.(2021·河南 )某开发商拟开发新建一批商业用的门面房,开发商对有意在该地段购买门面房的购房人进行随机调查得到每套门面房的销售单价x (单位:百万元)和销售量y (单位:套)之间的一组数据,如下表所示:(1)试根据表中数据,建立y 关于x 的回归直线方程;(2)从反馈的信息看购房人对该门面房的心理价位在[]9,11(单位:百万元/套)内,已知该门面房的成本是a 百万元/套()311a ≤<,试探究每套门面房销售单价定为多少时,开发商才能获得最大的利润?(注:利润=销售收入-成本)附:线性回归方程ˆˆˆybx a =+的系数公式()()()ii12i1ˆni ni x x y y b x x ==--=-∑∑,ˆˆay bx =-. 【答案】(1)ˆ 1.625.8yx =-+;(2)见解析. 【解析】(1)()199.51010.511105x =⨯++++=,()1111110989.85y =⨯++++=,()()()()()()()5ii152i11 1.20.5 1.200.50.81 1.8ˆ 1.610.2500.251i i x x y y b x x ==---⨯+-⨯++⨯-+⨯-===-++++-∑∑,()ˆˆ9.8 1.61025.8ay bx =-=--⨯=, ∴y 关于x 的回归直线方程为ˆ 1.625.8yx =-+. (2)由已知得利润()()()21.625.8 1.625.8 1.625.8L x a x x a x a =--+=-++-,[]9,11x ∈,该二次函数图象的对称轴方程为129162ax =+. 因为3a ≥,所以1299162a+≥. 当12911162a+≥,即587511a ≤<.时,函数L 在区间[]9,11上单调递增, 所以当11x =时,L 取得最大值;当12911162a +<,即35875a ≤<.时,函数L 在区间1299,162a ⎡⎤+⎢⎥⎣⎦上单调递增, 在129,11162a ⎡⎤+⎢⎥⎣⎦号上单调递减,所以当129162a x =+时,L 取得最大值; 综上所述,当35875a ≤<.时,该门面房每套销售单价定为129162a ⎛⎫+ ⎪⎝⎭百万元时,开发商能获得最大利润; 当587511a ≤<.时,该门面房每套销售单价定为11百万元时,开发商能获得最大利润. 20.(2021·福建省泉州第一中学高二期末)某学校组织的“一带一路”知识竞赛,有A ,B 两类问题,规定每位参赛选手共需回答3道问题.现有两种方案供参赛选手任意选择.方案一:只选A 类问题:方案二:第一次A 类问题,以后按如下规则选题,若本次回答正确,则下一次选A 类问题,回答错误则下一次选B 类问题.A 类问题中的每个问题回答正确得50分,否则得0分:B 类问题中的每个问题回答正确得30分,否则得0分.已知小明能正确回答A 类问题的概率为13,能正确回答B 类问题的概率为23,且能正确回答问题的概率与回答次序无关.(1)求小明采用方案一答题,得分不低于100分的概率: (2)试问:小明选择何种方案参加比赛更加合理?并说明理由. 【答案】(1)727;(2)小明选择方案二参加比赛更加合理,理由见解析. 【解析】(1)小明采用方案一答题,得分不低于100分的情况为至少答对两道试题, 所以其概率为2323121733327P C ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭.(2)小明选择方案二参加比赛更加合理.理由如下: 若采用方案一,则其得分X 的可能为取值为0,50,100,150,()3280327P X ⎛⎫=== ⎪⎝⎭,()213211245033279P X C ⎛⎫==⨯== ⎪⎝⎭,()223126210033279P X C ⎛⎫==⨯== ⎪⎝⎭,()311150327P X ⎛⎫===⎪⎝⎭. 所以X 的概率分布列为所以X 的数学期望为()42120020050501001505099279E X ++=⨯+⨯+⨯==; 若采用方案二,则其得分Y 的可能为取值为0,30,50,80,100,150,所以()2112033327P Y ==⨯⨯=,()22221212430333333279P Y ==⨯⨯+⨯⨯==,()12125033327P Y ==⨯⨯=,()12222188033333327P Y ==⨯⨯+⨯⨯=,()112210033327P Y ==⨯⨯=, ()111115033327P Y ==⨯⨯=.所以Y 的概率分布列为所以Y 的数学期望为()122821145030508010015053.7272727272727E Y =⨯+⨯+⨯+⨯+⨯=≈, 因为()()E Y E X >,所以小明选择方案二参加比赛更加合理.21.(2021·湖北·华中师大一附中高二期末)学生考试中答对但得不了满分的原因多为答题不规范,具体表现为:解题结果正确,无明显推理错误,但语言不规范、缺少必要文字说明、卷面字迹不清、得分要点缺失等,记此类解答为“B 类解答”.为评估此类解答导致的失分情况,某市考试院做了项试验:从某次考试的数学试卷中随机抽取若干属于“B 类解答”的题目,扫描后由近千名数学老师集体评阅,统计发现,满分12分的题,阅卷老师所评分数及各分数所占比例如下表所示:某次数学考试试卷评阅采用“双评+仲裁”的方式,规则如下:两名老师独立评分,称为一评和二评,当两者所评分数之差的绝对值小于等于1分时,取两者平均分为该题得分;当两者所评分数之差的绝对值大于1分时,再由第三位老师评分,称之为仲裁,取仲裁分数和一、二评中与之接近的分数的平均分为该题得分;当一、二评分数和仲裁分数差值的绝对值相同时,取仲裁分数和前两评中较高的分数的平均分为该题得分.(假设本次考试阅卷老师对满分为12分的题目中的“B 类解答”所评分数及比例均如上表所示,比例视为概率,且一、二评与仲裁三位老师评分互不影响;考生最终所得到的实际分数按照上述规则所得分数计入,不做四舍五入处理).(1)本次数学考试中甲同学某题(满分12分)的解答属于“B 类解答”,求甲同学此题最终所得到的实际分数X 的分布列及数学期望()E X ;(2)本次数学考试有6个解答题,每题满分12分,同学乙6个题的解答均为“B 类解答”.①记乙同学6个题得分为()12345i x x x x x x <<<<的题目个数为i a ,516i i a ==∑,计算事件“233a a +=”的概率.②同学丙的前四题均为满分,第5题为“B 类解答”,第6题得6分.以乙、丙两位同学解答题总分均值为依据,谈谈你对“B 类解答”的认识. 【答案】(1)分布列见解析;期望为32132;(2)①516;②答案见解析. 【解析】(1)根据题意,随机变量X 的取值为9,9.5,10,10.5,11. 设一评、二评、仲裁所打的分数分别是x ,y ,z ,(9)(9,9)(9,11,9)(11,9,9)P X P x y P x y z P x y z ====+===+===11111324444432=⋅+⋅⋅⋅=, 11111(9.5)(9,10)(10,9)42424P X P x y P x y ====+===⋅+⋅=,()()()()()11010,10,10.510,1111,104P X P x y P X P x y P x y =========+==111115(11,9,10)(9,2444441611,10)P x y z P x y z +====⋅+=⋅⋅⋅=+==,(11)(11,11)(9,11,11)(11,9,11)P X P x y P x y z P x y z ====+===+===11111324444432=⋅+⋅⋅⋅=, 故X 的分布列为31153321()99.51010.5113244163232E X =⨯+⨯+⨯+⨯+⨯=. (2)①方法一事件“233a a +=”可分为20a =,33a =;21a =,32a =;22a =,31a =;23a =,30a =四种情况,其概率为()()()()232323230,31,22,13,0P a a P a a P a a P a a ==+==+==+==333333333211236646561111111154242424216C C C C C C ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.方法二记“9.5X =或10X =”为事件A ,6次实验中,事件A 发生的次数1~6,2Y B ⎛⎫⎪⎝⎭,“233a a +=”相当于事件A恰好发生3次,故概率为:()33323611532216P a a C ⎛⎫⎛⎫+=== ⎪ ⎪⎝⎭⎝⎭.②由题意可知:乙同学得分的均值为32119266()63232E X =⋅=,丙同学得分的均值为:321204941263232⨯++=. 显然,丙同学得分均值更高,所以“会而不对”和不会做一样都会丢分,在做题过程中要规范作答,尽量避免“B 类解答”的出现.22.(2021·江苏连云港·高二期末)某单位在“全民健身日”举行了一场趣味运动会,其中一个项目为投篮游戏.游戏的规则如下:每局游戏需投篮3次,若投中的次数多于未投中的次数,该局得3分,否则得1分.已知甲投篮的命中率为12,且每次投篮的结果相互独立. (1)求甲在一局游戏中投篮命中次数X 的分布列与期望;(2)若参与者连续玩()*2n n ∈N 局投篮游戏获得的分数的平均值大于2,即可获得一份大奖.现有n k =和1n k =+两种选择,要想获奖概率最大,甲应该如何选择?请说明理由.【答案】(1)分布列见解析,32;(2)甲选择1n k =+时,获奖的概率更大,理由见解析. 【解析】(1)由题意知1~3,2X B ⎛⎫ ⎪⎝⎭,则()303110C 28P X ⎛⎫==⨯= ⎪⎝⎭,()2131131228P X C ⎛⎫==⨯⨯= ⎪⎝⎭,()2231132C 228P X ⎛⎫==⨯⨯= ⎪⎝⎭,()33311328P X C ⎛⎫==⨯= ⎪⎝⎭,所以X 的分布列为()13322E X =⨯=. (2)由(1)可知在一局游戏中,甲得3分的概率为311882+=,得1分的概率为131882+=,若选择n k =,此时要能获得大奖,则需2k 次游戏的总得分大于4k ,设2k 局游戏中,得3分的局数为m ,则()324m k m k +->,即m k >. 易知1~2,2m B k ⎛⎫ ⎪⎝⎭,故此时获大奖的概率 ()11222122122211111CCC 22222k k k k kk k k kkkP P m k +-+-++⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=>=⨯⨯+⨯⨯++⨯ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()21222221CCC 2kk k k kkk++⎛⎫=+++⨯ ⎪⎝⎭()2012222211C C C C 22kk k k k kk⎛⎫=+++-⨯ ⎪⎝⎭()22211222kk k k C ⎛⎫=-⨯ ⎪⎝⎭221122kk k C ⎛⎫=- ⎪⎝⎭同理可以求出当1n k =+,获大奖的概率为122222C 1122k k k P +++⎛⎫=- ⎪⎝⎭因为()()()()()()()()()()2222112222222!C 4!!41214C 2122!C C 22212121!1!k k kk k k k k k k k k k k k k k k k k k +++++++====>++++++⎡⎤⎡⎤⎣⎦⎣⎦所以122222222k k k k k k C C +++>,则12P P <答:甲选择1n k =+时,获奖的概率更大.。
人教版高中数学必修3复习参考题及答案学习数学多做题能够让同学们能够更加的了解自己的知识掌握与运用情况,有的放矢的进行学习,下面是店铺分享给大家的高中数学必修3复习参考题及答案的资料,希望大家喜欢!高中数学必修3复习参考题及答案一一、书写。
(2分)要求:①蓝黑墨水钢笔书写。
②卷面整洁。
③字迹端正。
④大小适当。
二、填空。
(共32分)1、在下面括号里填上适当的单位。
小明身高126( ),体重35( )。
桌子高约8( ) 一头大象约重4( )数学课本厚约8( ) 飞机每小时行800( )2、80毫米=( )厘米 6分米=( )厘米 5米=( )分米7千米=( )米 4000米=( )千米 90厘米=( )分米3、在○里填上“>”、“<”或“=”。
(1)5时○250分 180分○3时 2分○160秒(2)6吨○600千克 4500千克○5吨 2吨○18000千克(3)17 ○ 18 49 ○ 79 311 ○ 3114、1里面有( )个 15 1里面有( )个 17 。
5、实验小学第一节课8:20上课,8:55下课,一节课历时( )分钟。
放学了,小明11:30离校,25分钟后到家,小明到家的时刻是( )。
6、在一个长45厘米,宽25厘米的长方形纸片上剪下一个最大的正方形,这个正方形的周长是( )厘米。
7、一块菜地的种了萝卜,剩下的种白菜,种白菜的地占整块菜地的( )。
8、在每个图中的适当部分涂上颜色表示它下面的分数。
9、用6、8、9 三个数字卡片可以摆出( )个不同的三位数,最大的是。
得分评分人三、选出正确答案填在( )里。
(共16分)1、一个三年级小朋友的体重大约是( )。
① 300千克② 30克③ 30千克2、两个正方形的周长( )。
① 一定相等② 可能相等③ 一定不相等3、在÷8 = 6…… 中,余数最大是( )。
① 7 ② 6 ③ 54、某书店第一天售出图书2044册,第二天上午售出985册,下午售出1960册,两天售出的图书大约共有( )册。
最新人教版高中数学必修三测试题及答案全套阶段质量检测(一)(A 卷 学业水平达标) (时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分) 1.下列给出的赋值语句正确的有( ) ①2=A ; ②x +y =2; ③A -B =-2; ④A =A *AA .0个B .1个C .2个D .3个解析:选B 对于①,赋值语句中“=”左右不能互换,即不能给常量赋值,左边必须为变量,右边必须是表达式,若改写为A =2就正确了;②赋值语句不能给一个表达式赋值,所以②是错误的,同理③也是错误的,这四种说法中只有④是正确的.2.计算机执行下面的程序段后,输出的结果是( )a =1b =3a =a +b b =a -bPRINT a ,bA .1 3B .4 1C .0 0D .6 0解析:选B 输出a =1+3=4,b =4-3=1. 3.把二进制数10 110 011(2)化为十进制数为( ) A .182 B .181 C .180D .179解析:选D 10 110 011(2)=1×27+0×26+1×25+1×24+0×23+0×22+1×21+1×20=128+32+16+2+1=179.4.下图是计算函数y =⎩⎪⎨⎪⎧-x , x ≤-1,0, -1<x ≤2x 2, x >2的值的程序框图,则在①、②和③处应分别填入的是( )A.y=-x,y=0,y=x2B.y=-x,y=x2,y=0C.y=0,y=x2,y=-xD.y=0,y=-x,y=x2解析:选B当x>-1不成立时,y=-x,故①处应填“y=-x”;当x>-1成立时,若x>2,则y=x2,即②处应填“y=x2”,否则y=0,即③处应填“y=0”.5.下面的程序运行后的输出结果为()A.17 B.19C.21 D.23解析:选C第一次循环,i=3,S=9,i=2;第二次循环,i=4,S=11,i=3;第三次循环,i=5,S=13,i=4;第四次循环,i=6,S=15,i=5;第五次循环,i=7,S=17,i=6;第六次循环,i=8,S=19,i=7;第七次循环,i=9,S=21,i=8.此时i=8,不满足i<8,故退出循环,输出S=21,结束.6.下面的程序运行后,输出的值是( )i =0DOi =i +1LOOP UNTIL 2^i >2 000 i =i -1PRINT i ENDA .8B .9C .10D .11解析:选C 由题意知,此程序为循环语句,当i =10时,210=1 024;当i =11时,211=2 048>2 000,输出结果为i =11-1=10.7.下列程序框图运行后,输出的结果最小是( )A .2 015B .2 014C .64D .63解析:选D 由题图知,若使n (n +1)2>2 015,n 最小为63.8.(全国甲卷)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n =2,依次输入的a 为2,2,5,则输出的s =( )A .7B .12C.17 D.34解析:选C第一次运算:s=0×2+2=2,k=1;第二次运算:s=2×2+2=6,k=2;第三次运算:s=6×2+5=17,k=3>2,结束循环,s=17.9.执行如图所示的程序框图,输出的结果为()A.55 B.89C.144 D.233解析:选B初始值:x=1,y=1,第1次循环:z=2,x=1,y=2;第2次循环:z=3,x=2,y =3;第3次循环:z=5,x=3,y=5;第4次循环:z=8,x=5,y=8;第5次循环:z=13,x=8,y =13;第6次循环:z=21,x=13,y=21;第7次循环:z=34,x=21,y=34;第8次循环:z=55,x =34,y=55;第9次循环:z=89,x=55,y=89;第10次循环时z=144,循环结束,输出y,故输出的结果为89.10.(四川高考)秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例.若输入n,x的值分别为3,2,则输出v的值为()A.9B.18C.20 D.35解析:选B由程序框图知,初始值:n=3,x=2,v=1,i=2,第一次循环:v=4,i=1;第二次循环:v=9,i=0;第三次循环:v=18,i=-1.结束循环,输出当前v的值18.故选B.二、填空题(本大题共4小题,每小题5分,共20分)11.459与357的最大公约数是________.解析:459=357×1+102,357=102×3+51,102=51×2,所以459与357的最大公约数为51. 答案:5112.对任意非零实数a ,b ,若a ⊗b 的运算原理如图所示,则log 28⊗⎝⎛⎭⎫12-2=________.解析:log 28<⎝⎛⎭⎫12-2,由题图,知log 28⊗⎝⎛⎭⎫12-2=3⊗4=4-13=1.答案:113.(山东高考)执行如图所示的程序框图,若输入的a ,b 的值分别为0和9,则输出的i 的值为________.解析:第1次循环:a =0+1=1,b =9-1=8,a <b ,此时i =2; 第2次循环:a =1+2=3,b =8-2=6,a <b ,此时i =3; 第3次循环:a =3+3=6,b =6-3=3,a >b ,输出i =3. 答案:314.(天津高考改编)阅读如图所示的程序框图,运行相应的程序,则输出S 的值为________.解析:S=4不满足S≥6,S=2S=2×4=8,n=1+1=2;n=2不满足n>3,S=8满足S≥6,则S=8-6=2,n=2+1=3;n=3不满足n>3,S=2不满足S≥6,则S=2S=2×2=4,n=3+1=4;n=4满足n>3,输出S=4.答案:4三、解答题(本大题共4小题,共50分.解答时应写出文字说明、证明过程或运算步骤.)15.(本小题满分12分)如图是求1+12+13+…+1100的算法的程序框图.(1)标号①②处应分别是什么?(2)根据框图用“当”型循环语句编写程序.解:(1)①k<101?(k<=100?)②S=S+1k. (2)程序如下:16.(本小题满分12分)以下是一个用基本算法语句编写的程序,根据程序画出其相应的程序框图.解:算法语句每一步骤对应于程序框图的步骤,其框图如下:17.(本小题满分12分)画出求12-22+32-42+…+992-1002的值的程序框图.解:程序框图如图所示:18.(本小题满分14分)已知某算法的程序框图如图所示,若将输出的(x,y)值依次记为(x1,y1),(x2,y2),…,(x n,y n).(1)若程序运行中输出的一个数组是(9,t),求t的值;(2)程序结束时,共输出(x,y)的组数为多少?(3)写出程序框图的程序语句.解:(1)由程序框图知:当x=1时,y=0;当x=3时,y=-2;当x=9时,y=-4,所以t=-4;(2)当n=1时,输出一对,当n=3时,又输出一对,…,当n=2 015时,输出最后一对,共输出(x,y)的组数为1 007;(3)程序框图的程序语句如下:(B卷能力素养提升)(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.算法的每一步都应该是确定的,能有效执行的,并且得到确定的结果,这是指算法的( ) A .有穷性 B .确定性 C .普遍性 D .不唯一性 答案:B2.已知函数y =⎩⎨⎧x ,x ≥0,x +1,x <0,输入自变量x 的值,输出对应的函数值.设计程序框图时,需用到的基本逻辑结构是( )A .顺序结构B .条件结构C .顺序结构、条件结构D .顺序结构、循环结构 答案:C3.用“辗转相除法”求得360和504的最大公约数是( ) A .72 B .36 C .24D .2520解析:选A 504=360×1+144,360=72×5+0,故最大公约数是72. 4.若十进制数26等于k 进制数32,则k 等于( ) A .4 B .5 C .6D .8解析:选D 由题意知,26=3×k 1+2,解得k =8.5.阅读下图所示的程序框图,运行相应的程序,输出的结果是( )A .3B .11C .38D .123解析:选B 根据框图可知第一步的运算为:a =1<10,满足条件,可以得到a =12+2=3,又因为a=3<10,满足条件,所以有a=32+2=11,因为a=11>10,不满足条件,输出结果a=11.6.对于下列算法:如果在运行时,输入2,那么输出的结果是()A.2,5 B.2,4C.2,3 D.2,9解析:选A本题主要考查条件语句的应用.输入a的值2,首先判断是否大于5,显然2不大于5,然后判断2与3的大小,显然2小于3,所以结果是b=5,因此结果应当输出2,5.7.根据下面的算法,可知输出的结果S为()第一步,i=1;第二步,判断i<10是否成立,若成立,则i=i+2,S=2i+3,重复第二步,否则执行下一步;第三步,输出S.A.19 B.21C.25 D.27解析:选C该算法的运行过程是:i=1,i=1<10成立,i=1+2=3,S=2×3+3=9,i=3<10成立,i=3+2=5,S=2×5+3=13,i=5<10成立,i=5+2=7,S=2×7+3=17,i=7<10成立,i=7+2=9,S=2×9+3=21,i=9<10成立,i=9+2=11,S=2×11+3=25,i=11<10不成立,输出S=25.8.按下列程序运行的结果是()A.10.5 B.11.5C.16 D.25解析:选D A=4.5,第一个条件结构中的条件不满足,则B=6-3=3,B=3+2=5;而第二个条件结构中的条件满足,则B=5×5=25,所以运行结果为25.9.如图是求x1,x2,…,x10的乘积S的程序框图,图中空白框中应填入的内容为()A.S=S*(n+1)B.S=S*x n+1C.S=S*nD.S=S*x n解析:选D由题意知,由于求乘积,故空白框中应填入S=S*x n.10.(全国卷Ⅱ)下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0 B.2C.4 D.14解析:选B a=14,b=18.第一次循环:14≠18且14<18,b=18-14=4;第二次循环:14≠4且14>4,a=14-4=10;第三次循环:10≠4且10>4,a=10-4=6;第四次循环:6≠4且6>4,a=6-4=2;第五次循环:2≠4且2<4,b=4-2=2;第六次循环:a=b=2,跳出循环,输出a=2,故选B.二、填空题(本大题共4小题,每小题5分,共20分)11.将二进制数110 101(2)化成十进制数,结果为________,再转为七进制数,结果为________.解析:110 101=1×25+1×24+0×23+1×22+0×21+1=32+16+0+4+0+1=53.110 101(2)=104(7).答案:53104(7)12.如图所示,程序框图(算法流程图)的输出结果是________.解析:第一次进入循环体有T =0+0,第二次有T =0+1,第三次有T =0+1+2,……,第n 次有T =0+1+2+…+n -1(n =1,2,3,…),令T =n (n -1)2>105,解得n>15,故n =16,k =15.答案:1513.输入8,下列程序执行后输出的结果是________.解析:∵输入的数据为8,t ≤4不成立, ∴c =0.2+0.1(8-3)=0.7. 答案:0.714.执行如图所示的程序框图,若输入n 的值为4,则输出s 的值为________.解析:第1次循环:s =1+(1-1)=1,i =1+1=2;第2次循环:s =1+(2-1)=2,i =2+1=3;第3次循环:s =2+(3-1)=4,i =3+1=4;第4次循环:s =4+(4-1)=7,i =4+1=5.循环终止,输出s 的值为7.答案:7三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤) 15.(本小题满分12分)阅读下列两个程序,回答问题. ①x =3 y =4 x =y PRINT x ,y END(1)上述两个程序的运行结果是:①________________;②_____________________________________________. (2)上述两个程序中的第三行有什么区别? 解:(1)两个程序的运行结果是①4 4;②3 3;(2)程序①中的x =y 是将y 的值4赋给x ,赋值后,x 的值变为4,程序②中的y =x 是将x 的值3赋给y ,赋值后y 的值变为3.16.(本小题满分12分)用秦九韶算法求多项式f (x )=7x 7+6x 6+5x 5+4x 4+3x 3+2x 2+x ,当x =3时的值.解:f (x )=((((((7x +6)x +5)x +4)x +3)x +2)x +1)x , v 0=7,v 1=7×3+6=27, v 2=27×3+5=86, v 3=86×3+4=262, v 4=262×3+3=789, v 5=789×3+2=2 369, v 6=2 369×3+1=7 108, v 7=7 108×3+0=21 324, ∴f (3)=21 324.17.(本小题满分12分)在音乐唱片超市里,每张唱片售价25元,顾客购买5张(含5张)以上但不足10张唱片,则按九折收费,顾客购买10张以上(含10张)唱片,则按八五折收费,编写程序,输入顾客购买唱片的数量a ,输出顾客要缴纳的金额C .并画出程序框图.②x =3 y =4 y =x PRINT x ,yEND解:由题意得C =⎩⎪⎨⎪⎧25a ,a <5,22.5a ,5≤a <10,21.25a ,a ≥10.程序框图,如图所示:程序如下:18.(本小题满分14分)设计一个算法,求f(x)=x 6+x 5+x 4+x 3+x 2+x +1,当x =2时的函数值,要求画出程序框图,并写出程序.解:则程序框图为:程序为:S =0i =0WHILE i ≤6S =S +2^i i =i +1WEND PRINT S END阶段质量检测(二)(A 卷 学业水平达标) (时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.某学校为了调查高一年级的200名学生完成课后作业所需时间,采取了两种抽样调查的方式:第一种由学生会的同学随机抽取20名同学进行抽查;第二种由教务处对该年级的学生进行编号,从001到200,抽取学号最后一位为2的同学进行调查.则这两种抽样的方法依次是( )A .分层抽样,简单随机抽样B .简单随机抽样,分层抽样C .分层抽样,系统抽样D .简单随机抽样,系统抽样解析:选D 由抽样方法的概念知选D.2.将某班的60名学生编号为01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是( )A .09,14,19,24B .16,28,40,52C .10,16,22,28D .08,12,16,20解析:选B 分成5组,每组12名学生,按等间距12抽取.选项B 正确.3.某学校有教师200人,男学生1 200人,女学生1 000人.现用分层抽样的方法从全体师生中抽取一个容量为n 的样本,若女学生一共抽取了80人,则n 的值为( )A .193B .192C .191D .190解析:选B 1 000×n200+1 200+1 000=80,求得n =192.4.某商品的销售量y (件)与销售价格x (元/件)存在线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y ^=-10x +200,则下列结论正确的是( )A .y 与x 具有正的线性相关关系B .若r 表示变量y 与x 之间的线性相关系数,则r =-10C .当销售价格为10元时,销售量为100件D .当销售价格为10元时,销售量在100件左右解析:选D y 与x 具有负的线性相关关系,所以A 项错误;当销售价格为10元时,销售量在100件左右,因此C 错误,D 正确;B 项中-10是回归直线方程的斜率.5.设有两组数据x 1,x 2,…,x n 与y 1,y 2,…,y n ,它们的平均数分别是x 和y ,则新的一组数据2x 1-3y 1+1,2x 2-3y 2+1,…,2x n -3y n +1的平均数是( )A .2x -3yB .2x -3y +1C .4x -9yD .4x -9y +1解析:选B 设z i =2x i -3y i +1(i =1,2,…,n ),则z =1n (z 1+z 2+…+z n )=2n (x 1+x 2+…+x n )-3n (y 1+y 2+…+y n )+⎝ ⎛⎭⎪⎫1+1+…+1n =2x -3y +1.6.某学习小组在一次数学测验中,得100分的有1人,得95分的有1人,得90分的有2人,得85分的有4人,得80分和75分的各有1人,则该小组数学成绩的平均数、众数、中位数分别是( )A .85,85,85B .87,85,86C .87,85,85D .87,85,90解析:选C ∵得85分的人数最多为4人,∴众数为85,中位数为85,平均数为110(100+95+90×2+85×4+80+75)=87.7.某出租汽车公司为了了解本公司司机的交通违章情况,随机调查了50名司机,得的他们某月交通违章次数的数据制成了如图所示的统计图,根据此统计图可得这50名出租车司机该月平均违章的次数为( )A .1B .1.8C .2.4D .3解析:选B5×0+20×1+10×2+10×3+5×450=1.8.8.下表是某厂1~4月份用水量情况(单位:百吨)的一组数据:用水量y 与月份x 之间具有线性相关关系,其线性回归方程为y =-0.7x +a ,则a 的值为( ) A .5.25 B .5 C .2.5D .3.5解析:选A 线性回归方程经过样本的中心点,根据数据可得样本中心点为(2.5,3.5),所以a =5.25. 9.在元旦晚会举办的挑战主持人大赛上,七位评委为某选手打出的分数的茎叶统计图如图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A.84,4.84 B .84,1.6 C .85,1.6D .85,4解析:选C 去掉一个最高分93,去掉一个最低分79,平均数为15×(84+84+86+84+87)=85,方差为15[(85-84)2+(85-84)2+(85-86)2+(85-84)2+(85-87)2]=1.6.10.图甲是某县参加2017年高考学生的身高条形统计图,从左到右各条形表示的学生人数依次记为A 1,A 2,…,A 10{如A 2表示身高(单位:cm)在[150,155)内的学生人数},图乙是统计图甲中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180 cm(含160 cm ,不含180 cm)的学生人数,那么在流程图中的判断框内应填写的条件是( )A .i <6?B .i <7?C .i <8?D .i <9?解析:选C 由图甲可知身高在160~180 cm 的学生都在A 4~A 7内,∴i <8. 二、填空题(本大题共4小题,每小题5分,共20分)11.甲、乙两套设备生产的同类型产品共4 800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为____件.解析:设乙设备生产的产品总数为x 件, 则4 800-x 50=x80-50,解得x =1 800,故乙设备生产的产品总数为1 800件. 答案:1 80012.一个容量为40的样本数据分组后组数与频数如下:[25,25.3),6;[25.3,25.6),4;[25.6,25.9),10;[25.9,26.2),8;[26.2,26.5),8;[26.5,26.8),4,则样本在[25,25.9)上的频率为________.解析:[25,25.9)包括[25,25.3),6;[25.3,25.6),4;[25.6,25.9),10;频数之和为20,频率为2040=12.答案:1213.要考察某种品牌的500颗种子的发芽率,抽取60粒进行实验,利用随机数表法抽取种子时,先将500颗种子按001,002,…,500进行编号,如果从随机数表第7行第8列的数3开始向右读,请你依次写出最先检测的5颗种子的编号:____________________,_______,_______,_______,_______. (下面摘取了随机数表第7行至第9行) 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54解析:选出的三位数分别为331,572,455,068,877,047,447,…,其中572,877均大于500,将其去掉,剩下的前5个编号为331,455,068,047,447.答案:331 455 068 047 44714.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如下图).由图中数据可知a =________.若要从身高在[120,130),[130,140),[140,150]三组的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]的学生中选取的人数应为________.解析:∵0.005×10+0.035×10+a ×10+0.020×10+0.010×10=1, ∴a =0.030.设身高在[120,130),[130,140),[140,150]三组的学生分别有x ,y ,z 人,则x100=0.030×10,解得x =30.同理,y =20,z =10.故从[140,150]的学生中选取的人数为1030+20+10×18=3.答案:0.030 3三、解答题(本大题共4题,共50分.解答时应写出文字说明、证明过程或演算步骤.)15.(本小题满分12分)某化肥厂有甲、乙两个车间包装肥料,在自动包装传送带上每隔30分钟抽取一包产品,称其重量(单位:kg),分别记录抽查数据如下:甲:102,101,99,98,103,98,99; 乙:110,115,90,85,75,115,110. (1)这种抽样方法是哪一种方法?(2)试计算甲、乙车间产品重量的平均数与方差,并说明哪个车间产品较稳定? 解:(1)甲、乙两组数据间隔相同,所以采用的方法是系统抽样法. (2)x 甲=17(102+101+99+98+103+98+99)=100, x乙=17(110+115+90+85+75+115+110)=100, s 2甲=17(4+1+1+4+9+4+1)≈3.43, s 2乙=17(100+225+100+225+625+225+100)=228.57, ∴s 2甲<s 2乙,故甲车间产品比较稳定. 16.(本小题满分12分)对某校高一年级学生参加社区服务次数进行统计,随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数.根据此数据作出频数与频率的统计表和频率分布直方图如下:(1)求出表中M ,p 及图中a 的值;(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[10,15)的人数. 解:由分组[10,15)的频数是10,频率是0.25, 知10M =0.25,所以M =40.因为频数之和为40,所以10+25+m +2=40,解得m =3.故p =3M =340=0.075.因为a 是对应分组[15,20)的频率与组距的商, 所以a =2540×5=0.125.(2)因为该校高一学生有360人,分组[10,15)的频率是0.25,所以估计该校高一学生参加社区服务的次数在此区间内的人数为360×0.25=90.17.(本小题满分12分)某地最近十年粮食需求量逐年上升,下表是部分统计数据:(1)利用所给数据求年需求量与年份之间的回归直线方程y =b x +a ; (2)利用(1)中所求出的直线方程预测该地2016年的粮食需求量.解:(1)由所给数据看出,年需求量与年份之间是近似直线上升的.对数据预处理如下:对预处理后的数据,容易算得x =0,y =3.2,b ^=(-4)×(-21)+(-2)×(-11)+2×19+4×2942+22+22+42=26040=6.5. a ^=y -b ^x =3.2.由上述计算结果知所求回归直线方程为 y ^-257=b ^(x -2 010)+a ^=6.5(x -2 010)+3.2. 即y ^=6.5(x -2 010)+260.2.①(2)利用直线方程①,可预测2016年的粮食需求量为 6.5×(2 016-2 010)+260.2 =6.5×6+260.2 =299.2(万吨).18.(本小题满分14分)(四川高考)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨).将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a 的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由; (3)估计居民月均用水量的中位数.解:(1)由频率分布直方图可知,月均用水量在[0,0.5)内的频率为0.08×0.5=0.04,同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5]内的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1-(0.04+0.08+0.21+0.25+0.06+0.04+0.02)=2a ×0.5, 解得a =0.30.(2)由(1)知,该市100位居民中月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300 000×0.12=36 000. (3)设中位数为x 吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5,而前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5,所以2≤x<2.5.由0.50×(x-2)=0.5-0.48,解得x=2.04.故可估计居民月均用水量的中位数为2.04吨.(B卷能力素养提升)(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.我校在检查学生作业时,抽出每班学号尾数为5的学生作业进行检查,这里运用的是() A.分层抽样B.抽签抽样C.随机抽样D.系统抽样答案:D2.下列各选项中的两个变量具有相关关系的是()A.长方体的体积与边长B.大气压强与水的沸点C.人们着装越鲜艳,经济越景气D.球的半径与表面积解析:选C A、B、D均为函数关系,C是相关关系.3.为了调查全国人口的寿命,抽查了十一个省(市)的2 500名城镇居民.这2 500名城镇居民的寿命的全体是()A.总体B.个体C.样本D.样本容量答案:C4.已知总体容量为106,若用随机数表法抽取一个容量为10的样本.下面对总体的编号最方便的是()A.1,2,…,106 B.0,1,2,…,105C.00,01,…,105 D.000,001,…,105解析:选D由随机数抽取原则可知选D.5.有一个容量为200的样本,其频率分布直方图如图所示.根据样本的频率分布直方图估计,样本数据落在区间[10,12)内的频数为()A .18B .36C .54D .72解析:选B 易得样本数据在区间[10,12)内的频率为0.18,则样本数据在区间[10,12)内的频数为36. 6.对一组数据x i (i =1,2,3,…,n ),如果将它们改变为x i +c (i =1,2,3,…,n ),其中c ≠0,则下面结论中正确的是( )A .平均数与方差均不变B .平均数变了,而方差保持不变C .平均数不变,而方差变了D .平均数与方差均发生了变化解析:选B 设原来数据的平均数为x -,将它们改变为x i +c 后平均数为x ′,则x ′=x -+c ,而方差s ′2=1n[(x 1+c -x --c )2+…+(x n +c -x --c )2]=s 2.7.某中学高三从甲、乙两个班中各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生成绩的众数是85,乙班学生成绩的中位数是83,则x +y 的值为( )A .7B .8C .9D .10解析:选B 甲班学生成绩的众数为85,结合茎叶图可知x =5;又因为乙班学生成绩的中位数是83,所以y =3,即x +y =5+3=8.8.相关变量x ,y 的样本数据如下表:经回归分析可得y 与x 线性相关,并由最小二乘法求得回归直线方程为y ^=1.1x +a ,则a =( ) A .0.1 B .0.2 C .0.3D .0.4 解析:选C ∵回归直线经过样本点的中心(x ,y ),且由题意得(x ,y )=(3,3.6),∴3.6=1.1×3+a ,∴a =0.3.9.甲、乙两支女子曲棍球队在去年的国际联赛中,甲队平均每场进球数是3.2,全年进球数的标准差为3;乙队平均每场进球数是1.8,全年进球数的标准差为0.3.下列说法中,正确的个数为( )①甲队的技术比乙队好;②乙队发挥比甲队稳定;③乙队几乎每场都进球;④甲队的表现时好时坏.A.1个B.2个C.3个D.4个解析:选D因为甲队的平均进球数比乙队多,所以甲队技术较好,①正确;乙队的标准差比甲队小,标准差越小越稳定,所以乙队发挥稳定,①也正确;乙队平均每场进球数为1.8,所以乙队几乎每场都进球,①正确;由于s甲=3,s乙=0.3,所以甲队与乙队相比,不稳定,所以甲队的表现时好时坏,①正确.10.已知数据:①18,32,-6,14,8,12;②21,4,7,14,-3,11;③5,4,6,5,7,3;④-1,3,1,0,0,-3.各组数据中平均数和中位数相等的是()A.①B.②C.③D.①②③④解析:选D运用计算公式x=1n(x1+x2+…+x n),可知四组数据的平均数分别为13,9,5,0.根据中位数的定义:把每组数据从小到大排列,取中间一位数(或两位的平均数)即为该组数据的中位数,可知四组数据的中位数分别为13,9,5,0.故每组数据的平均数和中位数均对应相等.二、填空题(本大题共4小题,每小题5分,共20分)11.某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为________.解析:由分层抽样得,此样本中男生人数为560×280560+420=160.答案:16012.(山东高考)下图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5].样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5 ℃的城市个数为11,则样本中平均气温不低于25.5 ℃的城市个数为________.解析:设样本容量为n,则n×(0.1+0.12)×1=11,所以n=50,故所求的城市数为50×0.18=9.答案:913.(江苏高考)抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:解析:对于甲,平均成绩为x -=90,所以方差为s 2=15×[(87-90)2+(91-90)2+(90-90)2+(89-90)2+(93-90)2]=4,对于乙,平均成绩为x -=90,方差为s 2=15×[(89-90)2+(90-90)2+(91-90)2+(88-90)2+(92-90)2]=2.由于2<4,所以乙的平均成绩较为稳定.答案:214.某班12位学生父母年龄的茎叶图如图所示,则12位同学母亲的年龄的中位数是________,父亲的平均年龄比母亲的平均年龄多________岁.解析:由41+432=42,得中位数是42.母亲平均年龄=42.5, 父亲平均年龄为45.5,因而父亲平均年龄比母亲平均年龄多3岁. 答案:42 3三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤) 15.(本小题满分12分)某花木公司为了调查某种树苗的生长情况,抽取了一个容量为100的样本,测得树苗的高度(cm)数据的分组及相应频数如下:[107,109)3株;[109,111)9株;[111,113)13株; [113,115)16株;[115,117)26株;[117,119)20株; [119,121)7株;[121,123)4株;[123,125]2株. (1)列出频率分布表; (2)画出频率分布直方图;(3)据上述图表,估计数据在[109,121)范围内的可能性是百分之几? 解:(2)频率分布直方图如下:(3)由上述图表可知数据落在[109,121)范围内的频率为:0.94-0.03=0.91,即数据落在[109,121)范围内的可能性是91%.16.(本小题满分12分)甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:甲 82 81 79 78 95 88 93 84 乙 92 95 80 75 83 80 90 85 (1)用茎叶图表示这两组数据;(2)现要从中选派一人参加数学竞赛,从统计学的角度(在平均数、方差或标准差中选两个)考虑,你认为选派哪位学生参加合适?请说明理由?解:(1)作出茎叶图如下:(2)x 甲=18(78+79+81+82+84+88+93+95)=85,x 乙=18(75+80+80+83+85+90+92+95)=85.s 2甲=18[(78-85)2+(79-85)2+(81-85)2+(82-85)2+(84-85)2+(88-85)2+(93-85)2+(95-85)2]=35.5,s 2乙=18[(75-85)2+(80-85)2+(80-85)2+(83-85)2+(85-85)2+(90-85)2+(92-85)2+(95-85)2]=41, ∵x甲=x 乙,s 2甲<s 2乙,∴甲的成绩较稳定,派甲参赛比较合适.17.(本小题满分12分)某个服装店经营某种服装,在某周内获纯利y (元)与该周每天销售这些服装件数x 之间有如下一组数据:已知∑i =17x 2i =280,∑i =17x i y i =3 487, (1)求x ,y ;(2)求纯利y 与每天销售件数x 之间的回归直线方程; (3)每天多销售1件,纯利y 增加多少元? 解:(1)x =17(3+4+5+…+9)=6,y =17(66+69+…+91)≈79.86.(2)设回归直线方程为y ^=a ^+b ^x ,则b ^=∑i =17x i y i -7x - y-∑i =17x 2i -7x2=3 487-7×6×79.86280-7×62≈4.75. a ^=y -b x -≈79.86-4.75×6=51.36. ∴所求的回归直线方程为y ^=51.36+4.75x .(3)由回归直线方程知,每天多销售1件,纯利增加4.75元.18.(本小题满分14分)某地统计局就该地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[1 000,1 500)).(1)求居民月收入在[3 000,3 500)的频率; (2)根据频率分布直方图算出样本数据的中位数;(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10 000人中用分层抽样方法抽出100人作进一步分析,则月收入在[2 500,3 000)的这段应抽多少人?解:(1)月收入在[3 000,3 500)的频率为0.000 3×(3 500-3 000)=0.15. (2)∵0.000 2×(1 500-1 000)=0.1, 0.000 4×(2 000-1 500)=0.2, 0.000 5×(2 500-2 000)=0.25, 0.1+0.2+0.25=0.55>0.5.∴样本数据的中位数为2 000+0.5-(0.1+0.2)0.000 5=2 000+400=2 400(元).(3)居民月收入在[2 500,3 000)的频率为0.000 5×(3 000-2 500)=0.25, 所以10 000人中月收入在[2 500,3 000)的人数为0.25×10 000=2 500(人).再从10 000人中分层抽样方法抽出100人,则月收入在[2 500,3 000)的这段应抽取100×2 50010 000=25(人).阶段质量检测(三)(A 卷 学业水平达标) (时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.把黑、红、白3张纸牌分给甲、乙、丙三人,则事件“甲分得红牌”与“乙分得红牌”是( ) A .对立事件 B .互斥但不对立事件 C .不可能事件D .必然事件解析:选B 根据题意,把黑、红、白3张纸牌分给甲、乙、丙三人,事件“甲分得红牌”与“乙分得红牌”不会同时发生,故两者是互斥事件,但除了“甲分得红牌”与“乙分得红牌”之外,还有“丙分得红牌”,故两者不是对立事件,所以事件“甲分得红牌”与“乙分得红牌”是互斥但不对立事件.2.已知集合A ={2,3},B ={1,2,3},从A ,B 中各任意取一个数,则这两数之和等于4的概率是( ) A.23 B .12C.13D .16解析:选C 从A ,B 中各取一个数有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共6种情况,其中和为4的有(2,2),(3,1),共2种情况,所以所求概率P =26=13.3.在区间[-3,3]上任取一个实数,所得实数是不等式x 2+x -2≤0的解的概率为( ) A.16 B .13C.12D .23解析:选C 由x 2+x -2≤0,得-2≤x ≤1, 所求概率为1-(-2)3-(-3)=12.4.在正方体ABCD A 1B 1C 1D 1中随机取点,则点落在四棱锥O ABCD 内(O 为正方体的对角线的交点)的概率是( )A.13 B .16C.12D .14解析:选B 设正方体的体积为V ,则四棱锥O ABCD 的体积为V6,所求概率为V 6V =16.5.从{}a ,b ,c ,d ,e 的所有子集中任取一个,这个集合恰是集合{}a ,b ,c 子集的概率是( ) A.35 B .25C.14D .18解析:选C 符合要求的是∅,{}a ,{}b ,{}c ,{}a ,b ,{}a ,c ,{}b ,c ,{}a ,b ,c 共8个,而集合{}a ,b ,c ,d ,e 共有子集25=32个,∴P =14.6.(全国乙卷)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( ) A.13B.12C.23D.56解析:选C 从4种颜色的花中任选2种颜色的花种在一个花坛中,余下2种颜色的花种在另一个花坛的种数有:红黄—白紫、红白—黄紫、红紫—白黄、黄白—红紫、黄紫—红白、白紫—红黄,共6种,其中红色和紫色的花不在同一花坛的种数有:红黄—白紫、红白—黄紫、黄紫—红白、白紫—红黄,共4种,故所求概率为P =46=23,故选C.7.连续掷两次骰子,以先后得到的点数m ,n 为点P (m ,n )的坐标,那么点P 在圆x 2+y 2=17内部的概率是( )A.19 B .29C.13D .49解析:选B 点P (m ,n )的坐标的所有可能为6×6=36种,而点P 在圆x 2+y 2=17内部只有⎩⎪⎨⎪⎧m =1n =1,⎩⎪⎨⎪⎧ m =1n =2,⎩⎪⎨⎪⎧ m =1n =3,⎩⎪⎨⎪⎧ m =2n =1,⎩⎪⎨⎪⎧ m =2n =2,⎩⎪⎨⎪⎧ m =2n =3,⎩⎪⎨⎪⎧ m =3n =1,⎩⎪⎨⎪⎧m =3n =2,共8种,故概率为29.8.甲、乙、丙三人在3天节假日中值班,每人值班1天,则甲排在乙的前面值班的概率是( ) A.16 B .14C.13 D .12解析:选C 甲、乙、丙三人在3天中值班的情况为甲,乙,丙;甲,丙,乙;丙,甲,乙;丙,乙,甲;乙,甲,丙;乙,丙,甲共6种,其中符合题意的有2种,故所求概率为13.9.一袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个卡片,从中无放回...地每次抽一张卡片,共抽2次,则取得两张卡片的编号和不小于...14的概率为( )A.128 B .156C.356D .114 解析:选D 从中无放回地取2次,所取号码共有56种,其中和不小于14的有4种,分别是(6,8),(8,6),(7,8),(8,7),故所求概率为456=114.10.小莉与小明一起用A ,B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6)玩游戏,以小莉掷的A 立方体朝上的数字为x ,小明掷的B 立方体朝上的数字为y 来确定点P (x ,y ),那么他们各。
数学必修三习题答案【篇一:高一数学必修3全册各章节课堂同步习题(详解答案)】概念班次姓名[自我认知]:1.下面的结论正确的是( ).a. 一个程序的算法步骤是可逆的b. 一个算法可以无止境地运算下去的 c. 完成一件事情的算法有且只有一种 d. 设计算法要本着简单方便的原则 2.下面对算法描述正确的一项是 ( ). a.算法只能用自然语言来描述 b.算法只能用图形方式来表示 c.同一问题可以有不同的算法d.同一问题的算法不同,结果必然不同3.下面哪个不是算法的特征( ) a.抽象性 b.精确性 c.有穷性 d.唯一性4.算法的有穷性是指( )a.算法必须包含输出b.算法中每个操作步骤都是可执行的c.算法的步骤必须有限d.以上说法均不正确5.早上从起床到出门需要洗脸刷牙(5min)、刷水壶(2min)、烧水(8min)、泡面(3min)、吃饭(10min)、听广播(8min)几个步骤,从下列选项中选最好的一种算法() a.s1洗脸刷牙、s2刷水壶、s3烧水、s4泡面、s5吃饭、s6听广播 b.s1刷水壶、s2烧水同时洗脸刷牙、s3泡面、s4吃饭、s5听广播 c. s1刷水壶、s2烧水同时洗脸刷牙、s3泡面、s4吃饭同时听广播 d.s1吃饭同时听广播、s2泡面;s3烧水同时洗脸刷牙;s4刷水壶6.看下面的四段话,其中不是解决问题的算法是( )a.从济南到北京旅游,先坐火车,再坐飞机抵达b.解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1c.方程x2?1?0有两个实根d.求1+2+3+4+5的值,先计算1+2=3,再计算3+3=6,6+4=10,10+5=15,最终结果为15 7.已知直角三角形两直角边长为a,b,求斜边长c的一个算法分下列三步:①计算c?a,b的值;③输出斜边长c的值,其中正确的顺序是 ( ) a.①②③ b.②③①c.①③②d.②①③[课后练习]:8.若f?x?在区间?a,b?内单调,且f?a??f?b??0,则f?x?在区间?a,b?内( )a.至多有一个根 b.至少有一个根c.恰好有一个根 d.不确定9.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99.求他的总分和平均成绩的一个算法为:第一步:取a=89 ,b=96 ,c=99;第二步:____①______;第三步:_____②_____;第四步:输出计算的结果.10.写出求1+2+3+4+5+6+?+100的一个算法.可运用公式1+2+3+?+n= 第一步______①_______;第二步_______②________;第三步输出计算的结果.12.写出按从小到大的顺序重新排列x,y,z三个数值的算法.n(n?1)直接计算. 21.1.2程序框图[自我认知]: 1.算法的三种基本结构是()A.顺序结构、条件结构、循环结构B.顺序结构、流程结构、循环结构C.顺序结构、分支结构、流程结构D.流程结构、循环结构、分支结构2.程序框图中表示判断框的是()A.矩形框B.菱形框 d.圆形框 d.椭圆形框3.如图(1)、(2),它们都表示的是输出所有立方小于1000的正整数的程序框图,那么应分别补充的条件为( )⑴333⑵3a.⑴n≥1000 ? ⑵n<1000 ?b. ⑴n≤1000 ?⑵n≥1000 ?c. ⑴n<1000 ? ⑵n≥1000 ?d. ⑴n<1000 ?⑵n<1000 ?4.算法共有三种逻辑结构,即顺序逻辑结构,条件逻辑结构和循环逻辑结构,下列说法正确的是 ( ) a.一个算法只能含有一种逻辑结构 b.一个算法最多可以包含两种逻辑结构 c.一个算法必须含有上述三种逻辑结构d.一个算法可以含有上述三种逻辑结构的任意组合 [课后练习]:5.给出以下一个算法的程序框图(如下图所示),该程序框图的功能是( ) a.求输出a,b,c三数的最大数 b.求输出a,b,c三数的最小数3333c.将a,b,c按从小到大排列d.将a,b,c按从大到小排列第5题图第6题图6.右边的程序框图(如上图所示),能判断任意输入的数x的奇偶性:其中判断框内的条件是( )a.m?0?b.x?0 ?c.x?1 ?d.m?1?7.在算法的逻辑结构中,要求进行逻辑判断,并根据结果进行不同处理的是哪种结构 ( ) a.顺序结构 b.条件结构和循环结构 c.顺序结构和条件结构 d.没有任何结构?x2?1(x?0)8.已知函数f?x??? ,设计一个求函数值的算法,并画出其程序框图(x?0)?2x?11.1.2程序框图(第二课时)[课后练习]:班次姓名1.如图⑴的算法的功能是____________________________.输出结果i=___,i+2=_____.2.如图⑵程序框图箭头a指向①处时,输出 s=__________. 箭头a指向②处时,输出 s=__________.3.如图⑷所示程序的输出结果为s=132, 则判断中应填a、i≥10?b、i≥11?c、i≤11? d、i≥12?4.如图(3)程序框图箭头b指向①处时,输出 s=__________. 箭头b指向②处时,输出 s=__________5、如图(5)是为求1~1000的所有偶数的和而设计的一个程序空白框图,将空白处补上。
必修3综合模拟测试卷A(含答案)一、选择题:(本题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、用冒泡排序算法对无序列数据进行从小到大排序,则最先沉到最右边的数是A、最大数B、最小数C、既不最大也不最小D、不确定2、甲、乙、丙三名同学站成一排,甲站在中间的概率是A、16B、12C、13D、233、某单位有老年人28 人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为36样本,则老年人、中年人、青年人分别各抽取的人数是A、6,12,18B、7,11,19C、6,13,17D、7,12,174、甲、乙两位同学都参加了由学校举办的篮球比赛,它们都参加了全部的7场比赛,平均得分均为16分,标准差分别为5.09和3.72,则甲、乙两同学在这次篮球比赛活动中,发挥得更稳定的是A、甲B、乙C、甲、乙相同D、不能确定5、从1,2,3,4这4个数中,不放回地任意取两个数,两个数都是偶数的概率是A、16B、C、13D、6、如图,是由一个圆、一个三角形和一个长方形构成的组合体,现用红、蓝两种颜色为其涂色,每个图形只能涂一种颜色,则三个形状颜色不全相同的概率为A 、34B 、38C 、14D 、187、阅读下列程序:输入x ;if x <0, then y :=32x π+;else if x >0, then y :=52x π-+;else y :=0; 输出 y .如果输入x =-2,则输出结果y 为A 、3+πB 、3-πC 、π-5D 、-π-5 8、一射手对同一目标独立地进行4次射击,已知至少命中一次的概率为8180,则此射手的命中率是 A 、31 B 、32 C 、41 D 、529、根据下面的基本语句可知,输出的结果T 为 i:=1; T:=1;For i:=1 to 10 do; Begin T:=T+1;End 输出T开始 S :=0 i :=3 i :=i +1S :=S +ii >5 输出S结束是 否A 、10B 、11C 、55D 、56 10、在如图所示的算法流程图中,输出S 的值为 A 、11 B 、12 C 、13 D 、15二、填空题:(本题共4小题,每小题5分,共20分,请把答案填写在答题纸上) 11、一个容量为20的样本数据,分组后,组距与频数如下:(]10,20,2;(]20,30, 3;(]30,40,4;(]40,50,5;(]50,60,4 ;(]60,70,2。
高一数学(必修3)试题
一、选择题(本题共12小题,每小题5分,共60分)
1. 在下列各图中,每个图的两个变量具有相关关系的图是()
(1)(2)(3)(4)
A.(1)(2) B.(1)(3) C.(2)(4) D.(2)(3)
2.在简单随机抽样中,某一个个体被抽中的可能性()
A.与第几次抽样无关,第一次抽中的可能性要大些
B.与第几次抽样无关,每次抽中的可能性相等
C.与第几次抽样有关,最后一次抽中的可能性大些
D.与第几次抽样无关,每次都是等可能的抽取,但各次抽取的可能性不一
样
3.把18个人平均分成两组,每组任意指定正副组长各1人,则甲被指定
为正组长的概率为()
A.
18
1 B.
9
1 C.
6
1 D.
3
1
4. 下面为一个求20个数的平均数的程序,在横线上应填充的语句为
()
A. i>20
B. i<20
C. i>=20
D. i<=20
5.袋内分别有红、白、黑球3,2,1个,从中任取2个,则互斥而不对立
的两个事件是()
A.至少有一个白球;都是白球
B.至少有一个白球;至少有一
个红球
C.恰有一个白球;一个白球一个黑球
D.至少有一个白球;红、黑球
各一个
6. 在区域
⎩
⎨
⎧
≤
≤
≤
≤
1
1
y
x,
内任意取一点)
,
(y
x
P,则1
2
2<
+y
x的概率是()
A.0 B.
2
1
4
-
π C.
4
π D.
4
1
π
-
7. 在右面的程序框图表示的算法中,输入三个实数
c b a ,,,要求输出的x
是这三个数中最大的
数,
那么在空白的判断框中,应该填入( ) A .x c > B .c x > C .c b > D .c a >
8. 用随机数表法从100名学生(男生25人)中抽选
20人进行评教,某男生被抽到的机率是( )
A 、1001
B 、251
C 、51
D 、4
1
9. 在等腰直角三角形ABC 中,在ACB ∠内部任意作一条 射线CM ,与线段AB 交于点M ,则AC AM <的概率( ) A 、
22 B 、12 C 、3
4
D 、41 10.以集合A={2,4,6,7,8,11,12,13}中的任意两个元素分别为分子与分母构成分数,则这种分数是可约分数的概率是( ) A.
135 B.285 C.143 D.14
5
11.对某班学生一次英语测试的成绩分析,各分数段的分布如下图(分数取整数),
由此,估计这次测验的优秀率(不小于80分)为( )
A.92%
B.24%
C.56%
D.76% 12.由小到大排列的一组数据x 1,x 2,x 3,x 4,x 5,其中每个数据都小于-1, 则样本1,x 1,-x 2,x 3,-x 4,x 5的中位数可以表示为( ) A.212x + B. 212x
x - C. 2
15x + D.
2
4
3x x - 二、填空题(本题共4小题,每小题5分,共20分)
13.投掷一枚均匀的骰子,则落地时,向上的点数是2的倍数的概率是_________,
落地时,向上的点数为奇数的概率是________.
14.在抽查某产品的尺寸过程中,将其尺寸分成若干个组,[a,b ]是其中一组,
抽查出的个体数在该组上的频率为m ,该组上的直方图的高度为h , 则
|a-b|=________.
15.某人午觉醒来,发现表停了,他打开收音机想听电台报时,则他等待的时间不多于6分钟的概率是_________. 16. 在区间上随机取一个数x ,则
的概率 为 .
三、解答题(本题共6题,共70分,解答应写出文字说明)
17. (本题满分10分)如右图求
++⨯+⨯+⨯ 4
31321211
100991
⨯的算法的程序框图。
(1)标号①处填 。
标号②处填 。
(2)根据框图编写程序。
18.(本题满分12分)对某电子元件进行寿命调查,情况如下:
(1)列出频率分布表;
(2)画出频率分布直方图;
(3)估计电子元件寿命在100—400h 以内的占总体的百分之几? (4)估计电子元件寿命在400h 以上的占总体的百分之几?
19.(本题满分12分)据统计,在某银行的一个营业窗口等候的人数及其相应的概率如下:
试求:(1)至多有2人等候排队的概率是多少?(2)至少有3人等候排队的概率是多少?
20.(本题满分12分) 从两块玉米地里各抽取10株玉米苗,分别测得它们的株高如下(单位:cm ):
甲:25 41 40 37 22 14 19 39 21 42 乙:27 16 44 27 44 16 40 40 16 40
根据以上数据回答下面的问题:
(1)哪种玉米苗长得高?(2)哪种玉米苗长得齐?
21.(本题满分12分)某产品的广告费支出x与销售额y(单位:百万元)之间有如下对应数据:
(1)画出散点图;(2)求线性回归方程;(3)预测当广告费支出7(百万元)时的销售额。
22. (本题满分12分)若点(),p q,在3,3
p q
≤≤中按均匀分布出现.(1)点(,)
M x y横、纵坐标分别由掷骰子确定,第一次确定横坐标,第二次确定纵坐标,则点(,)
M x y落在上述区域的概率?(2)试求方程22
210
x px q
+-+=有两个实数根的概率.
答案
DBBDD CBCCD CC
13. 1
2
,1
2
14. m
h
15. 1
10
16. 2
3
17.
100
k≥
1
*(1)
S S
k k
=+
+
18. 65% 35% 19. 0.54 0.46
20. 看哪种玉米苗长得高,只要比较甲乙两种玉米苗的平均高度即可;要比较哪种玉米苗长得齐,只要比较哪种玉米苗高的方差即可,方差越小,越整齐,因为方差反映的是一组数据的稳定程度
解:(1)()()()()
cm x cm x 314016404016442744162710
1
304221391914223740412510
1
=+++++++++==+++++++++=
乙甲
乙种玉米长得高乙甲 ∴<x x (
2)
()()()()()()()()()()⎥⎥⎦⎤⎢⎢⎣⎡-+-+-+-+-+-+-+-+-+-=2
2222
2222223042302130393019301430223037304030413025101甲
s
()
22.104cm =
()()()()[]
()
22
2222
8.1283144231403316133127210
1cm s =-⨯+-⨯+-⨯+-⨯=
乙 甲种玉米长得齐乙甲 22∴<x x
21. 5.175.6+=∧x y 63 22. 9136
4
= , 1-36
π。