2022学年湖北省荆州市中考联考数学试题(含答案解析)
- 格式:doc
- 大小:1.02 MB
- 文档页数:24
2021-2022学年湖北省荆州市沙市实验中学九年级(上)期中数学试卷1.方程2x2−4x−3=0的二次项系数、一次项系数、常数项分别为()A. 2、4、−3B. 2、−4、3C. 2、−4、−3D. −2、4、−32.方程x(x−2)=0的解是()A. x=0B. x=2C. x=0或x=−2D. x=0或x=23.关于x的一元二次方程mx2+2x−1=0有两个实数根,则m的取值范围是()A. m≤−1B. m≥−1C. m≤1且m≠0D. m≥−1且m≠04.学校组织一次乒乓球赛,要求每两队之间都要赛一场.若共赛了28场,则有几个球队参赛?设有x个球队参赛,则x满足的关系式为()A. 12x(x+1)=28 B. 12x(x−1)=28 C. x(x+1)=28 D. x(x−1)=285.下列图形中,是中心对称图形的是()A. B. C. D.6.如图,点A、B、C都在⊙O上,若∠C=34°,则∠AOB的度数为()A. 34°B. 56°C. 60°D. 68°7.已知点A(3,y1),B(103,y2)是抛物线y=(x−2)2+3上的两点,则y1,y2的大小关系是()A. y1<y2B. y1>y2C. y1=y2D. 无法确定8.以如图的右边缘所在直线为轴将该图案向右翻折后,再绕中心旋转180°,所得到的图形是()A. B. C. D.9. 飞机着陆后滑行的距离s(单位:m)与滑行的时间t(单位:s)的函数解析式是s =60t −1.5t 2,那么飞机着陆后滑行多长时间才能停下来( )A. 10sB. 20sC. 30sD. 40s10. 已知二次函数y =x 2−2mx(m 为常数),当−2≤x ≤1时,函数值y 的最小值为−2,则m 的值为( ) A. 32或−√2 B. ±32或±√2 C. 32或±√2 D. ±√211. 已知x =1是关于x 的一元二次方程2x 2+kx −1=0的一个根,则实数k 的值是______.12. 如果m 、n 是一元二次方程x 2+3x −9=0的两个实数根,则m 2+4m +n =______. 13. 如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,如果AB =20,CD =16,那么线段OE 的长为______ .14. 平面直角坐标系中,将抛物线y =−2x 2先向左平移2个单位,再向下平移1个单位,得到的抛物线的表达式是______.15. 二次函数y =−x 2+2x −3,用配方法化为y =a(x −ℎ)2+k 的形式为______.16. 如图,已知∠BAC =60°,AB =4,AC =6,点P 在△ABC 内,将△APC 绕着点A 逆时针方向旋转60°得到△AEF ,则AE +PB +PC 的最小值为______.17.解方程.(1)x(x−1)=2(x−1)(因式分解法);=0(公式法).(2)x2−√3x−1418.在下面的网格图中,每个小正方形的边长均为1个单位,在Rt△ABC中,∠C=90°,AC=3,BC=4.(1)试作出△ABC以A为旋转中心、沿逆时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(−4,3),试建立合适的直角坐标系,并写出A、C两点的坐标;(3)作出与△ABC关于原点对称的图形△A2B2C2,并写出A2、B2、C2三点的坐标.19.已知x1,x2是一元二次方程x2−3x−1=0的两根,不解方程求下列各式的值.(1)x12+x22;(2)1x1+1x2.20.如图所示,⊙O的直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于D,求BC,AD,BD的长.21.已知抛物线y=x2−2x−1.(1)图象的开口方向为______,顶点坐标为______.(2)抛物线与x轴交点坐标为______,与y轴交点坐标为______.(3)在给出的平面直角坐标系中,描出(1)(2)中的点,并画出抛物线的大致图象.(4)结合函数图象回答:当−2≤x≤5时,抛物线的最大值为______,最小值为______.22.已知:关于x的一元二次方程(m−1)x2+(m−2)x−1=0(m为实数).(1)若方程有两个不相等的实数根,求m的取值范围;(2)在(1)的条件下,求证:无论m取何值,抛物线y=(m−1)x2+(m−2)x−1总过x轴上的一个固定点.23.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元.市场调查发现,该产品每天的销售价为25(元/千克)时,每天销售量为30(千克).当产品的销售价每千克涨1元时每天销售量会减少2千克,设涨价x(元/千克)(x为正整数),每天销售量为y(千克).(1)求y与x之间的函数关系式,并写出自变量的取值范围.(2)该农户想要每天获得128元的销售利润,销售价为多少?(3)每千克涨价多少元时,每天的销售利润最大?最大利润是多少元?24.抛物线m:y=x2−2x+2与直线l:y=x+2交于A,B(A在B的左侧),且抛物线顶点为C.(1)求A,B,C坐标;(2)若点D为该抛物线上的一个动点,且在直线AC下方,当以A,C,D为顶点的三角形面积最大时,求点D的坐标及此时三角形的面积.(3)将抛物线m:y=x2−2x+2沿直线OC方向平移得抛物线m′,与直线l:y=x+2交于A′,B′,问在平移过程中线段A′B′的长度是否发生变化,请通过计算说明.答案和解析1.【答案】C【解析】解:方程2x2−4x−3=0的二次项系数是2、一次项系数是−4、常数项是−3,故选:C.根据一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项进行分析即可.此题主要考查了一元二次方程的一般形式,关键是掌握要确定一次项系数和常数项,首先要把方程化成一般形式.2.【答案】D【解析】解:由题意,得:x=0或x−2=0,解得x=0或x=2;故选D.原方程已化为了方程左边为两个一次因式的乘积,方程的右边为0的形式;可令每一个一次因式为零,得到两个一元一次方程,从而求出原方程的解.在用因式分解法解一元二次方程时,一般地要把方程整理为一般式,如果左边的代数式能够分解为两个一次因式的乘积,而右边为零时,则可令每一个一次因式为零,得到两个一元一次方程,解出这两个一元一次方程的解就是原方程的两个解了.3.【答案】D【解析】【分析】根据一元二次方程的定义以及根的判别式的意义可得Δ=4+4m≥0且m≠0,求出m的取值范围即可.本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式Δ=b2−4ac.当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.也考查了一元二次方程的定义.【解答】解:∵关于x的一元二次方程mx2+2x−1=0有两个实数根,∴Δ≥0且m≠0,∴4+4m≥0且m≠0,∴m≥−1且m≠0,故选:D.4.【答案】B【解析】解:设有x个球队参加比赛,依题意得1+2+3+⋯+x−1=28,x(x−1)=28.即12故选:B.设有x个球队参加比赛,那么第一个球队和其他球队打(x−1)场球,第二个球队和其他球队打(x−2)场,以此类推可以知道共打(1+2+3+⋯+x−1)场球,然后根据计划安排28场比赛即可列出方程求解.此题考查了由实际问题抽象出一元二次方程,和实际生活结合比较紧密,准确找到关键描述语,从而根据等量关系准确的列出方程是解决问题的关键.5.【答案】D【解析】解:A.不是中心对称图形,不符合题意.B.不是中心对称图形,不符合题意.C.不是中心对称图形,不符合题意.D.是中心对称图形,符合题意.故选:D.一个图形绕某一点旋转180度,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,根据定义进行判断求解.本题主要考查中心对称图形概念,中心对称图形的关键是找到对称中心,旋转180度后与原图重合.6.【答案】D【解析】解:∵∠C=34°,∴∠AOB=2∠C=68°.故选D.由圆周角定理知,∠AOB=2∠C=68°.本题利用了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7.【答案】A【解析】解:由抛物线y=(x−2)2+3可知,图象开口向上,对称轴为直线x=2,∴当x>2时,y随x的增大而增大,∵2<3<10,3∴y1<y2,故选:A.可先求二次函数y=x2的对称轴为直线x=2,然后根据二次函数的性质即可判断.本题考查了二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键.8.【答案】A【解析】【分析】本题主要考查了中心对称图形与轴对称图形,利用中心对称旋转180度后重合得出是解题关键.首先根据轴对称的性质得出翻折后图形,再利用中心对称图形的概念得出即可.【解答】解:以图的右边缘所在的直线为轴将该图形向右翻转180°后,黑圆在右上角,再按顺时针方向旋转180°,黑圆在左下角.故选A.9.【答案】B【解析】解:∵a=−1.5<0,∴函数有最大值,当t=−b2a=−602×(−15)=20(秒),即飞机着陆后滑行20秒能停下来,故选:B.根据飞机从滑行到停止的路程就是滑行的最大路程,即是求函数的最大值此时t=−b2a,进而得出答案.此题主要考查了二次函数的应用,运用二次函数求最值问题常用公式法或配方法得出是解题关键.10.【答案】A【解析】解:y=x2−2mx=(x−m)2−m2,①若m<−2,当x=−2时,y=4+4m=−2,解得:m=−32;m=−32>−2(舍去);②若m>1,当x=1时,y=1−2m=−2,解得:m=32;③若−2≤m≤1,当x=m时,y=−m2=−2,解得:m=−√2或m=√2>1(舍),∴m的值为32或−√2,故选:A.将二次函数配方成顶点式,分m<−2、m>1和−2≤m≤1三种情况,根据y的最小值为−2,结合二次函数的性质求解可得.本题主要考查二次函数的最值,根据二次函数的增减性分类讨论是解题的关键.11.【答案】−1【解析】解:把x=1代入方程得:2+k−1=0,解方程得k=−1.故答案为:−1已知x=1是关于x的一元二次方程2x2+kx−1=0的一个根,把x=1代入方程,即可得到一个关于k的方程,解方程即可求出k值.本题主要考查了方程的解的定义,把求未知系数的问题转化为方程求解的问题.12.【答案】6【解析】解:∵m是一元二次方程x2+3x−9=0的根,∴m2+3m−9=0,∴m2+3m=9,∵m、n是一元二次方程x2+3x−9=0的两个根,∴m+n=−3,∴m2+4m+n=m2+3m+m+n=9−3=6.故答案为:6.先根据一元二次方程的解的定义得到m2+3m−9=0,则m2+3m=9,于是原式可化简为m2+4m+n=m2+3m+m+n,然后根据根与系数的关系得到m+n=−3,再利用整体代入的方法计算.本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−ba ,x1x2=ca.也考查了一元二次方程的解.13.【答案】6【解析】【分析】此题考查了垂径定理,勾股定理有关知识,连接OD,由直径AB与弦CD垂直,根据垂径定理得到E为CD的中点,由CD的长求出DE的长,又由直径的长求出半径OD的长,在直角三角形ODE中,由DE及OD的长,利用勾股定理即可求出OE的长.解:如图所示,连接OD.∵弦CD⊥AB,AB为圆O的直径,∴E为CD的中点,又∵CD=16,∴CE=DE=12CD=8,AB=10,又∵OD=12∵CD⊥AB,∴∠OED=90°,在Rt△ODE中,DE=8,OD=10,根据勾股定理得:OE2+DE2=OD2,∴OE=√OD2−DE2=6,则OE的长度为6.14.【答案】y=−2(x+2)2−1【解析】解:将抛物线y=−2x2先向左平移2个单位,再向下平移1个单位,得到的抛物线的表达式是:y=−2(x+2)2−1.故答案是:y=−2(x+2)2−1.根据二次函数图象左加右减,上加下减的平移规律进行求解.本题考查了二次函数图象与几何变换,函数图象平移规律是:左加右减,上加下减.15.【答案】y=−(x−1)2−2【解析】解:∵y=−x2+2x−3=−(x2−2x)−3=−(x−1)2−2.故答案为:y=−(x−1)2−2.直接利用配方法表示出顶点式即可.此题主要考查了二次函数的三种形式,正确配方法是解题关键.16.【答案】2√19【解析】解:连接PE,BF,过点F作FH⊥BA,交BA的延长线于H,∵将△APC绕着点A逆时针方向旋转60°得到△AEF,∴AP=AE,AC=AF,∠PAE=∠CAF=60°,∴△APE是等边三角形,∴AE=PE,∴当点B、P、E、F共线时,AE+PB+PC最小,最小值为BF的长,∵∠BAF=∠BAC+∠CAF=60°+60°=120°,∴∠FAH=60°,∴AH=3,FH=3√3,∴BH=AB+AH=4+3=7,在Rt△BFH中,由勾股定理得,BF=√72+(3√3)2=2√19,∴AE+PB+PC的最小值为2√19,故答案为:2√19.连接PE,BF,过点F作FH⊥BA,交BA的延长线于H,由旋转的性质知△APE是等边三角形,得AE=PE,则AE+PB+PC最小值为BF的长,利用勾股定理求BF即可.本题主要考查了旋转的性质,等边三角形的判定与性质,勾股定理,含30°角的直角三角形的性质等知识,将AE+PB+PC最小值转化为BF的长是解题的关键,17.【答案】解:(1)x(x−1)=2(x−1),移项,得x(x−1)−2(x−1)=0,(x−1)(x−2)=0,解得:x 1=1,x 2=2;(2)x 2−√3x −14=0, ∵b 2−4ac =(−√3)2−4×1×(−14)=4>0, ∴x =−b±√b 2−4ac2a=√3±√42×1, ∴x 1=√3+22,x 2=√3−22.【解析】(1)移项后把方程的左边分解因式,即可得出两个一元一次方程,再求出方程的解即可;(2)先求出b 2−4ac 的值,再代入公式求出答案即可.本题考查了解一元二次方程,能选择适当的方法解方程是解此题的关键,注意:解一元二次方程的方法有直接开平方法,公式法,配方法,因式分解法等.18.【答案】解:(1;(2)A(−1,−1),C(−4,1);(3)A 1(1,1),B 2(4,−3),C 2(4,1).【解析】本题要求在网格中将图形旋转90°,180°;要充分运用各网格的垂直关系,按照旋转中心,旋转方向,旋转度数的要求画图,可以看出,旋转后的图形顶点都在网格上,按要求建立坐标系,就可以写出各点的坐标了.本题综合了图形的旋转,直角坐标系的知识,要求学生理解题意,准确画图,会表示各点的坐标.19.【答案】解:∵x1,x2是一元二次方程x2−3x−1=0的两根,∴x1+x2=3,x1x2=−1.∴(1)x12+x22=(x1+x2)2−2x1x2=32−2×(−1)=11;(2)1x1+1x2=x1+x2x1⋅x2=3−1=−3.【解析】(1)根据根与系数的关系得到:x1+x2=3,x1x2=−1,则x12+x22=(x1+ x2)2−2x1x2,计算可得;(2)将x1+x2、x1x2代入1x1+1x2=x1+x2x1⋅x2可得.本题主要考查一元二次方程根与系数的关系,一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系为:x1+x2=−ba ,x1⋅x2=ca.20.【答案】解:∵AB是直径,∴∠ACB=∠ADB=90°,在Rt△ABC中,AB2=AC2+BC2,AB=10cm,AC=6cm,∴BC2=AB2−AC2=102−62=64,∴BC=√64=8(cm),又CD平分∠ACB,∴∠ACD=∠BCD,∴AD⏜=DB⏜,∴AD=BD,又在Rt△ABD中,AD2+BD2=AB2,∴AD2+BD2=102,∴AD=BD=√1002=5√2(cm).【解析】本题考查了圆周角定理,同圆或等圆中等弧对等弦,勾股定理,根据直径所对的角是90°,判断出△ABC和△ABD是直角三角形,根据圆周角∠ACB的平分线交⊙O于D,判断出△ADB为等腰直角三角形,然后根据勾股定理求出具体值.解答此题要抓住两个关键,(1)判断出△ABC和△ABD是直角三角形,以便利用勾股定理;(2)判断出线段AD=DB,然后将各种线段转化到直角三角形中利用勾股定理解答.21.【答案】向上(1,−2)(1+√2,0)或(1−√2,0)(0,−1)14−2【解析】解:(1)y=x2−2x−1=(x−1)2−2,∵1>0,∴图象开口方向向上,顶点坐标为(1,−2).故答案为:向上,(1,−2).(2)令y=0,即(x−1)2−2=0,解得x=1+√2,或x=1−√2,令x=0,则y=(0−1)2−2=−1,∴抛物线与x轴交点坐标为(1+√2,0)或(1−√2,0),与y轴交点坐标为(0,−1).故答案为:(1+√2,0)或(1−√2,0),(0,−1).(3)描点,连线,函数图象如下图所示,(4)在图象中找到−2≤x≤5时函数图象,由图象可知,当x=1时,函数取得最小值−2;当x=5时,函数取得最大值14.故答案为:14,−2.(1)根据a的正负,判断开口方向,把解析式利用配方法得到顶点式,可得出顶点坐标;(2)令x=0,解一元二次方程,求出x的值,即可得出抛物线与x轴的交点坐标,令x=0,得出y的值,即可得出抛物线与y轴坐标;(3)根据给出的交点及对称轴可画出大致图象;(4)根据函数图象,可判断,当x=1时,抛物线有最小值,当x=5时,抛物线有最大值.本题考查了二次函数函数的图象及其性质,数形结合思想等,会由抛物线的对称性及给出的点画出图象是解题关键.22.【答案】(1)解:根据题意,得△=(m−2)2−4×(m−1)×(−1)>0,即m2>0,解得m>0或m<0①,又∵m−1≠0,∴m≠1②,由①②,得m<0,0<m<1或m>1;(2)证明:由y =(m −1)x 2+(m −2)x −1,得y =[(m −1)x −1](x +1),抛物线y =[(m −1)x −1](x +1)与x 轴的交点就是方程[(m −1)x −1](x +1)=0的两根,则{x +1=0 ①(m −1)x −1=0 ②, 由①得,x =−1,即一元二次方程的一个根是−1,∴无论m 取何值,抛物线y =(m −1)x 2+(m −2)x −1总过x 轴上的一个固定点(−1,0).【解析】(1)根据b 2−4ac 与零的关系即可判断出的关于x 的一元二次方程(m −1)x 2+(m −2)x −1=0(m 为实数)的解的情况;(2)用十字相乘法来转换y =(m −1)x 2+(m −2)x −1,即y =[(m −1)x −1](x +1),令y =0即可确定出抛物线过x 轴上的固定点坐标.此题考查了抛物线与x 轴的交点,以及根的判别式,在解一元二次方程的根时,利用根的判别式△=b 2−4ac 与0的关系来判断该方程的根的情况;用十字相乘法对多项式进行分解,可以降低题的难度.23.【答案】解:(1)则由题意得:y =30−2x ,∵30−2x >0,∴x >15,∴y 与x 之间的函数关系式为y =30−2x(0<x <15,且x 为整数);(2)设利润为w 元,则由题意得:w =(x +25−20)(30−2x)=(x +5)(30−2x),∵该农户想要每天获得128元的销售利润,∴(x +5)(30−2x)=128,解得:x 1=11,x 2=−1(舍去),∴销售价为25+11=36(元),∴农户想要每天获得128元的销售利润,销售价为36元;( 3)w =(x +5)(30−2x)=−2(x −5)2+200,∵−2<0,∴当x =5时,w 有最大值,最大值为200,∴每千克涨价5元时,每天的销售利润最大,最大利润是200元.【解析】(1 )根据当产品的销售价每千克涨1元时每天销售量会减少2千克,进行求解即可;(2)设利润为w 元,则由(1)可得每天销售量为(30−2x)千克,每天的每千克的获利为(x +5),由此可得w =(x +25−20)(30−2x)=(x +5)(30−2x),再把w =128代入进行求解即可;(3)由(2)得w =(x +5)(30−2x)=−2(x −5)2+200,然后利用二次函数的性质进行求解即可.本题主要考查了二次函数的实际应用,解题的关键在于能够准确读懂题意找到关系式进行求解.24.【答案】解:(1)∵y =x 2−2x +2=(x −1)2+1,∴C(1,1).将y =x 2−2x +2与y =x +2联立得:{y =x 2−2x +2y =x +2,解得:{x =0y =2或{x =3y =5. ∴A(0,2),B(3,5).(2)如图1所示:过点D 作DE//y 轴,交抛物线于点P .设AC 的解析式为y =kx +b ,将点A 和点C 的坐标代入得:{k +b =1b =2,解得k =−1,b =2, ∴直线AC 的解析式为y =−x +2.设点D 的坐标为(m,m 2−2m +2),则点P 的坐标为(m,−m +2),则PD =(−m +2)−(m 2−2m +2)=−m 2+m .S △ACD =S △APD +S △CPD =12×1⋅DP =12(−m 2+m)=−12(m −12)2+18.∴当m =12时,△ACD 的面积有最大值,最大值为18,此时点D 的坐标为(12,54).(3)如图2所示:过点A′作A′M ⊥x 轴,垂足为M ,B′N ⊥x 轴,垂足为N ,作A′G ⊥B′N ,设OC的解析式为y=kx,将点C的坐标代入得到k=1,则OC的解析式为y=x.设平移后抛物线的解析式为y=(x−a)2+a.设A′(x1,y1)B′(x2,y2),则A′G=|x2−x1|=√(x1+x2)2−4x1x2.将y=x+2代入y=(x−a)2+a得:x2−(2a+1)x+a2+a+2=0,∴x2+x1=2a+1,x2x1=a2+a+2.∴A′G=√(2a+1)2−4(a2+a+2)=√9=3.∴A′B′=3√2.∴A′B′的长度为定值.【解析】(1)利用配方法得到y=(x−1)2+1,从而可得到点C的坐标,然后将y=x2−2x+2与y=x+2可求得点A和点B的坐标;(2)过点D作DE//y轴,交抛物线于点P.先求得直线AC的解析式,设点D的坐标为(m,m2−2m+2),则点P的坐标为(m,−m+2),则PD=−m2+m,然后依据S△ACD= S△APD+S△CPD的到△ACD的面积与m的函数关系式,最后,利用配方法可求解即可.(3)过点A′作A′M⊥x轴,垂足为M,B′N⊥x轴,垂足为N,作A′G⊥B′N,垂足为G,则A′B′=√2A′G,设平移后抛物线的解析式为y=(x−a)2+a.A′(x1,y1)B′(x2,y2),依据完全平方公式得到A′G=√(x1+x2)2−4x1x2.由将y=x+2代入y=(x−a)2+a得到关于x的方程,依据一元二次方程根与系数的关系可得到x2+x1=2a+1,x2x1=a2+ a+2,从而可求得A′G的长,最后可得到A′B′的长.本题主要考查的是二次函数的综合应用,解答本题主要考查了待定系数法求一次函数的解析式、一元二次方程根与系数的关系、配方法求二次函数的最大值,依据题意得到△ACD的面积与m的函数关系式是解题的关键.。
数学试题卷 第1页(共10页)荆州市2021年初中学业水平考试数 学 试 题注意事项:1.本卷满分为120分,考试时间为120分钟。
2.本卷是试题卷,不能答题,答题必须写在答题卡上。
解答题中添加的辅助线、字母和符号等务必标在答题卡对应的图形上。
3.在答题卡上答题,选择题要用2B 铅笔填涂,非选择题要用0.5毫米黑色中性笔作答。
★祝考试顺利★一、选择题(本大题共有10个小题,每小题3分,共30分)1.在实数-1,0,21,2中,无理数是 A .-1 B .0 C .21 D .2 2.如图是由一个圆柱和一个长方体组成的几何体,则该几何体的俯视图是A .B .C .D .3.若等式a a ⋅22+( )=33a 成立,则( )中填写单项式可以是A .aB .2aC .3aD .4a 4.阅读下列材料,其①~④步中数学依据错误..的是A .①B .②C .③D .④ 第2题图如图:已知直线b ∥c ,a ⊥b ,求证:a ⊥c . 证明:①∵a ⊥b (已知) ∴∠1=90°(垂直的定义) ②又∵b ∥c (已知) ∴∠1=∠2 (同位角相等,两直线平行) ③∴∠2=∠1=90°(等量代换) ④∴a ⊥c (垂直的定义).数学试题卷 第2页(共10页)5.若点P (a +1,2-2a )关于x 轴的对称点在第四象限,则a 的取值范围在数轴上表示为6.已知:如图,直线11y kx =+与双曲线22y x=在第一象限交于点P (1,t ),与x 轴、y 轴分别交于A ,B 两点,则下列结论错误..的是A .t =2B .△AOB 是等腰直角三角形C .k =1D .当x >1时,12y y >7.如图,矩形OABC 的边OA ,OC 分别在x 轴、y 轴的正半轴上,点D 在OA 的延长线上.若A (2,0),D (4,0),以O 为圆心、OD 长为半径的弧经过点B ,交y 轴正半轴于点E ,连接DE ,BE ,则∠BED 的度数是A .15°B .22.5°C .30°D .45°8.如图,在△ABC 中,AB =AC ,∠A =40°,点D ,P 分别是图中所作直线和射线与AB ,CD 的交点.根据图中尺规作图痕迹推断,以下结论错误..的是 A .AD =CD B .∠ABP =∠CBP C .∠BPC =115° D .∠PBC =∠A9.如图,在菱形ABCD 中,∠D =60°,AB =2,以B 为圆心、BC 长为半径画AC ,点P 为菱形内一点,连接P A ,PB ,PC .当△BPC 为等腰直角三角形时,图中阴影部分的面积为A .2313π-+B .2313π--C .π2D .312π- 10.定义新运算“※”:对于实数m ,n ,p ,q ,有[m ,p ]※[q ,n ]=mn +pq ,其中等式右边是通常的加法和乘法运算,例如:[2,3]※[4,5]=2⨯5+3⨯4=22.若关于x 的方程[12+x ,x ]※[5-2k ,k ]=0有两个实数根,则k 的取值范围是A .504k k <≠且B .54k ≤C .504k k ≤≠且D .54k ≥数学试题卷 第3页(共10页)二、填空题(本大题共6个小题,每小题3分,共18分)11.已知:101()(3)2a -=+-,)23)(23(-+=b a b += ▲ . 12.有两把不同的锁和四把钥匙,其中两把钥匙分别能打开这两把锁,另外两把钥匙不能打开这两把锁.随机取出一把钥匙开任意一把锁,一次打开锁的概率是 ▲ .13.如图,AB 是⊙O 的直径,AC 是⊙O 的弦,OD ⊥AC 于D ,连接OC ,过点D 作DF∥OC 交AB 于F ,过点B 的切线交AC 的延长线于E .若AD =4,DF =25,则BE = ▲ .14.如图1是一台手机支架,图2是其侧面示意图,AB ,BC 可分别绕点A ,B 转动,测量知BC =8cm ,AB =16cm .当AB ,BC 转动到∠BAE =60°,∠ABC =50°时,点C 到AE 的距离为 ▲ cm .(结果保留小数点后一位,参考数据:sin70°≈0.94,3≈1.73)15.若关于x 的方程32122=--+-+xx x m x 的解是正数,则m 的取值范围为 ▲ . 16.如图,过反比例函数)0,0(>>=x k xk y 图象上的四点P 1,P 2,P 3,P 4分别作x 轴的垂线,垂足分别为 A 1,A 2,A 3,A 4,再过P 1,P 2,P 3,P 4分别作y 轴,P 1A 1,P 2A 2,P 3A 3的垂线,构造了四个相邻的矩形.若这四个矩形的面积从左到右依次为S 1,S 2,S 3,S 4,OA 1=A 1A 2=A 2A 3=A 3A 4,则S 1与S 4的数量关系为 ▲ .三、解答题(本大题共有8个小题,共72分)17.(本题满分8分)先化简,再求值:)121(1222-+÷-++a aa a a ,其中32=a .18.(本题满分8分)已知:a 是不等式5(a -2)+8<6(a -1)+7的最小整数解,请用配方法...解关于x 的方程0122=+++a ax x .数学试题卷 第4页(共10页)19.(本题满分8分)如图,在5×5的正方形网格图形中,小正方形的边长都为1,线段ED 与AD 的端点都在网格小正方形的顶点(称为格点)上.请在网格图形中画图........: (1)以线段AD 为一边画正方形ABCD ,再以线段DE 为斜边画等腰直角三角形DEF ,其中顶点F 在正方形ABCD 外;(2)在(1)中所画图形基础上,以点B 为其中一个顶点画一个新正方形,使新正方形的面积为正方形ABCD 和△DEF 面积之和,其它顶点也在格点上.20.(本题满分8分)高尔基说:“书,是人类进步的阶梯.”阅读可以启智增慧,拓展视野,……为了解学生寒假阅读情况,开学初学校进行了问卷调查,并对部分学生假期(24天)的阅读总时间作了随机抽样分析.设被抽样的每位同学寒假阅读的总时间为t (小时),阅读总时间分为四个类别:A )12(0<≤t ,B )(2412<≤t , C )3624<≤t (,D )36≥t (,将分类结果制成如下两幅统计图(尚不完整).根据以上信息,回答下列问题:(1)本次抽样的样本容量为 ▲ ;(2)补全条形统计图;(3)扇形统计图中a 的值为 ▲ ,圆心角β的度数为 ▲ ;(4)若该校有2000名学生,估计寒假阅读的总时间少于24小时的学生有多少名?对这些学生用一句话提一条阅读方面的建议.数学试题卷 第5页(共10页)21.(本题满分8分)小爱同学学习二次函数后,对函数2)1(--=x y 进行了探究.在经历列表、描点、连线步骤后,得到如下的函数图象.请根据函数图象,回答下列问题: (1)观察探究: ①写出该函数的一条性质: ▲ ;②方程2(1)1x --=-的解为: ▲ ;③若方程2(1)x a --=有四个实数根,则a 的取值范围是 ▲ .(2)延伸思考:将函数2(1)y x =--的图象经过怎样的平移可得到函数3)12(21+---=x y 的图象?写出平移过程,并直接写出....当321≤<y 时,自变量x 的取值范围.22.(本题满分10分)小美打算买一束百合和康乃馨组合的鲜花,在“母亲节”祝福妈妈.已知买2支百合和1支康乃馨共需花费14元,3支康乃馨的价格比2支百合的价格多2元.(1)求买一支康乃馨和一支百合各需多少元?(2)小美准备买康乃馨和百合共11支,且百合不少于2支.设买这束鲜花所需费用为w 元,康乃馨有x 支,求w 与x 之间的函数关系式,并设计一种使费用最少的买花方案,写出最少费用.23.(本题满分10分)在矩形ABCD 中,AB =2,AD =4,F 是对角线AC 上不与点A ,C重合的一点,过F 作FE ⊥AD 于E ,将△AEF 沿EF 翻折得到△GEF ,点G 在射线AD 上,连接CG .(1)如图1,若点A 的对称点G 落在AD 上,∠FGC =90°,延长GF 交AB 于H ,连接CH .①求证:△CDG ∽△GAH ;②求tan ∠GHC .(2)如图2,若点A 的对称点G 落在AD 延长线上,∠GCF =90°,判断△GCF 与△AEF是否全等,并说明理由.数学试题卷 第6页(共10页)24.(本题满分12分)已知:直线1y x =-+与x 轴、y 轴分别交于A ,B 两点,点C 为直线AB 上一动点,连接OC ,∠AOC 为锐角,在OC 上方以OC 为边作正方形OCDE ,连接BE ,设BE =t .(1)如图1,当点C 在线段AB 上时,判断BE 与AB 的位置关系,并说明理由;(2)直接写出....点E 的坐标(用含t 的式子表示); (3)若tan ∠AOC =k ,经过点A 的抛物线)0(2<++=a c bx ax y 顶点为P ,且有6a +3b +2c =0,△POA 的面积为k21.当22=t 时,求抛物线的解析式.数学试题卷 第7页(共10页)荆州市2021年初中学业水平考试数学试题参考答案与评分标准一、选择题(每小题3分)1.D 2.A 3.C 4.B 5.C 6.D 7.C 8.D 9.A 10.C二、填空题(每小题3分)11.2 12.41 13.215 14.6.3 15.m >-7且m ≠-3 16.S 1=4S 4(或4114S S =) 三、解答题(按步骤给分) 17.解:原式=11)1()1(2+-⋅-+a a a a a …………………………………3分=a a 1+…………………………………5分 ∵a =23,∴原式=32132+=1+63…………………………………8分 18.解:由不等式5(a -2)+8<6(a -1)+7解得: …………………3分∴a 的最小整数解为-2 …………………………………4分 将a =-2代入方程x 2+2ax +a +1=0得:0142=--x x …………………………………5分配方得:5)2(2=-x ,即x -2=±5 …………………………………7分∴x 1=2+5 ,x 2=2-5 ………………………8分19.解:(1)如图所示 ………………………4分(2)如图所示 ………………………8分20.解:(1)60; ………………2分(2)如图; …………4分(3)20,144°; …………6分(4)①20%30%20001000+⨯=()(名) …………7分∴阅读总时间少于24小时的学生有1000名.②要重视阅读,养成阅读习惯;要增加阅读时间,提高阅读质量;要培养阅读兴趣,保证阅读时间;要坚持阅读,从今天做起等.(与阅读相关,一条建议即可) ………8分数学试题卷 第8页(共10页) 21.解:(1)①图象关于y 轴对称;当x =-1或x =1时,y 有最大值,最大值为;当x <-1或0<x <1时,y 随x 增大而增大;当 或时,y 随x 增大而减小等;(填一条即可) ………………………2分②x 1=-2; x 2=0; x 3=2; ………………………5分 ③-1<a <0; ………………………6分(2)将函数y 的图象向右平移2个单位长,再向上平移3个单位长(或向上平移3个单位长,再向右平移2个单位长)得到y 1的图象; …………………7分 当321≤<y 时,自变量的取值范围为0<x <4. ………………………8分22.解:(1)设一支康乃馨价格为a 元,一支百合价格为b 元,由题意得:⎩⎨⎧=-=+223142b a b a ………………………2分 解得 ⎩⎨⎧==54b a 即买一支康乃馨需要4元,一支百合需要5元. ………………………4分(2)根据题意得:)11(54x x w -+=∴w 与x 之间的函数关系式为:w =-x +55 ………………………7分 211≥-x ∴9≤x ………………………8分 01<- ∴w 随x 的增大而减小∴当x =9时,最小w =-9+55=46(元) ………………………9分 即买9支康乃馨,2支百合费用最少,最少费用为46元. ………10分23. 解:(1)①证明:如图1,由题意知∠HGC =90°则∠AGH +∠DGC =90°由矩形ABCD 知:∠HAG =∠D =90° ………………………1分 而∠DGC +∠DCG =90° ∴∠DCG =∠AGH ………………………2分 ∴△CDG ∽△GAH . ………………………3分②如图1,由①知△CDG ∽△GAH∴∠AGF =∠DCG , CG CD GH AG= ………………………4分由折叠知:∠AGF =∠GAF ∴∠GAF =∠DCG ,而∠D =∠D∴△ADC ∽△CDG ……………………5分 ∴AD CD CD DG = 即422DG = ∴DG =1 ∴AG =AD -DG =3 ………………………6分∴在Rt △CGH 中,tan ∠GHC =23CG CD HG AG == ………………………7分 (2)解法一:如图2,此时Rt △GCF 与 Rt △AEF 不全等,理由如下: 设AE =EG =x ,则DG =2x -4 ∵∠DCG +∠ACD =∠DAC +∠ACD =90°∴∠DCG =∠DAC ,而∠ADC =∠CDG 图1F G E H D C B A 图2GF E D CBA数学试题卷 第9页(共10页)∴△CDG ∽△ADC ∴AD CD CD DG = 即 42242=-x ,解得: 25=x ………………………8分 又tan ∠GAC =12EF DC AE AD == ∴45=EF ∴2255AE EF AF +==而5222=+=BC AB AC ∴45345552=-=-=AF AC FC …………………………………………9分 由折叠知:FG =AF ,但FC ≠EF ,FC ≠AE ∴Rt △GCF 与Rt △AEF 不全等. ………………………10分 解法二:如图2,此时△GCF 与△AEF 不全等,理由如下:若△AEF ≌△FCG 时,∠EAF =∠CFG而∠CFG∠EAF ,产生矛盾 ∴假设不成立若△AEF ≌△GCF 时,∠AFE =∠GFC =∠EFG =60° ………………………8分 则在Rt △AEF 中,∠EAF =30° ∴tan ∠EAF =33 ……………………9分 13tan 2CD EAF AD ∠==≠而,产生矛盾 ∴假设不成立 ∴Rt △GCF 与 Rt △AEF 不全等.(注:本题其它解法请参照给分.)…………10分24.解:(1)BE ⊥AB .理由如下: ………………1分如图1,由直线y =-x +1得:A (1,0),B (0,1)∴OA =OB ,△OAB 为等腰直角三角形,∠OAC =∠ABO =45°由正方形OCDE 得:OC =OE ,∠EOB +∠BOC =∠AOC +∠BOC =90°∴∠EOB =∠AOC ∴△AOC ≌△BOE (SAS) ………………………3分 ∴∠OBE =∠OAC =45°∴∠ABE =∠OBE +∠ABO =90°∴BE ⊥AB . ………………………4分(2)2(2E -,212-)或2(2E ,21)2+ …8分 (3)∵点A 在抛物线上,且6320a b c ++= ∴⎩⎨⎧=++=++02360c b a c b a ∴a b 4-=数学试题卷 第10页(共10页) ∴抛物线2(0)y ax bx c a =++<的对称轴为22b x a=-= ∴它与x 轴另一个交点坐标为(3,0) ∴可设抛物线为2(1)(3)43y a x x ax ax a =--=-+∵∠AOC 为锐角∴点C 在线段AB 上或BA 的延长线上运动(不与点A ,点B 重合) ①当点C 在线段AB 上时,如图1 ,过E 作EM ⊥y 轴于M . ∵2t =∴由(2)得:1(2E -,12) ∴12EM OM == ∴tan tan 1EM k AOC BOE OM =∠=∠== ∵0a <,1OA =,△OAP 面积为1122k = ∴当2=x 时,1y =∴1384=+-a a a 解得:1-=a从而44=-=a b ,3c a b =--=-∴抛物线解析式为243y x x =-+- ………………………10分 ②当点C 在BA 的延长线上时,如图2,过E 作EN ⊥y 轴于N . ∵22=t ∴由(2)得:21(E ,)23 ∴21=NE ,23=ON ∴31tan tan ==∠=∠=ON NE BOE AOC k ∵a <0,OA =1,△OAP 的面积为2321=k ∴当2=x 时,3y = ∴3384=+-a a a 解得:3-=a从而124=-=a b ,9-=--=b a c∴抛物线解析式为23129y x x =-+-综上所述,抛物线的解析式为243y x x =-+-或23129y x x =-+-. …………12分。
监利市2024—2025学年度上学期九年级期中学业水平监测数学试题(本试卷共4页,满分120分,考试时间120分钟)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效,作图一律用2B 铅笔或黑色签字笔.一、选择题(共10题,每题3分,共30分,在每题给出的四个选项中,只有一项符合题要求)1.中秋节是中国的传统节日,有“团圆”、“丰收”的寓意.月饼是首选传统食品,不仅美味,而且设计多样,下列月饼图案中,为中心对称图形的是A. B. C. D.2.中国“二十四节气”已被正式列入联合国教科文组织人类非物质文化遗产代表作品录,下图代表“大雪”,此图绕着它的旋转中心,按下列角度旋转,能与其自身重合的是A. B. C. D.3.若是方程的一个根,则的值为A.-2B.2C.4D.-44.如图,内接于,是的直径,若,则A. B. C. D.5.关于二次函数的性质,下列说法错误的是A.该函数图象的开口向上B.该函数图象的对称轴是C.该函数的最小值为-1D.当时,随的增大而减小90︒60︒45︒30︒3x =230x bx +-=b ABC △O CD O 50B ∠=︒ACD ∠=30︒40︒50︒60︒()2321y x =--2x =2x >y x6.用配方法解方程时,配方正确的是A. B.C. D.7.若,是方程的两个根,则的值为A.2026B.C.2022D.-20268.如图,以原点为圆心的圆交轴于点,两点,交轴的正半轴于点,为第一象限内上的一点,若,则的度数是A. B. C. D.9.掷实心球是多地高中阶段学校招生体育考试选考项目.如图1是一名男生投实心球,实心球行进路线是一条抛物线,行进高度与水平距离之间的函数关系如图2所示,掷出时起点处高度为,当水平距离为时,实心球行进至最高点处.该男生在此项考试中的成绩是A. B. C.D.10.如图是抛物线的部分图象,其顶点坐标为,且与轴的一个交点在点和之间.则下列结论:①;②;③一元二次方程有两个不相等的实数根:④.其中正确的结论是A.①②B.②③④C.①②④ D.③④二、填空题(共5题,每题3分,共15分)11.抛物线的顶点坐标是________.2620x x +-=()2311x +=()237x +=()2638x +=()2634x +=m n 2220240x x +-=23m m n ++2022-O x A B y C D O 65OCD ∠=︒DAB ∠40︒20︒50︒25︒()m y ()m x 9m 54m 3m 10m()4m ()4m +()20y ax bx c a =++≠()1,n x ()3,0()4,0240b ac ->20a b +=21ax bx c n ++=+420a b c -+<()223y x =-++12.在平面直角坐标系中,若点与关于原点对称,则=________.13.如图,是的半径,弦于点,连接,若的长为8cm ,的长为,则的半径长为________cm.14.在本届全市青少年校园足球比赛中,每两支足球队之间都要进行一次主场比赛和一次客场比赛,共有30场比赛,则参加本届足球比赛的足球队共有________支.15.在矩形中,,点在上,点在平面内,,,连按,将线段绕着点顺时针旋转得到,则线段的最大值为________.三、解答题(共9题,共75分,解答应写出文字说明、证明过程或演算步骤)16.(6分)解方程:(1),(2).17.(6分)已知函数是关于的二次函数.(1)求的值;(2)当为何值时,抛物线有最高点?并求出最高点的坐标.18.(6分)如图,在平面直角坐标系中,已知,,.(1)画出关于原点成中心对称的;(2)画出绕原点顺时针旋转后得到的.19.(8分)已知关于的一元二次方程有两个不相等的实数根.(1)求的取值范围;(),2m -()1,n m n +OA O BC OA ⊥D OB BC AD 2cm O ABCD 6AB =E BC F 2BE =3EF =AF AF A 90︒AP PE 2420x x +-=22150x x +-=()214m m y m xx -=-+x m m ()5,1A -()3,4B -()1,2C -ABC △O 111A B C △ABC △O 90︒222A B C △x ()222110x m x m --++=m(2)若该方程的两个实数根分别为,,且,求的值.20.(8分)如图,抛物线与直线相交于和,(1)求和的值,及抛物线的解析式:(2)结合图象直接写出不等式的解集.21.(8分)如图,是的直径,,是同侧圆上的两点,半径交于点,.(1)求证:;(2)若,求的半径.22.(10分)阳光玫瑰葡萄果肉鲜脆多汁,口感极佳,是一种比较畅销的水果,某水果店以16元/千克的价格购进某种阳光玫瑰葡萄,规定销售单价不低于成本价,且不高于28元/千克,试销期间发现,该种阳光玫瑰葡萄每周销售量(千克)与销售单价(元/千克)满足一次函数关系,部分数据如下表所示:销售单价(元/千克)222426销售量(千克)20018016(1)求与之间的函数关系式;(2)当销售单价定为多少时,水果店每周销售阳光玫瑰葡萄获利1600元?(3)当销售单价定为多少时,水果店每周销售阳光玫瑰葡萄获得的利润(元)最大?最大利润是多少元?23.(11分)【问题情境】活动课上,同学们以等边三角形为背景开展旋转探究活动,数学小组经过研究发现“等边三角形在旋转过程中,对应边所在直线的夹角与旋转角存在一定的数量关系”(注:平面内两直线的夹角是指两直线相交形成的小于或等于的角).如图1,将等边绕点逆时针旋转得到,则线段与线段的夹角.如图2,将等边绕点逆时针旋转得到,则线段与线段所在直线的夹角.1x 2x 12111x x +=-m 21y ax bx =+22y kx =+()2,0-()1,n k n 12y y >AB O C D AB //OD BC AC E 30BAC ∠=︒ CDBC =AC =O y x x y y x w 90︒ABC △A 20︒ADE △BC DE 20BMD ∠=︒ABC △A 100︒ADE △BC DE 80BMD ∠=︒【特例分析】(1)如图1,若将等边绕点逆时针旋转得到,则线段与线段所在直线的夹角度数为度;如图2,若将等边绕点逆时针旋转得到,则线段与线段所在直线的夹角度数为度;【类比分析】(2)如图3,若将等边绕点逆时针旋转得到,连接交于,求与的数量关系;【延伸应用】(3)如图4,已知是等边三角形,,分别在边和上截取和,使得,连接.将绕点逆时针旋转,连接,当和所在直线互相垂直时,请直接写出的长.24.(12分)如图,抛物线交轴于,两点在左边),交轴于点,点是第二象限内抛物线上任意一点,其横坐标为.(1)直接写出点,,的坐标;(2)如图1,连接,过点作直线轴,交于点.当线段的长度最大时,求点的坐标;(3)如图2,连接,,过点作直线,交轴于点.若平分线段,求直线的解析式.ABC △A 30︒ADE △BC DE ABC △A 130︒ADE △BC DE ABC △A 120︒ADE △CE AB F AB CE ABC △6AB =AB AC ADAE AD AE ==DE ADE △A CD BC DE CD 211242y x x =--+x A B A B y C P n A B C AC P //PD y AC D PD P AC BC P //PQ BC y Q AC PQ PQ监利市2024-2025学年度上学期九年级期中学业水平监测九年级数学答案与评分说明(请各位教师在阅卷前先做题审答案)一、选择题1.C2.B3.A4.B5.D6.A7.C8.B9.D 10.C二、填空题11.(-2,3) 12.11 13.5 14.6 15.三、解答题(其他解法,正确即可.)16.解:(1),,,,……(1分),3分)(2)因式分解,得,……(4分)或,,.……(6分)17.解:(1)函数是关于的二次函数,,解得,;……(2分)(2)抛物线有最高点,,,当时,抛物线有最高点,……(4分)二次函数的解析式为,当时,取最大值为2,最高点的坐标为.……(6分)18.解:(1)如图,即为所求;……(3分)31a =4b =2c =-()2441224∆=-⨯⨯-=2x ==-12x =-22x =-()()350x x -+=30x -=50x +=13x =25x =- ()214m m y m x x -=-+x 22m m ∴-=12m =21m =- 10m ∴-<1m ∴<∴1m =-∴224y x x =-+∴4124b m a =-=-=-y ∴()1,2111A B C △(2)如图,即为所求.……(6分)19.解:(1)根据题意得,,……(2分)解得,所以的取值范围是;……(4分)(2)根据题意得,,,……(5分)所以,……(6分)解得,,……(7分)又,所以.……(8分)20.解:(1)将代入得,,解得,……(1分),将代入得,,……(2分)将和分别代入得,解得,……(4分)抛物线的解析式为;……(5分)(2)不等式的解集为或.……(8分,答对一个结果得2分,答对两个结果得3分)21.解:(1)连接,222A B C △()()2221410m m ⎡⎤∆=---+>⎣⎦34m <-m 34m <-()1221211m x x m --+=-=-2212111m x x m +⋅==+1221212112111x x m x x x x m +-+===-+10m =22m =-34m <-2m =-()2,0-22y kx =+022k =-+1k =22y x ∴=+()1,n 22y x =+3n =()2,0-()1,321y ax bx =+0423a b a b =-⎧⎨=+⎩12a b =⎧⎨=⎩∴212y x x =+12y y >2x <-1x >OC是直径,,……(1分),,……(2分),……(3分),,,……(4分);……(5分)(2),,……(6分)设的半径为,则,在中,,即,……(7分)解得或(舍),答:的半径为2.……(8分)22.解:(1)设与之间的函数关系式为,将,和,分别代入得,解得,与之间的函数关系式为;……(3分)(2)根据题意得,……(4分)解得,(舍),……(5分)答:当销售单价定为26元时,水果店每周销售阳光玫瑰葡萄获利1600元;……(6分)(3)由题意得,……(7分),AB O 90ACB ∴∠=︒//OD BC OD AC ∴⊥ AD CD∴=30BAC ︒∠= 60AOD COD ∴∠=∠=︒260BOC BAC ∠=∠=︒ CDBC ∴=OD AC ⊥ AC =12AE AC ∴==O r 12OE r =Rt AOE △222AE OE AO +=22212r r ⎛⎫+= ⎪⎝⎭2r =2r =-O y x y kx b =+22x =200y =24x =180y =y kx b =+2002218024k b k b=+⎧⎨=+⎩10420k b =-⎧⎨=⎩y ∴x 10420y x =-+()()16104201600x x --+=126x =232x =()()21610420105806720w x x x x =--+=-+-100a =-<当时,取最大值,……(8分)当时,随的增大而增大,当时,最大为1680,……(9分)答:当销售单价定为28元时,水果店每周销售阳光玫瑰葡萄获得的利润最大,最大利润是1680元.……(10分)23.解:(1)30;50;……(2分)(2)根据旋转的性质可得,,,……(3分)是等边三角形,,,,,,……(5分),,在中,,即,,;……(7分)(3)如图,①当在直线的上方时,过点作于点,;……(9分)②当在直线的下方时,过点作于点,延长线交的延长线于点,……(11分)24.解:(1),,;……(3分)(2)设直线的解析式为,将代入得,解得,直线的解析式为,……(4分)点在第二象限的抛物线上,点在直线上,∴58029220bxa=-=-=-w∴1628x≤≤w x∴28x=w120EAC∠=︒ABC ADE△≌△ABC△60BAC∴∠=︒AB AC AE==60BAE EAC BAC BAC∴∠=∠-∠=︒=∠90AFE∴∠=︒EF CF=30AEF∴∠=︒2AE AF∴=Rt AEF△222AF EF AE+=()2222AF EF AF+=EF∴=2CE EF∴====DE AC D DH AC⊥H CD=DE AC D DH AC⊥H ED BC G CD=()4,0A-()2,0B()0,2CAC2y kx=+()4,0A-420k-+=12k=∴AC122y x=+P D AC,,,,……(5分)当时,最大,……(6分)此时点的坐标为;……(7分)(3)设直线的解析式为,将代入得,解得,直线的解析式为,……(8分),设直线的解析式为,将代入得,,,直线的解析式为,……(9分),线段的中点坐标为,……(10分)平分线段,线段的中点在直线上,将代入得,解得:,,(舍去)……(11分)直线的解析式为.……(12分)211,242P n n n ⎛⎫∴--+ ⎪⎝⎭()40n -<<1,22D n n ⎛⎫+ ⎪⎝⎭221111224224PD n n n n n ⎛⎫⎛⎫∴=--+-+=-- ⎪ ⎪⎝⎭⎝⎭∴12122b n a -=-=-=--PD P ()2,2-BC 2y mx =+()2,0B 220m +=1m =-∴BC 2y x =-+//PQ BC PQ y x b =-+211,242P n n n ⎛⎫--+ ⎪⎝⎭211242n n n b ∴--+=-+211242b n n ∴=-++∴PQ 211242y x n n =--++2110,242Q n n ⎛⎫∴-++ ⎪⎝⎭∴PQ 211,224n n ⎛⎫-+ ⎪⎝⎭AC PQ ∴PQ AC 211,224n n ⎛⎫-+ ⎪⎝⎭122y x =+2112244n n -+=+11n =-20n =∴PQ 54y x =-+。
2024年荆州市中考数学试卷(含答案解析).doc某书签分享赚钱赏收藏原创保护版权申诉/ 16 立即下载加入VIP,备课更划算当前位置:首页> 初中 > 初中数学 > 数学中考 > 中考真题> 2024年荆州市中考数学试卷(含答案解析).docx 2024年荆州市中考数学试卷(含答案解析).docx文档编号:上传时间:2024-06-23 类型:DOCX 级别:精品资源页数:16 大小:1.82MB 价格:61.00积分(10积分=1元)《2024年荆州市中考数学试卷(含答案解析).docx》由会员分享,可在线阅读,更多相关《2024年荆州市中考数学试卷(含答案解析).docx(16页珍藏版)》请在七彩学科网上搜索。
1、2024年荆州市初中学业水平考试数学(本试卷共6页,满分120分,考试时间120分钟)祝考试顺利注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置.2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效,作图一律用2B铅笔或黑色签字笔.4.考试结束后,请将本试卷和答题卡一并交回._一、选择题(共10题,每题3分,共30分.在每题给出的四个选项中2、,只有一项符合题目要求)1. -15的相反数为 A. 15 B. -15 C. 5 D. -52. 据统计,2024 年国内全年出游人次为48.9亿,则数据4 890 000 000用科学记数法表示为 A.4.8910 B.48.910 C. 4.8910 D. 48.9103.某几何体的三视图如图所示,则该几何体可能是4.下列计算正确的是 A. 2a-a=1 B.aa=a C.a-1=a-1 D.a=a5.如图,将一块含60角的直角三角板斜边的两个顶点分别放在直尺的两条边上.若1=140,则2的度数为 A. 20 B. 25 C. 30 D. 35数学第1页(共6页)6.下列调查中,最适合3、采用全面调查(普查)方式的是A.调查某市初中学生每天课外锻炼的时间B.调查春节期间全国居民的花销情况C.调查某批次新能源汽车的续航能力D.调查乘坐飞机的乘客随身携带物品的安全性7. 如图,O是ABC的外接圆,ABC 的平分线交O于点D,连接AD,CD,若ADC=120,则tanACD= A. 33 B. 1 C. 3 D. 138.某同学在物理实验课上做“小孔成像”实验时,将一支长约3cm的蜡烛(包括火焰高度)立在小孔前,蜡烛所立位置离小孔的水平距离为6cm,此时蜡烛火焰通过小孔刚好在小孔另一侧距小孔2cm处的投影屏上形成了一个“像”,若以小孔为坐标原点,构建如图所示的平面直角坐标系xOy,记蜡4、烛火焰顶端A点处的坐标为(-6,3),则A点对应的“像”的坐标为 A. (3,-1) B. (2,-1) C. (2,-2) D. (3,-2)9. 如图,在菱形ABCD中,B=60,E,F分别是边AB,BC的中点,连接EF,DF,若 EF=2,则DF 的长为A. 2 2B. 23C. 2 5D.2 710. 如图1,在矩形ABCD中(AD2AB),P,Q分别为边AB,BC上的动点,点 P 沿折线B-A-D-C以每秒2个单位长度的速度运动,同时点Q以每秒1个单位长度的速度从点 B沿着 BC运动,当点Q到达点C时,点P随之停止运动.连接PQ,若BPQ的面积与运动时间t之间的函数图象如图2所示.下列结论中:AB边的长度为4;四边形ABCD的面积为20;当t=3时,点P与点D的距离为4;当t=4时,PQAB.正确的序号为 A. B. C. D. 数学第2页(共6页)二、填空题(共5题,每题3分,共15分)11. 计算: 3-8+|-3|=_.12.藤球是一项古老而独特的体育运动项目,有着悠久的历史,又叫“脚踢的排球”.下表是学校藤球队中三名学生五次传踢球成绩的平均数及方差统计表,若要从这三名学生中选择一名成绩好且稳定的学生作为校藤球队的队长,则应选择学生 . 甲乙丙平均数方差1.20.50.513.端午节是中国首个入选世界非物质文化遗产的节文档加载中……请稍候!如果长时间未打开,您也可以点击刷新试试。
2024~2025学年度上学期学情监测九年级数学试题(本试卷共4页,满分120分,考试时间120分钟)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效,作图一律用2B 铅笔或黑色签字笔。
一、选择题(共10题,每题3分,共30分,在每题给出的四个选项中,只有一项符合题目要求)1.中国航天取得了举世瞩目的成就,为人类和平贡献了中国智慧和中国力量,下列是有关中国航天的图标,其文字上方的图案是中心对称图形的是( )A.B. C. D.2.一元二次方程根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.两根互为相反数3.如图,紫荆花绕它的旋转中心,按下列角度旋转,能与其自身重合的是( )A. 60°B. 120°C. 144°D. 180°4.如图,是的直径,,则的度数是( )A. 30°B. 40°C. 50°D. 60°5.若是方程的一个根,则的值为( )A. 2024B. C. D. 10156.用配方法解方程时,配方正确的是()2210x x --=AB O e 30CDB ∠=︒ABC ∠x m =2210090x x --=2246m m -+2012-1003-2840x x --=A. B. C. D.7.函数和函数(a 是常数,且)在同一平面直角坐标系中的图象可能是( )A.B. C. D.8.小聪以二次函数的图象为模型设计了一款杯子,如图为杯子的设计稿,若,,则杯子的高为( )A. B. C. D.9.如图,小程爸爸用一段长的铁丝网围成一个一边靠墙(墙长)的矩形鸭舍,其面积为,在鸭舍侧面中间位置留一个宽的门(由其它材料制成),则的长为( )A. 8m 或5mB. 4m 或2.5mC. 8mD. 5m 10.如图,开口向上的抛物线()与x 轴交于点,其对称轴为直线,结合图象给出下列结论:①;②;③当时,y 随x 的增大而减小;④当时,关于x 的一元二次方程有两个不相等的实数根.其中正确的结论是( )A.①③④ B.②③④ C.②③ D.①②④二、填空题(共5题,每题3分,共15分)11.在平面直角坐标系中,点关于原点对称的点的坐标是______.12.抛物线向左平移2个单位长度,向下平移1个单位长度后的图象解析式为______.13.如图,是的直径,弦于点E ,,,则的长为______cm.()2412x -=()2420x -=()2868x -=()2860x -=y ax a =+221y ax x =--+0a ≠()292616y x =-+8cm AB =4cm DE =CE 13cm 12cm 15cm 9cm12m 6m 220m 1m BC 2y ax bx c =++0a ≠()4,01x =a c b +>20a b +=0x <m a b c >++2ax bx c m ++=()2,3-()2234y x =-+AB O e CD AB ⊥16cm CD =4cm BE =OC14.已知关于x 的方程,若等腰三角形的一边长,另外两边长b ,c 恰好是这个方程的两个根,则这个三角形的周长为______.15.如图,的半径为2,圆心M 的坐标为,点P 是上的任意一点,,且,与x 轴分别交于A ,B 两点,若点A ,点B 关于原点O 对称,则的最小值为______.三、解答题(共9题,共75分,解答应写出文字说明、证明过程或演算步骤)16.(6分)解方程:(1),(2).17.(6分)已知二次函数.(1)写出该函数图象的开口方向;(2)求出该函数图象的对称轴和顶点坐标;(3)当x 满足什么条件时,y 随x 增大而减小?18.(6分)如图,在平面直角坐标系中,已知点,,.(1)画出关于原点O 成中心对称的;(2)画出绕点逆时针旋转90°后得到的.19.(8分)已知关于x 的一元二次方程有两个不相等的实数根.(1)求m 的取值范围;(2)若该方程的两个实数根分别为,,且,求m 的值.20.(8分)如图,已知抛物线和直线相交于点和.()23230x k x k -+++=4a =M e ()3,4M e PA PB ⊥PA PB AB 2240x x --=23100x x --=247y x x =-+-()2,0A ()1,1B ()4,2C ABC △111A B C △ABC △()0,1Q -222A B C △()222110x m x m -++-=1x 2x 22124x x +=21y x bx c =-++21522y x =+()1,A m -(),4B n(1)求m 和n 的值;(2)求抛物线的解析式;(3)结合图象直接写出满足的x 的取值范围.21.(8分)如图,为的直径,点C ,D 为直径同侧圆上的点,且点D 为的中点,过点D 作于点E ,交于点G ,延长,交于点F .图① 图②(1)如图①,若,求证:;(2)如图②,若,,求的半径.22.(10分)我市某镇是全国著名的蓝莓产地,某蓝莓基地近几年不断改良种植技术,产量明显增加,2022年的产量是5000千克,2024年的产量达到7200千克。
湖北省荆州中学2023-2024学年高一下学期5月月考数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.若复数满足,则的虚部为( )A.-4B. C. D.2.如图,在三棱柱中,分别为的中点,则下列说法错误的是()A.四点共面B.C.三线共点D.3.已知,则“”是“"的()A.必要不充分条件B.充分必要条件C.充分不必要条件D.既不充分也不必要条件4.在正方体中,点是棱上的动点,则过三点的截面图形是()A.等边三角形B.矩形C.等腰梯形D.以上都有可能5.已知正数x 、y 满足,则的最小值为( )A.8B. C.12D.6.已知函数的定义域为,且为奇函数,为偶函数,则()A.1B.-1C.0D.-2z (34)|43|i z i +=+z 45-4i-45i -111ABC A B C -E F G H 、、、111111BB CC A B A C 、、、E F G H 、、、11EGB FHC ∠=∠1EG FH AA 、、//EF GH(1,1),(,2)a m b m =-= 2m =//a b1111ABCD A B C D -Q 1DD 1A Q B 、、439x y -=8x y+4+()f x R (1)1f x --(1)f x +(2023)f =7.已知正数a 、b 、c 满足,则()A. B. C. D.8.记函数的最小正周期为.若不等式对恒成立,且的图像关于对称,则的最小值为()A.1B.2C.3D.4二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.若复数,则下列说法正确的是( )A.的虚部是B.若复数的共轭复数为,则C.在复数范围内,是方程的根D.若复数满足,则|z|的最大值为610.如图所示,设是平面内相交成角的两条数轴,分别是与x 、y 轴正方向同向的单位向量,则称平面坐标系为仿射坐标系.若,则把有序数对叫做向量的仿射坐标,记为.在的仿射坐标系中,,.则下列结论中,正确的是()A. B.C. D.在上的投影向量为323log 252aa b b c ⎛⎫+=+== ⎪⎝⎭a c b<<a b c<<c a b<<b c a<<()sin()(0,0)f x x ωϕωϕπ=+><<T ()8T f x f ⎛⎫⎪⎝⎭…x R ∀∈()f x π8x =ω122,34z i z i =-=+12z z -5i-1z 1z 22211111z z z z z ==⋅=1z 2450x x -+=z 21z z -=Ox Oy 、2πθθ⎛⎫≠⎪⎝⎭12e e、xOy θ12OM xe ye =+(,)x y OM (,)OM x y =23πθ=(1,2)a =(2,1)b =- (1,3)a b -=-||a =a b⊥ a b 33,714⎛⎫- ⎪⎝⎭11.在锐角中,设分别表示角对边,,则下列选项正确的有( )A. B.的取值范围是C.当时D.若当A ,B 变化时,存在最大值,则正数的取值范围为三、填空题:本题共3小题,每小题5分,共15分.12.已知,则___________.13.已知点与点,点在直线AB 上,且,则点的坐标为__________.14.如图,某商场内有一家半圆形时装店,其平面图如图所示,是圆心,直径MN 为24米,是弧的中点.一个时装塑料模特在OP 上,.计划在弧上设置一个收银台,记,其中(1)则__________.(用表示);(2)若越大,该店店长在收银台处的视线范围越大,则当店长在收银台处的视线范围最大时,AB 的长度为__________米.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.分)如图所示棱长为1的正四面体ABCD,E 、F 分别为AB 、AC 中点,为靠近的三等分点.记.ABC a b c 、、A B C 、、1,cos cos 1a b A B =-=2B A =b 32b =ABC 2sin 2sin B A λ-λ⎛ ⎝102,103ab==2ba=(3,4)A -(1,2)B -P ||2||AP PB =P O P MNA 2MA AO = NPB BON α∠=π0,2α⎛⎫∈ ⎪⎝⎭tan ABO ∠=αABO ∠B B 15.(13G D ,a AB b AC ==(1),求的最小值;(2)求证:平面BFG .分)已知,设函数.(1)求函数的表达式及其单调增区间;(2)将函数的图象上每个点的纵坐标缩短到原来的,横坐标缩短到原来的,得到函数的图象,求函数在区间内的所有零点之和.17.(15分)已知锐角中,角A 、B 、C 的对边分别为a 、b 、c,向量,,且与共线.(1)求角的值;(2)若,求的取值范围.18.(17分)如图,正边长为2,D 、E 分别是边AB 、AC 的中点,现沿着DE 将折起,得到四棱锥,点为中点.(1)求证:平面;,R c a tb t =+∈||c //DE 16.(15(2cos ,cos ),sin ,sin 3a x x x b x x π⎛⎫⎛⎫=-=+ ⎪ ⎪⎝⎭⎝⎭()f x a b =⋅ ()y f x =()f x 1212()g x 1()3y g x =+,22ππ⎡⎤-⎢⎥⎣⎦ABC (cos )m A A =(2sin cos )n C B B =- m nA 2b =a c -ABC ADE A BCED '-M AC '//ME A BD '(2)若求四棱锥的表面积;(3)过ME 的平面分别与棱相交于点S 、T ,记与的面积分别为,若,求的值.19.(17分)早在公元5世纪,我国数学家祖暅在求球体积时,就创造性地提出了一个原理“幂势既同,则积不容异”,意思是夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.(1)如图一所示,在一个半径为3的半球体中,挖去一个半径为的球体,求剩余部分的体积;(2)如图二,由抛物线和线段围成一个几何形,将该几何形绕轴旋转得到一个抛物线旋转体,请运用祖暅原理求该旋转体的体积;(3)将两个底面半径为1,高为3的圆柱体按如图三所示正交拼接在一起,构成一个十字型几何体.求这个十字型的体积,关键在求两个圆柱公共部分几何体的体积,请运用祖暅原理求出该公共部分几何体的体积.A B '=A BCED '-A D AB ''、A ST 'A BD 'A ST A BD S S '' 、14A STA BDS S ''= A SA D''3221(33)3y x x =-≤≤3(33)y x =-≤≤y荆州中学2023~2024学年高一下学期5月月考数学试题参考答案一、选择题:BBCD CAAB 二、选择题:10.AD 11.ACD三、填空题:12.313.或14.【详解】(1)因为是是弧的中点,所以.因为,所以,则.由题意知,在中,设,则,由,,,则.故答案为:(2)设.,则.令当即取得最大值.,即的最大值为.9.CD1,03⎛⎫ ⎪⎝⎭(5,8)-P MNOP MN ⊥1cos 2OA MAO AM ∠==π3MAO ∠=OA ==ABO ABO β∠=πππ22BAO βααβ⎛⎫∠=---=+- ⎪⎝⎭12πsin 2αβ=⎛⎫+- ⎪⎝⎭cos()βαβ=-cos cos sin sin βαβαβ=+tan tan ABO β∠==()0,2f παα⎛⎫=∈ ⎪⎝⎭sin ,t t α-=∈-cos α==1(),h t t ==∈1t =sin ()h t α=max ()h t h ==tan β因为函数在上单调递增,所以当取得最大值时,也取得最大值,店长在收银台处的视线范围最大,此时.故当视线范围最大时,米.故答案为:四、解答题:15.(13分)【答案】(2)证明见解析【详解】(1)已知,所以………………..…………3分…………………………..3分故.(2)连接CE ,交BF 于,连接分别为AB 、AC 中点,为的重心,,………………………..………………………..4分又,面面面BFG (3)分16.(15分)【答案】(1),单调递增区间为,(2)()tan g ββ=0,2π⎛⎫⎪⎝⎭tan ββB cos cos sin 2AOB παα⎛⎫∠=-==⎪⎝⎭AB ==(R)c a tb t =+∈||c == ==≥||c H ,GH E F 、H ∴ABC ||2||CH HE ∴=||2,//||CG GH DE GD =∴DE ⊂/ ,BFG GH ⊂,//BFG DE ∴()2sin 23f x x π⎛⎫=+⎪⎝⎭5,Z 1212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦【详解】(1)因为,所以,.……………………………………………..4分由,解得,…………………..3分即的单调递增区间为;(2)依题意可得,……………………………………3分由得,由图可知,在上有4个零点:,根据对称性有,从而所有零点和………………………..5分6π(2cos ,cos ),sin ,sin 3a x x x b x x π⎛⎫⎛⎫=-=+ ⎪ ⎪⎝⎭⎝⎭()2cos sin (cos )sin 3f x a b x x x x x π⎛⎫=⋅=++- ⎪⎝⎭ 22212cos sin sin cos cos sin sin cos 2x x x x x x x x x x x x ⎛⎫=+=+-+ ⎪ ⎪⎝⎭sin 222sin 23x x x π⎛⎫=+=+ ⎪⎝⎭222,232k x k k πππππ-≤+≤+∈Z 5,1212k x k k ππππ-≤≤+∈Z ()f x 5,,1212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z ()sin 43g x x π⎛⎫=+⎪⎝⎭1()03g x +=1sin 433x π⎛⎫+=- ⎪⎝⎭1sin 433x π⎛⎫+=- ⎪⎝⎭,22ππ⎡⎤-⎢⎣⎦1234,,,x x x x 1234444433333,2222x x x x ππππππ++++++=-=12346x x x x π+++=17.(15分)【答案】(1)(2)【详解】(1)解:因为与共线,所以,-2分法一:由正弦定理得,又由余弦定理得,则,又为锐角三角形,故.………………………..3分法二:由两角和的正弦公式得:,因为,所以,又为锐角三角形,故.…………………………………………3分(2),…………4分由于为锐角三角形,则,且,解得,………………2分所以,……2分而,即的取值范围为...................2分6A π=⎛- ⎝m nsin (2sin cos )cos cos sin )sin 0A B A C B A B A B C A --=+-=cos cos 2sin 0a B b A c A +-=222222cos ,cos ,2sin 022a c b b c a B A c c A ac bc+-+-==∴-=1sin 2A =ABC 6A π=sin()2sin sin sin 2sin sin 0A B C A C C A +-=-=sin 0C ≠1sin 2A =ABC 6A π=52sin sin 1sin cos 6,sin sin sin sin sin B b A b C B a c B B B B Bπ⎛⎫- ⎪⎝⎭======+ABC 0,2B π⎛⎫∈ ⎪⎝⎭5062C B ππ<=-<,32B ππ⎛⎫∈ ⎪⎝⎭1cos tan sin sin 22B a c B B B B ⎫-=-+===⎪⎭,264B ππ⎛⎫∈ ⎪⎝⎭tan ,2B a c ⎫∈∴-⎪⎭⎛- ⎝18.(17分)【答案】(1)证明见解析(2)【详解】(1)取中点,连DN ,MN ,因为点为中点,,且,同时分别是边AB ,AC 的中点,,且,四边形MNDE 是平行四边形,.......................3分又平面平面平面......................2分(2),,.....................2分根据对称性有,而,所以,所以,所以,..............2分而,.....................1分四棱锥的表面积分(3)由(1)知平面,平面平面..........................................2分又……………………………………3分19.(17分)【答案】(1)2S =+A B 'N M AC '//MN BC ∴12MN BC =D E 、//DE BC ∴12DE BC =//,,MN DE MN DE ∴=∴//ME ND ∴ND ⊂,A BD ME '⊂/,//A BD ME '∴A BD '2221,A B A D DB A D DB A B ''''===∴+= 190,2A DB A EC A DB S S '''︒∴∠=∴==AC A B ''==2BC =222AC A B BC ''+=90CA B '︒∴∠=112A BC S AB AC '''=⋅= 22BCDE ABC A DE S S S '+=== A'BCDE -111222S =+++=+//ME A BD 'ST =A BD '⋂,//MEST ME ST ∴11,242A'ST A STA ST A'DN A BDA DN S S S S S S ''''==∴= 221//,,2A STA DNS A S A S ST DN S A D A D ''''''∴==∴= 272716(2)(3)223ππ【详解】(1)依题意该几何体的体积.(2)图1阴影部分是由长方形ABCD (长为6,宽为3)和抛物线围成,图2阴影部分是由半径为3的半圆和直径为3的圆围成的,将图1绕轴旋转一周可得一圆柱挖去中间的部分的几何体记为,将图2以小圆的直径为轴旋转一周可得一个半球挖去一个小球的几何体记为,将两个几何体放在同一水平面上,用与圆柱下底面或与半球大圆距离为的平面截两个几何体,可得截面都为圆环,纵截面图如下,几何体的截面面积为,几何体的截面面积为,又两几何体等高,由祖暅原理可得两几何体的体积相等,结合(1)可知几何体的体积,而由抛物线跟线段围成一个几何形,将该几何形绕轴该公共部分几何体得到一个抛物线旋转体,是由一个圆柱(底面半径为3,高为3)减去几何体,所以所求的体积.331144327323322V πππ⎛⎫=⨯⨯-⨯= ⎪⎝⎭213y x =O P y M N (03)t t <<M 223)93t ππππ⨯-⨯=-N 2293ππππ⨯-=-M 1272M V V π==21(33)3y x x =-≤≤3(33)y x =-≤≤y M 222727332722M V V ππππ=⨯⨯-=-=(3)首先证明该公共部分几何体的体积公式为(为圆柱的底面半径):该公共部分几何体是一个正方体被两个圆柱从纵横两侧面作内切圆柱体时的两圆柱体的公共部分,计算其体积的方法是将原来的公共部分几何体平均分为八份,取它的八分之一(如图四).记正方形OABC 的边长为,设,过点作平面PQRS 平行于平面OABC .又,由公股定理有故此正方形PQRS 面积是.如果将图四的几何体放在棱长为的正方体内(如图五),不难证明图五中与图四等高处阴影部分的面积等于。
荆州八县市2022—2023学年度第一学期期末联考高二数学试题(测试时间:120分钟卷面总分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.空间中点A (1,2,3)到点B (0,2,1)的距离为A . 2B C D .32.,,若,则a=221:30l a x y a a -+-=2:(43)20l a x y ---=12//l l A . 1B .1或2C .1或3D .33、已知正三棱柱,M 为棱BC 上靠近点C 的三等分点,则111A B C ABC -1A M =A .B .1111123AC CC C B -+111111122A C AB B B++C .D .1111113A C CBC C++ 1111233A C ABC C++4.若的前n 项和,则{}n a 322n S n n =-56a a +=A . 86B . 112C . 156D . 845.已知分别为椭圆的左右焦点,P 为C 上一动点,A 为C12,F F 2222:1(0x y C a b a a+=>>)的左顶点,若,则C 的离心率为1232PF PA PF =+A .BC .D12136.公差不为0的等差数列中,,则xy 的值不可能是{}n a 17x y a a a a -=-A .10B .24C . 22D . 307.如图,已知三棱锥P—ABC 的底面是以A 为直角顶点,腰长为2的等腰三角形,且,E 为P 点在底面的投影,且,PA 与底面所成角为,则该三棱锥外1PA =BC AE ⊥4π接球的体积为A BC .D .83π8.2022年是发现土星卫星和土星环缝的天文学家乔凡尼·卡西尼逝世310周年,卡西尼曾对把卵形线描绘成轨道有兴趣。
2022年湖北省荆州市中考数学试卷一、选择题〔本大题共10小题,每题只有唯一正确答案,每题3分,共30分〕1.以下实数中最大的数是〔〕A.3 B.0 C.D.﹣42.中国企业 2022年已经在“一带一路〞沿线国家建立了56个经贸合作区,直接为东道国增加了180 000个就业岗位.将180 000用科学记数法表示应为〔〕A.18×104B.1.8×105C.1.8×106D.18×1053.一把直尺和一块三角板ABC〔含30°、60°角〕摆放位置如下图,直尺一边与三角板的两直角边分别交于点D、点E,另一边与三角板的两直角边分别交于点F、点A,且∠CDE=40°,那么∠BAF的大小为〔〕A.40° B.45° C.50° D.10°4.为了解某班学生双休户外活动情况,对局部学生参加户外活动的时间进行抽样调查,结果如下表:户外活动的时间〔小时〕 1 2 3 6 学生人数〔人〕 2 2 4 2那么关于“户外活动时间〞这组数据的众数、中位数、平均数分别是〔〕A.3、3、3 B.6、2、3 C.3、3、2 D.3、2、35.以下根式是最简二次根式的是〔〕A.B.C.D.6.如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,那么∠CBD的度数为〔〕A.30°B.45° C.50° D.75°7.为配合荆州市“我读书,我快乐〞读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠.小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元.假设此次小慧同学不买卡直接购书,那么她需付款多少元?〔〕A.140元B.150元C.160元D.200元8.?九章算术?中的“折竹抵地〞问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈〔一丈=10尺〕,一阵风将竹子折断,其竹稍恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x尺,那么可列方程为〔〕A.x2﹣6=〔10﹣x〕2B.x2﹣62=〔10﹣x〕2C.x2+6=〔10﹣x〕2D.x2+62=〔10﹣x〕2 9.如图是某几何体的三视图,根据图中的数据,求得该几何体的体积为〔〕A.800π+1200 B.160π+1700 C.3200π+1200 D.800π+300010.规定:如果关于x的一元二次方程ax2+bx+c=0〔a≠0〕有两个实数根,且其中一个根是另一个根的2倍,那么称这样的方程为“倍根方程〞.现有以下结论:①方程x2+2x﹣8=0是倍根方程;②假设关于x的方程x2+ax+2=0是倍根方程,那么a=±3;③假设关于x的方程ax2﹣6ax+c=0〔a≠0〕是倍根方程,那么抛物线y=ax2﹣6ax+c与x轴的公共点的坐标是〔2,0〕和〔4,0〕;④假设点〔m,n〕在反比例函数y=的图象上,那么关于x的方程mx2+5x+n=0是倍根方程.上述结论中正确的有〔〕A.①② B.③④ C.②③ D.②④二、填空题〔本大题共8小题,每题3分,共24分〕11.化简〔π﹣3.14〕0+|1﹣2|﹣+〔〕﹣1的结果是.12.假设单项式﹣5x4y2m+n与 2022x m﹣n y2是同类项,那么m﹣7n的算术平方根是.13.假设关于x的分式方程=2的解为负数,那么k的取值范围为.14.观察以下图形:它们是按一定规律排列的,依照此规律,第9个图形中共有个点.15.将直线y=x+b沿y轴向下平移3个单位长度,点A〔﹣1,2〕关于y轴的对称点落在平移后的直线上,那么b的值为.16.如图,A、B、C是⊙O上的三点,且四边形OABC是菱形.假设点D是圆上异于A、B、C 的另一点,那么∠ADC的度数是.17.如图,在5×5的正方形网格中有一条线段AB,点A与点B均在格点上.请在这个网格中作线段AB的垂直平分线.要求:①仅用无刻度直尺,且不能用直尺中的直角;②保存必要的作图痕迹.18.如图,在平面直角坐标系中,矩形OABC的顶点A、C分别在x轴的负半轴、y轴的正半轴上,点B在第二象限.将矩形OABC绕点O顺时针旋转,使点B落在y轴上,得到矩形ODEF,BC与OD相交于点M.假设经过点M的反比例函数y=〔x<0〕的图象交AB于点N,S矩形OABC=32,tan∠DOE=,那么BN的长为.三、解答题〔本大题共7小题,共66分〕19.〔1〕解方程组:〔2〕先化简,再求值:﹣÷,其中x=2.20.如图,在矩形ABCD中,连接对角线AC、BD,将△ABC沿BC方向平移,使点B移到点C,得到△DCE.〔1〕求证:△ACD≌△EDC;〔2〕请探究△BDE的形状,并说明理由.21.某校为了解本校九年级学生足球训练情况,随机抽查该年级假设干名学生进行测试,然后把测试结果分为4个等级:A、B、C、D,并将统计结果绘制成两幅不完整的统计图.请根据图中的信息解答以下问题:〔1〕补全条形统计图〔2〕该年级共有700人,估计该年级足球测试成绩为D等的人数为人;〔3〕在此次测试中,有甲、乙、丙、丁四个班的学生表现突出,现决定从这四个班中随机选取两个班在全校举行一场足球友谊赛.请用画树状图或列表的方法,求恰好选到甲、乙两个班的概率.22.如图,某数学活动小组为测量学校旗杆AB的高度,沿旗杆正前方2米处的点C出发,沿斜面坡度i=1:的斜坡CD前进4米到达点D,在点D处安置测角仪,测得旗杆顶部A 的仰角为37°,量得仪器的高DE为1.5米.A、B、C、D、E在同一平面内,AB⊥BC,AB∥DE.求旗杆AB的高度.〔参考数据:sin37°≈,cos37°≈,tan37°≈.计算结果保存根号〕23.关于x的一元二次方程x2+〔k﹣5〕x+1﹣k=0,其中k为常数.〔1〕求证:无论k为何值,方程总有两个不相等实数根;〔2〕函数y=x2+〔k﹣5〕x+1﹣k的图象不经过第三象限,求k的取值范围;〔3〕假设原方程的一个根大于3,另一个根小于3,求k的最大整数值.24.荆州市某水产养殖户进行小龙虾养殖.每千克小龙虾养殖本钱为6元,在整个销售旺季的80天里,销售单价p〔元/千克〕与时间第t〔天〕之间的函数关系为:,日销售量y〔千克〕与时间第t〔天〕之间的函数关系如下图:〔1〕求日销售量y与时间t的函数关系式?〔2〕哪一天的日销售利润最大?最大利润是多少?〔3〕该养殖户有多少天日销售利润不低于2400元?〔4〕在实际销售的前40天中,该养殖户决定每销售1千克小龙虾,就捐赠m〔m<7〕元给村里的特困户.在这前40天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求m的取值范围.25.如图在平面直角坐标系中,直线y=﹣x+3与x轴、y轴分别交于A、B两点,点P、Q 同时从点A出发,运动时间为t秒.其中点P沿射线AB运动,速度为每秒4个单位长度,点Q沿射线AO运动,速度为每秒5个单位长度.以点Q为圆心,PQ长为半径作⊙Q.〔1〕求证:直线AB是⊙Q的切线;〔2〕过点A左侧x轴上的任意一点C〔m,0〕,作直线AB的垂线CM,垂足为M.假设CM与⊙Q相切于点D,求m与t的函数关系式〔不需写出自变量的取值范围〕;〔3〕在〔2〕的条件下,是否存在点C,直线AB、CM、y轴与⊙Q同时相切?假设存在,请直接写出此时点C的坐标;假设不存在,请说明理由.2022年湖北省荆州市中考数学试卷参考答案与试题解析一、选择题〔本大题共10小题,每题只有唯一正确答案,每题3分,共30分〕1.以下实数中最大的数是〔〕A.3 B.0 C.D.﹣4【考点】2A:实数大小比拟.【分析】将各数按照从大到小顺序排列,找出最大数即可.【解答】解:各数排列得:3>>0>﹣4,那么实数找最大的数是3,应选A2.中国企业 2022年已经在“一带一路〞沿线国家建立了56个经贸合作区,直接为东道国增加了180 000个就业岗位.将180 000用科学记数法表示应为〔〕A.18×104B.1.8×105C.1.8×106D.18×105【考点】1I:科学记数法—表示较大的数.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:180000=1.8×105.应选:B.3.一把直尺和一块三角板ABC〔含30°、60°角〕摆放位置如下图,直尺一边与三角板的两直角边分别交于点D、点E,另一边与三角板的两直角边分别交于点F、点A,且∠CDE=40°,那么∠BAF的大小为〔〕A.40° B.45° C.50° D.10°【考点】JA:平行线的性质.【分析】先根据∠CDE=40°,得出∠CED=50°,再根据DE∥AF,即可得到∠CAF=50°,最后根据∠BAC=60°,即可得出∠BAF的大小.【解答】解:由图可得,∠CDE=40°,∠C=90°,∴∠CED=50°,又∵DE∥AF,∴∠CAF=50°,∵∠BAC=60°,∴∠BAF=60°﹣50°=10°,应选:D.4.为了解某班学生双休户外活动情况,对局部学生参加户外活动的时间进行抽样调查,结果如下表:户外活动的时间〔小时〕 1 2 3 6 学生人数〔人〕 2 2 4 2那么关于“户外活动时间〞这组数据的众数、中位数、平均数分别是〔〕A.3、3、3 B.6、2、3 C.3、3、2 D.3、2、3【考点】W5:众数;W2:加权平均数;W4:中位数.【分析】根据中位数、平均数和众数的概念求解即可.【解答】解:∵共10人,∴中位数为第5和第6人的平均数,∴中位数=〔3+3〕÷3=5;平均数=〔1×2+2×2+3×4+6×2〕÷10=3;众数是一组数据中出现次数最多的数据,所以众数为3;应选A.5.以下根式是最简二次根式的是〔〕A.B.C.D.【考点】74:最简二次根式.【分析】根据最简二次根式是被开方数不含分母,被开方数不含开的尽的因数或因式,可得答案.【解答】解:A、该二次根式的被开方数中含有分母,不是最简二次根式,故本选项错误;B、该二次根式的被开方数中含有小数,不是最简二次根式,故本选项错误;C、该二次根式符合最简二次根式的定义,故本选项正确;D、20=22×5,该二次根式的被开方数中含开的尽的因数,不是最简二次根式,故本选项错误;应选:C.6.如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,那么∠CBD的度数为〔〕A.30° B.45° C.50° D.75°【考点】KH:等腰三角形的性质;KG:线段垂直平分线的性质.【分析】根据三角形的内角和定理,求出∠C,再根据线段垂直平分线的性质,推得∠A=∠ABD=30°,由外角的性质求出∠BDC的度数,从而得出∠CBD=45°.【解答】解:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,∵AB的垂直平分线交AC于D,∴AD=BD,∴∠A=∠ABD=30°,∴∠BDC=60°,∴∠CBD=180°﹣75°﹣60°=45°.应选B.7.为配合荆州市“我读书,我快乐〞读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠.小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元.假设此次小慧同学不买卡直接购书,那么她需付款多少元?〔〕A.140元B.150元C.160元D.200元【考点】8A:一元一次方程的应用.【分析】此题的关键描述:“先买优惠卡再凭卡付款,结果节省了人民币10元〞,设出未知数,根据题中的关键描述语列出方程求解.【解答】解:设李明同学此次购书的总价值是人民币是x元,那么有:20+0.8x=x﹣10解得:x=150即:小慧同学不凭卡购书的书价为150元.应选:B.8.?九章算术?中的“折竹抵地〞问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈〔一丈=10尺〕,一阵风将竹子折断,其竹稍恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x尺,那么可列方程为〔〕A.x2﹣6=〔10﹣x〕2B.x2﹣62=〔10﹣x〕2C.x2+6=〔10﹣x〕2D.x2+62=〔10﹣x〕2【考点】KU:勾股定理的应用.【分析】根据题意画出图形,设折断处离地面的高度为x尺,再利用勾股定理列出方程即可.【解答】解:如图,设折断处离地面的高度为x尺,那么AB=10﹣x,BC=6,在Rt△ABC中,AC2+BC2=AB2,即x2+62=〔10﹣x〕2.应选D.9.如图是某几何体的三视图,根据图中的数据,求得该几何体的体积为〔〕A.800π+1200 B.160π+1700 C.3200π+1200 D.800π+3000【考点】U3:由三视图判断几何体.【分析】根据给出的几何体的三视图可知几何体是由一个圆柱和一个长方体组成,从而利用三视图中的数据,根据体积公式计算即可.【解答】解:由三视图可知,几何体是由一个圆柱和一个长方体组成,圆柱底面直径为20,高为8,长方体的长为30,宽为20,高为5,故该几何体的体积为:π×102×8+30×20×5=800π+3000,应选:D.10.规定:如果关于x的一元二次方程ax2+bx+c=0〔a≠0〕有两个实数根,且其中一个根是另一个根的2倍,那么称这样的方程为“倍根方程〞.现有以下结论:①方程x2+2x﹣8=0是倍根方程;②假设关于x的方程x2+ax+2=0是倍根方程,那么a=±3;③假设关于x的方程ax2﹣6ax+c=0〔a≠0〕是倍根方程,那么抛物线y=ax2﹣6ax+c与x轴的公共点的坐标是〔2,0〕和〔4,0〕;④假设点〔m,n〕在反比例函数y=的图象上,那么关于x的方程mx2+5x+n=0是倍根方程.上述结论中正确的有〔〕A.①② B.③④ C.②③ D.②④【考点】G6:反比例函数图象上点的坐标特征;AA:根的判别式;AB:根与系数的关系;HA:抛物线与x轴的交点.【分析】①通过解方程得到该方程的根,结合“倍根方程〞的定义进行判断;②设x2=2x1,得到x1•x2=2x12=2,得到当x1=1时,x2=2,当x1=﹣1时,x2=﹣2,于是得到结论;③根据“倍根方程〞的定义即可得到结论;④假设点〔m,n〕在反比例函数y=的图象上,得到mn=4,然后解方程mx2+5x+n=0即可得到正确的结论;【解答】解:①由x2﹣2x﹣8=0,得〔x﹣4〕〔x+2〕=0,解得x1=4,x2=﹣2,∵x1≠2x2,或x2≠2x1,∴方程x2﹣2x﹣8=0不是倍根方程.故①错误;②关于x的方程x2+ax+2=0是倍根方程,∴设x2=2x1,∴x1•x2=2x12=2,∴x1=±1,当x1=1时,x2=2,当x1=﹣1时,x2=﹣2,∴x1+x2=﹣a=±3,∴a=±3,故②正确;③关于x的方程ax2﹣6ax+c=0〔a≠0〕是倍根方程,∴x2=2x1,∵抛物线y=ax2﹣6ax+c的对称轴是直线x=3,∴抛物线y=ax2﹣6ax+c与x轴的交点的坐标是〔2,0〕和〔4,0〕,故③正确;④∵点〔m,n〕在反比例函数y=的图象上,∴mn=4,解mx2+5x+n=0得x1=﹣,x2=﹣,∴x2=4x1,∴关于x的方程mx2+5x+n=0不是倍根方程;应选C.二、填空题〔本大题共8小题,每题3分,共24分〕11.化简〔π﹣3.14〕0+|1﹣2|﹣+〔〕﹣1的结果是 2 .【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】原式利用零指数幂、负整数指数幂法那么,绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=1+2﹣1﹣2+2=2,故答案为:212.假设单项式﹣5x4y2m+n与 2022x m﹣n y2是同类项,那么m﹣7n的算术平方根是 4 .【考点】22:算术平方根;34:同类项;98:解二元一次方程组.【分析】根据同类项定义可以得到关于m、n的二元一次方程,即可求得m、n的值即可解题.【解答】解:∵单项式﹣5x4y2m+n与 2022x m﹣n y2是同类项,∴4=m﹣n,2m+n=2,解得:m=2,n=﹣2,∴m﹣7n=16,∴m﹣7n的算术平方根==4,故答案为 4.13.假设关于x的分式方程=2的解为负数,那么k的取值范围为k<3且k≠1 .【考点】B2:分式方程的解;C6:解一元一次不等式.【分析】分式方程去分母转化为整式方程,表示出整式方程的解,根据解为负数确定出k 的范围即可.【解答】解:去分母得:k﹣1=2x+2,解得:x=,由分式方程的解为负数,得到<0,且x+1≠0,即≠﹣1,解得:k<3且k≠1,故答案为:k<3且k≠114.观察以下图形:它们是按一定规律排列的,依照此规律,第9个图形中共有135 个点.【考点】38:规律型:图形的变化类.【分析】仔细观察图形,找到图形变化的规律的通项公式,然后代入9求解即可.【解答】解:第一个图形有3=3×1=3个点,第二个图形有3+6=3×〔1+2〕=9个点;第三个图形有3+6+9=3×〔1+2+3〕=18个点;…第n个图形有3+6+9+…+3n=3×〔1+2+3+…+n〕=个点;当n=9时, =135个点,故答案为:135.15.将直线y=x+b沿y轴向下平移3个单位长度,点A〔﹣1,2〕关于y轴的对称点落在平移后的直线上,那么b的值为 4 .【考点】F9:一次函数图象与几何变换.【分析】先根据一次函数平移规律得出直线y=x+b沿y轴向下平移3个单位长度后的直线解析式,再把点A〔﹣1,2〕关于y轴的对称点〔1,2〕代入,即可求出b的值.【解答】解:将直线y=x+b沿y轴向下平移3个单位长度,得直线y=x+b﹣3.∵点A〔﹣1,2〕关于y轴的对称点是〔1,2〕,∴把点〔1,2〕代入y=x+b﹣3,得1+b﹣3=2,解得b=4.故答案为4.16.如图,A、B、C是⊙O上的三点,且四边形OABC是菱形.假设点D是圆上异于A、B、C的另一点,那么∠ADC的度数是60°或120°.【考点】M6:圆内接四边形的性质;L8:菱形的性质;M5:圆周角定理.【分析】连接OB,那么AB=OA=OB故可得出△AOB是等边三角形,所以∠ADC=60°,∠AD′C=120°,据此可得出结论.【解答】解:连接OB,∵四边形OABC是菱形,∴AB=OA=OB=BC,∴△AOB是等边三角形,∴∠ADC=60°,∠AD′C=120°.故答案为:60°或120°.17.如图,在5×5的正方形网格中有一条线段AB,点A与点B均在格点上.请在这个网格中作线段AB的垂直平分线.要求:①仅用无刻度直尺,且不能用直尺中的直角;②保存必要的作图痕迹.【考点】N4:作图—应用与设计作图;KG:线段垂直平分线的性质.【分析】以AB为边作正方形ABCD,正方形ABEF,连接AC,BD交于O,连接AE,BF交于O′,过O,O′作直线OO′于是得到结论.【解答】解:如下图,直线OO′即为所求.18.如图,在平面直角坐标系中,矩形OABC的顶点A、C分别在x轴的负半轴、y轴的正半轴上,点B在第二象限.将矩形OABC绕点O顺时针旋转,使点B落在y轴上,得到矩形ODEF,BC与OD相交于点M.假设经过点M的反比例函数y=〔x<0〕的图象交AB于点N,S矩形OABC=32,tan∠DOE=,那么BN的长为 3 .【考点】R7:坐标与图形变化﹣旋转;G5:反比例函数系数k的几何意义;T7:解直角三角形.【分析】利用矩形的面积公式得到AB•BC=32,再根据旋转的性质得AB=DE,OD=OA,接着利用正切的定义得到an∠DOE==,所以DE•2DE=32,解得DE=4,于是得到AB=4,OA=8,同样在Rt△OCM中利用正切定义得到MC=2,那么M〔﹣2,4〕,易得反比例函数解析式为y=﹣,然后确定N点坐标,最后计算BN的长.【解答】解:∵S矩形OABC=32,∴AB•BC=32,∵矩形OABC绕点O顺时针旋转,使点B落在y轴上,得到矩形ODEF,∴AB=DE,OD=OA,在Rt△ODE中,tan∠DOE==,即OD=2DE,∴DE•2DE=32,解得DE=4,∴AB=4,OA=8,在Rt△OCM中,∵tan∠COM==,而OC=AB=4,∴MC=2,∴M〔﹣2,4〕,把M〔﹣2,4〕代入y=得k=﹣2×4=﹣8,∴反比例函数解析式为y=﹣,当x=﹣8时,y=﹣=1,那么N〔﹣8,1〕,∴BN=4﹣1=3.故答案为3.三、解答题〔本大题共7小题,共66分〕19.〔1〕解方程组:〔2〕先化简,再求值:﹣÷,其中x=2.【考点】6D:分式的化简求值;98:解二元一次方程组.【分析】〔1〕根据代入消元法可以解答此方程;〔2〕根据分式的除法和减法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答此题.【解答】解:〔1〕将①代入②,得3x+2〔2x﹣3〕=8,解得,x=2,将x=2代入①,得y=1,故原方程组的解是;〔2〕﹣÷===,当x=2时,原式=.20.如图,在矩形ABCD中,连接对角线AC、BD,将△ABC沿BC方向平移,使点B移到点C,得到△DCE.〔1〕求证:△ACD≌△EDC;〔2〕请探究△BDE的形状,并说明理由.【考点】LB:矩形的性质;KD:全等三角形的判定与性质;Q2:平移的性质.【分析】〔1〕由矩形的性质得出AB=DC,AC=BD,AD=BC,∠ADC=∠ABC=90°,由平移的性质得:DE=AC,CE=BC,∠DCE=∠ABC=90°,DC=AB,得出AD=EC,由SAS即可得出结论;〔2〕由AC=BD,DE=AC,得出BD=DE即可.【解答】〔1〕证明:∵四边形ABCD是矩形,∴AB=DC,AC=BD,AD=BC,∠ADC=∠ABC=90°,由平移的性质得:DE=AC,CE=BC,∠DCE=∠ABC=90°,DC=AB,∴AD=EC,在△ACD和△EDC中,,∴△ACD≌△EDC〔SAS〕;〔2〕解:△BDE是等腰三角形;理由如下:∵AC=BD,DE=AC,∴BD=DE,∴△BDE是等腰三角形.21.某校为了解本校九年级学生足球训练情况,随机抽查该年级假设干名学生进行测试,然后把测试结果分为4个等级:A、B、C、D,并将统计结果绘制成两幅不完整的统计图.请根据图中的信息解答以下问题:〔1〕补全条形统计图〔2〕该年级共有700人,估计该年级足球测试成绩为D等的人数为56 人;〔3〕在此次测试中,有甲、乙、丙、丁四个班的学生表现突出,现决定从这四个班中随机选取两个班在全校举行一场足球友谊赛.请用画树状图或列表的方法,求恰好选到甲、乙两个班的概率.【考点】X6:列表法与树状图法;V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.【分析】〔1〕根据A等学生人数除以它所占的百分比求得总人数,然后乘以B等所占的百分比求得B等人数,从而补全条形图;〔2〕用该年级学生总数乘以足球测试成绩为D等的人数所占百分比即可求解;〔3〕利用树状图法,将所有等可能的结果列举出来,利用概率公式求解即可.【解答】解:〔1〕总人数为14÷28%=50人,B等人数为50×40%=20人.条形图补充如下:〔2〕该年级足球测试成绩为D等的人数为700×=56〔人〕.故答案为56;〔3〕画树状图:共有12种等可能的结果数,其中选取的两个班恰好是甲、乙两个班的情况占2种,所以恰好选到甲、乙两个班的概率是=.22.如图,某数学活动小组为测量学校旗杆AB的高度,沿旗杆正前方2米处的点C出发,沿斜面坡度i=1:的斜坡CD前进4米到达点D,在点D处安置测角仪,测得旗杆顶部A 的仰角为37°,量得仪器的高DE为1.5米.A、B、C、D、E在同一平面内,AB⊥BC,AB∥DE.求旗杆AB的高度.〔参考数据:sin37°≈,cos37°≈,tan37°≈.计算结果保存根号〕【考点】TA:解直角三角形的应用﹣仰角俯角问题;T9:解直角三角形的应用﹣坡度坡角问题.【分析】延长ED交BC延长线于点F,那么∠CFD=90°,Rt△CDF中求得CF=CDcos∠DCF=2、DF=CD=2,作EG⊥AB,可得GE=BF=4、GB=EF=3.5,再求出AG=GEtan∠AEG=4•tan37°可得答案.【解答】解:如图,延长ED交BC延长线于点F,那么∠CFD=90°,∵tan∠DCF=i==,∴∠DCF=30°,∵CD=4,∴DF=CD=2,CF=CDcos∠DCF=4×=2,∴BF=BC+CF=2+2=4,过点E作EG⊥AB于点G,那么GE=BF=4,GB=EF=ED+DF=1.5+2=3.5,又∵∠AED=37°,∴AG=GEtan∠AEG=4•tan37°,那么AB=AG+BG=4•tan37°+3.5=3+3.5,故旗杆AB的高度为〔3+3.5〕米.23.关于x的一元二次方程x2+〔k﹣5〕x+1﹣k=0,其中k为常数.〔1〕求证:无论k为何值,方程总有两个不相等实数根;〔2〕函数y=x2+〔k﹣5〕x+1﹣k的图象不经过第三象限,求k的取值范围;〔3〕假设原方程的一个根大于3,另一个根小于3,求k的最大整数值.【考点】HA:抛物线与x轴的交点;AA:根的判别式;AB:根与系数的关系;H3:二次函数的性质.【分析】〔1〕求出方程的判别式△的值,利用配方法得出△>0,根据判别式的意义即可证明;〔2〕由于二次函数y=x2+〔k﹣5〕x+1﹣k的图象不经过第三象限,又△=〔k﹣5〕2﹣4〔1﹣k〕=〔k﹣3〕2+12>0,所以抛物线的顶点在x轴的下方经过一、二、四象限,根据二次项系数知道抛物线开口向上,由此可以得出关于k的不等式组,解不等式组即可求解;〔3〕设方程的两个根分别是x1,x2,根据题意得〔x1﹣3〕〔x2﹣3〕<0,根据一元二次方程根与系数的关系求得k的取值范围,再进一步求出k的最大整数值.【解答】〔1〕证明:∵△=〔k﹣5〕2﹣4〔1﹣k〕=k2﹣6k+21=〔k﹣3〕2+12>0,∴无论k为何值,方程总有两个不相等实数根;〔2〕解:∵二次函数y=x2+〔k﹣5〕x+1﹣k的图象不经过第三象限,∵二次项系数a=1,∴抛物线开口方向向上,∵△=〔k﹣3〕2+12>0,∴抛物线与x轴有两个交点,设抛物线与x轴的交点的横坐标分别为x1,x2,∴x1+x2=5﹣k>0,x1•x2=1﹣k>0,解得k<1,即k的取值范围是k<1;〔3〕解:设方程的两个根分别是x1,x2,根据题意,得〔x1﹣3〕〔x2﹣3〕<0,即x1•x2﹣3〔x1+x2〕+9<0,又x1+x2=5﹣k,x1•x2=1﹣k,代入得,1﹣k﹣3〔5﹣k〕+9<0,解得k<.那么k的最大整数值为2.24.荆州市某水产养殖户进行小龙虾养殖.每千克小龙虾养殖本钱为6元,在整个销售旺季的80天里,销售单价p〔元/千克〕与时间第t〔天〕之间的函数关系为:,日销售量y〔千克〕与时间第t〔天〕之间的函数关系如下图:〔1〕求日销售量y与时间t的函数关系式?〔2〕哪一天的日销售利润最大?最大利润是多少?〔3〕该养殖户有多少天日销售利润不低于2400元?〔4〕在实际销售的前40天中,该养殖户决定每销售1千克小龙虾,就捐赠m〔m<7〕元给村里的特困户.在这前40天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求m的取值范围.【考点】HE:二次函数的应用.【分析】〔1〕根据函数图象,利用待定系数法求解可得;〔2〕设日销售利润为w,分1≤t≤40和41≤t≤80两种情况,根据“总利润=每千克利润×销售量〞列出函数解析式,由二次函数的性质分别求得最值即可判断;〔3〕求出w=2400时x的值,结合函数图象即可得出答案;〔4〕依据〔2〕中相等关系列出函数解析式,确定其对称轴,由1≤t≤40且销售利润随时间t的增大而增大,结合二次函数的性质可得答案.【解答】解:〔1〕设解析式为y=kt+b,将〔1,198〕、〔80,40〕代入,得:,解得:,∴y=﹣2t+200〔1≤x≤80,t为整数〕;〔2〕设日销售利润为w,那么w=〔p﹣6〕y,①当1≤t≤40时,w=〔t+16﹣6〕〔﹣2t+200〕=﹣〔t﹣30〕2+2450,∴当t=30时,w最大=2450;②当41≤t≤80时,w=〔﹣t+46﹣6〕〔﹣2t+200〕=〔t﹣90〕2﹣100,∴当t=41时,w最大=2301,∵2450>2301,∴第30天的日销售利润最大,最大利润为2450元.〔3〕由〔2〕得:当1≤t≤40时,w=﹣〔t﹣30〕2+2450,令w=2400,即﹣〔t﹣30〕2+2450=2400,解得:t1=20、t2=40,由函数w=﹣〔t﹣30〕2+2450图象可知,当20≤t≤40时,日销售利润不低于2400元,而当41≤t≤80时,w最大=2301<2400,∴t的取值范围是20≤t≤40,∴共有21天符合条件.〔4〕设日销售利润为w,根据题意,得:w=〔t+16﹣6﹣m〕〔﹣2t+200〕=﹣t2+〔30+2m〕t+2000﹣200m,其函数图象的对称轴为t=2m+30,∵w随t的增大而增大,且1≤t≤40,∴由二次函数的图象及其性质可知2m+30≥40,解得:m≥5,又m<7,∴5≤m<7.25.如图在平面直角坐标系中,直线y=﹣x+3与x轴、y轴分别交于A、B两点,点P、Q 同时从点A出发,运动时间为t秒.其中点P沿射线AB运动,速度为每秒4个单位长度,点Q沿射线AO运动,速度为每秒5个单位长度.以点Q为圆心,PQ长为半径作⊙Q.〔1〕求证:直线AB是⊙Q的切线;〔2〕过点A左侧x轴上的任意一点C〔m,0〕,作直线AB的垂线CM,垂足为M.假设CM与⊙Q相切于点D,求m与t的函数关系式〔不需写出自变量的取值范围〕;〔3〕在〔2〕的条件下,是否存在点C,直线AB、CM、y轴与⊙Q同时相切?假设存在,请直接写出此时点C的坐标;假设不存在,请说明理由.【考点】FI:一次函数综合题.【分析】〔1〕只要证明△PAQ∽△BAO,即可推出∠APQ=∠AOB=90°,推出QP⊥AB,推出AB 是⊙O的切线;〔2〕分两种情形求解即可:①如图2中,当直线CM在⊙O的左侧与⊙Q相切时,设切点为D,那么四边形PQDM是正方形.②如图3中,当直线CM在⊙O的右侧与⊙Q相切时,设切点为D,那么四边形PQDM是正方形.分别列出方程即可解决问题.〔3〕分两种情形讨论即可,一共有四个点满足条件.【解答】〔1〕证明:如图1中,连接QP.在Rt△AOB中,OA=4,OB=3,∴AB==5,∵AP=4t,AQ=5t,∴==,∵∠PAQ=∠BAO,∴△PAQ∽△BAO,∴∠APQ=∠AOB=90°,∴QP⊥AB,∴AB是⊙O的切线.〔2〕解:①如图2中,当直线CM在⊙O的左侧与⊙Q相切时,设切点为D,那么四边形PQDM 是正方形.易知PQ=DQ=3t,CQ=•3t=,∵OC+CQ+AQ=4,∴m+t+5t=4,∴m=4﹣t.②如图3中,当直线CM在⊙O的右侧与⊙Q相切时,设切点为D,那么四边形PQDM是正方形.∵OC+AQ﹣CQ=4,∴m+5t﹣t=4,∴m=4﹣t.〔3〕解:存在.理由如下:如图4中,当⊙Q在y那么的右侧与y轴相切时,3t+5t=4,t=,由〔2〕可知,m=﹣或.如图5中,当⊙Q在y那么的左侧与y轴相切时,5t﹣3t=4,t=2,由〔2〕可知,m=﹣或.综上所述,满足条件的点C的坐标为〔﹣,0〕或〔,0〕或〔﹣,0〕或〔,0〕.。
2022学年湖北省荆州市中考联考数学测试卷注意事项1.考生要认真填写考场号和座位序号。
2.测试卷所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(共10小题,每小题3分,共30分)1.两个相同的瓶子装满酒精溶液,在一个瓶子中酒精与水的容积之比是1:p,而在另一个瓶子中是1:q,若把两瓶溶液混合在一起,混合液中的酒精与水的容积之比是()A.2P q+B.2P qPq+C.2+2p qP q Pq+++D.2+2p q pqP q+++2.为了支援地震灾区同学,某校开展捐书活动,九(1)班40名同学积极参与.现将捐书数量绘制成频数分布直方图如图所示,则捐书数量在5.5~6.5组别的频率是()A.0.1 B.0.2C.0.3 D.0.43.某工厂现在平均每天比原计划多生产50台机器,现在生产600台所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A.60050x-=450xB.60050x+=450xC.600x=45050x+D.600x=45050x-4.计算22783)A3B 43C53D.35.下列命题中真命题是()A .若a 2=b 2,则a=bB .4的平方根是±2C .两个锐角之和一定是钝角D .相等的两个角是对顶角 6.如果(x -2)(x +3)=x 2+px +q ,那么p 、q 的值是( ) A .p=5,q=6B .p=1,q=-6C .p=1,q=6D .p=5,q=-67.将一副三角板按如图方式摆放,∠1与∠2不一定互补的是( )A .B .C .D .8.如图1是2019年4月份的日历,现用一长方形在日历表中任意框出4个数(如图2),下列表示a ,b ,c ,d 之间关系的式子中不正确的是( )A .a ﹣d =b ﹣cB .a+c+2=b+dC .a+b+14=c+dD .a+d =b+c9.如图,已知直线a ∥b ∥c ,直线m ,n 与a ,b ,c 分别交于点A ,C ,E ,B ,D ,F ,若AC=4,CE=6,BD=3,则DF 的值是( )A .4B .4.5C .5D .5.510.如图,C ,B 是线段AD 上的两点,若AB CD =,2BC AC =,则AC 与CD 的关系为( )A .2CD AC =B .3CD AC =C .4CD AC =D .不能确定二、填空题(本大题共6个小题,每小题3分,共18分)11.如果a+b=2,那么代数式(a ﹣2b a)÷a b a -的值是______.12.某校体育室里有球类数量如下表:球类 篮球 排球 足球 数量354如果随机拿出一个球(每一个球被拿出来的可能性是一样的),那么拿出一个球是足球的可能性是_____. 13.函数 2y x =-的定义域是__________.14.小明为了统计自己家的月平均用电量,做了如下记录并制成了表格,通过计算分析小明得出一个结论:小明家的月平均用电量为330千瓦时.请判断小明得到的结论是否合理并且说明理由______. 月份六月 七月 八月 用电量(千瓦时) 290 340360月平均用电量(千瓦时) 33015.如图,在平面直角坐标系中有一正方形AOBC,反比例函数ky x=经过正方形AOBC 对角线的交点,半径为(422-)的圆内切于△ABC ,则k 的值为________.16.如图,在Rt △ABC 中,∠B =90°,AB =3,BC =4,将△ABC 折叠,使点B 恰好落在边AC 上,与点B′重合,AE 为折痕,则EB′= _______.三、解答题(共8题,共72分)17.(8分)已知:△ABC 在直角坐标平面内,三个顶点的坐标分别为A (0,3)、B (3,4)、C (2,2)(正方形网格中每个小正方形的边长是一个单位长度).画出△ABC 向下平移4个单位长度得到的△A 1B 1C 1,点C 1的坐标是 ;以点B 为位似中心,在网格内画出△A 2B 2C 2,使△A 2B 2C 2与△ABC 位似,且位似比为2:1,点C 2的坐标是 .18.(8分)如图,直线y =﹣x +4与x 轴交于点A ,与y 轴交于点B .抛物线y =﹣12x 2+bx +c 经过A ,B 两点,与x 轴的另外一个交点为C 填空:b = ,c = ,点C 的坐标为 .如图1,若点P 是第一象限抛物线上的点,连接OP 交直线AB 于点Q ,设点P 的横坐标为m .PQ 与OQ 的比值为y ,求y 与m 的数学关系式,并求出PQ 与OQ 的比值的最大值.如图2,若点P 是第四象限的抛物线上的一点.连接PB 与AP ,当∠PBA +∠CBO =45°时.求△PBA 的面积.19.(8分)已知二次函数()2220y ax ax a =--≠.(1)该二次函数图象的对称轴是;(2)若该二次函数的图象开口向上,当15x -≤≤时,函数图象的最高点为M ,最低点为N ,点M 的纵坐标为112,求点M 和点N 的坐标;(3)对于该二次函数图象上的两点()11,A x y ,()22,B x y ,设11t x t ≤≤+,当23x ≥时,均有12y y ≥,请结合图象,直接写出t 的取值范围.20.(8分)如图,已知点A ,B 的坐标分别为(0,0)、(2,0),将△ABC 绕C 点按顺时针方向旋转90°得到△A 1B 1C . (1)画出△A 1B 1C ;(2)A 的对应点为A 1,写出点A 1的坐标; (3)求出B 旋转到B 1的路线长.21.(8分)如图,抛物线y=ax2﹣2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A坐标为(4,0).(1)求该抛物线的解析式;(2)抛物线的顶点为N,在x轴上找一点K,使CK+KN最小,并求出点K的坐标;(3)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;(4)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.22.(10分)为了传承祖国的优秀传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”.(1)小明回答该问题时,仅对第二个字是选“重”还是选“穷”难以抉择,随机选择其中一个,则小明回答正确的概率是;(2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.九宫格23.(12分)如图,在平面直角坐标系xOy 中,函数my x=(0x <)的图象经过点(4,)A n -,AB ⊥x 轴于点B ,点C 与点A 关于原点O 对称, CD ⊥x 轴于点D ,△ABD 的面积为8. (1)求m ,n 的值;(2)若直线y kx b =+(k ≠0)经过点C ,且与x 轴,y 轴的交点分别为点E ,F ,当2CF CE =时,求点F 的坐标.24.为保护环境,我市公交公司计划购买A 型和B 型两种环保节能公交车共10辆.若购买A 型公交车1辆,B 型公交车2辆,共需400万元;若购买A 型公交车2辆,B 型公交车1辆,共需350万元.求购买A 型和B 型公交车每辆各需多少万元?预计在某线路上A 型和B 型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A 型和B 型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?2022学年模拟测试卷参考答案(含详细解析)一、选择题(共10小题,每小题3分,共30分) 1、C 【答案解析】混合液中的酒精与水的容积之比为两瓶中的纯酒精与两瓶中的水之比,分别算出纯酒精和水的体积即可得答案. 【题目详解】设瓶子的容积即酒精与水的和是1, 则纯酒精之和为:1×11p ++1×11q +=11p ++11q +,水之和为:1p p ++1q q +, ∴混合液中的酒精与水的容积之比为:(11p ++11q +)÷(1p p ++1q q +)=2+2p q P q Pq+++, 故选C . 【答案点睛】本题主要考查分式的混合运算,找到相应的等量关系是解决本题的关键. 2、B 【答案解析】∵在5.5~6.5组别的频数是8,总数是40, ∴=0.1.故选B . 3、B 【答案解析】设原计划平均每天生产x 台机器,则实际平均每天生产(x +50)台机器,根据题意可得:现在生产600台所需时间与原计划生产450台机器所需时间相同,据此列方程即可. 【题目详解】设原计划平均每天生产x 台机器,则实际平均每天生产(x +50)台机器,由题意得:60045050x x=+. 故选B . 【答案点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程. 4、C 【答案解析】化简二次根式,并进行二次根式的乘法运算,最后合并同类二次根式即可. 【题目详解】 原式32·63333=533.故选C. 【答案点睛】本题主要考查二次根式的化简以及二次根式的混合运算.5、B【答案解析】利用对顶角的性质、平方根的性质、锐角和钝角的定义分别判断后即可确定正确的选项.【题目详解】A、若a2=b2,则a=±b,错误,是假命题;B、4的平方根是±2,正确,是真命题;C、两个锐角的和不一定是钝角,故错误,是假命题;D、相等的两个角不一定是对顶角,故错误,是假命题.故选B.【答案点睛】考查了命题与定理的知识,解题的关键是了解对顶角的性质、平方根的性质、锐角和钝角的定义,难度不大.6、B【答案解析】先根据多项式乘以多项式的法则,将(x-2)(x+3)展开,再根据两个多项式相等的条件即可确定p、q的值.【题目详解】解:∵(x-2)(x+3)=x2+x-1,又∵(x-2)(x+3)=x2+px+q,∴x2+px+q=x2+x-1,∴p=1,q=-1.故选:B.【答案点睛】本题主要考查多项式乘以多项式的法则及两个多项式相等的条件.多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.两个多项式相等时,它们同类项的系数对应相等.7、D【答案解析】A选项:∠1+∠2=360°-90°×2=180°;B选项:∵∠2+∠3=90°,∠3+∠4=90°,∴∠2=∠4,∵∠1+∠4=180°,∴∠1+∠2=180°;C选项:∵∠ABC=∠DEC=90°,∴AB∥DE,∴∠2=∠EFC,∵∠1+∠EFC=180°,∴∠1+∠2=180°;D选项:∠1和∠2不一定互补.故选D.点睛:本题主要掌握平行线的性质与判定定理,关键在于通过角度之间的转化得出∠1和∠2的互补关系.8、A【答案解析】观察日历中的数据,用含a的代数式表示出b,c,d的值,再将其逐一代入四个选项中,即可得出结论.【题目详解】解:依题意,得:b=a+1,c=a+7,d=a+1.A、∵a﹣d=a﹣(a+1)=﹣1,b﹣c=a+1﹣(a+7)=﹣6,∴a﹣d≠b﹣c,选项A符合题意;B、∵a+c+2=a+(a+7)+2=2a+9,b+d=a+1+(a+1)=2a+9,∴a+c+2=b+d,选项B不符合题意;C、∵a+b+14=a+(a+1)+14=2a+15,c+d=a+7+(a+1)=2a+15,∴a+b+14=c+d,选项C不符合题意;D、∵a+d=a+(a+1)=2a+1,b+c=a+1+(a+7)=2a+1,∴a+d=b+c,选项D不符合题意.故选:A.【答案点睛】考查了列代数式,利用含a的代数式表示出b,c,d是解题的关键.9、B【答案解析】测试卷分析:根据平行线分线段成比例可得AC BDCE DF=,然后根据AC=1,CE=6,BD=3,可代入求解DF=1.2.故选B考点:平行线分线段成比例10、B【答案解析】由AB=CD,可得AC=BD,又BC=2AC,所以BC=2BD,所以CD=3AC.【题目详解】∵AB=CD,∴AC+BC=BC+BD,即AC=BD,又∵BC=2AC,∴BC=2BD,∴CD=3BD=3AC.故选B.【答案点睛】本题考查了线段长短的比较,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍转化线段之间的数量关系是十分关键的一点.二、填空题(本大题共6个小题,每小题3分,共18分)11、2【答案解析】分析:根据分式的运算法则即可求出答案.详解:当a+b=2时,原式=22•a b aa a b--=()()•a b a b aa ab +--=a+b=2故答案为:2点睛:本题考查分式的运算,解题的关键熟练运用分式的运算法则,本题属于基础题型.12、1 3【答案解析】先求出球的总数,再用足球数除以总数即为所求. 【题目详解】解:一共有球3+5+4=12(个),其中足球有4个,∴拿出一个球是足球的可能性=41 123=.【答案点睛】本题考查了概率,属于简单题,熟悉概率概念,列出式子是解题关键.13、2x≥【答案解析】根据二次根式的性质,被开方数大于等于0,可知:x-1≥0,解得x的范围.【题目详解】根据题意得:x-1≥0,解得:x≥1.故答案为:2x≥.【答案点睛】此题考查二次根式,解题关键在于掌握二次根式有意义的条件.14、不合理,样本数据不具有代表性【答案解析】根据表中所取的样本不具有代表性即可得到结论.【题目详解】不合理,样本数据不具有代表性(例:夏季高峰用电量大不能代表年平均用电量).故答案为:不合理,样本数据不具有代表性(例:夏季高峰用电量大不能代表年平均用电量).【答案点睛】本题考查了统计表,认真分析表中数据是解题的关键.【答案解析】测试卷解析:设正方形对角线交点为D,过点D作DM⊥AO于点M,DN⊥BO于点N;设圆心为Q,切点为H、E,连接QH、QE.∵在正方形AOBC中,反比例函数y=kx经过正方形AOBC对角线的交点,∴AD=BD=DO=CD,NO=DN,HQ=QE,HC=CE,QH⊥AC,QE⊥BC,∠ACB=90°,∴四边形HQEC是正方形,∵半径为(2)的圆内切于△ABC,∴DO=CD,∵HQ2+HC2=QC2,∴2HQ2=QC2=2×(2)2,∴QC22=(2-1)2,∴QC2-1,∴CD2-1+(2)2,∴DO2,∵NO2+DN2=DO2=(2)2=8,∴2NO2=8,∴NO2=1,∴DN×NO=1,即:xy=k=1.【答案点睛】此题主要考查了正方形的性质以及三角形内切圆的性质以及待定系数法求反比例函数解析式,根据已知求出CD的长度,进而得出DN×NO=1是解决问题的关键.【答案解析】在Rt△ABC中,225AC=AB+BC=,∵将△ABC折叠得△AB′E,∴AB′=AB,B′E=BE,∴B′C=5-3=1.设B′E=BE=x,则CE=4-x.在Rt△B′CE中,CE1=B′E1+B′C1,∴(4-x)1=x1+11.解之得32x=.三、解答题(共8题,共72分)17、(1)画图见解析,(2,-2);(2)画图见解析,(1,0);【答案解析】(1)将△ABC向下平移4个单位长度得到的△A1B1C1,如图所示,找出所求点坐标即可;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,如图所示,找出所求点坐标即可.【题目详解】(1)如图所示,画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,-2);(2)如图所示,以B为位似中心,画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是(1,0),故答案为(1)(2,-2);(2)(1,0)【答案点睛】此题考查了作图-位似变换与平移变换,熟练掌握位似变换与平移变换的性质是解本题的关键.18、(3)3,2,C(﹣2,4);(2)y=﹣18m2+12m ,PQ与OQ的比值的最大值为12;(3)S△PBA=3.【答案解析】(3)通过一次函数解析式确定A、B两点坐标,直接利用待定系数法求解即可得到b,c的值,令y=4便可得C点坐标.(2)分别过P、Q两点向x轴作垂线,通过PQ与OQ的比值为y以及平行线分线段成比例,找到PQ EDOQ OD=,设点P 坐标为(m ,-12m 2+m+2),Q 点坐标(n ,-n+2),表示出ED 、OD 等长度即可得y 与m 、n 之间的关系,再次利用PE QD OE OD=即可求解. (3)求得P 点坐标,利用图形割补法求解即可.【题目详解】(3)∵直线y =﹣x+2与x 轴交于点A ,与y 轴交于点B .∴A (2,4),B (4,2).又∵抛物线过B (4,2)∴c =2.把A (2,4)代入y =﹣x 2+bx+2得,4=﹣12×22+2b+2,解得,b =3. ∴抛物线解析式为,y =﹣12x 2+x+2. 令﹣12x 2+x+2=4, 解得,x =﹣2或x =2.∴C (﹣2,4).(2)如图3,分别过P 、Q 作PE 、QD 垂直于x 轴交x 轴于点E 、D .设P (m ,﹣12m 2+m+2),Q (n ,﹣n+2), 则PE =﹣12m 2+m+2,QD =﹣n+2. 又∵PQ m n OQ n-==y . ∴n =1m y +.又∵PE OE QD OD =,即24124m m n m n =-+++ 把n =1m y +代入上式得, 2412411m m m y m m y ++=++-+整理得,2y =﹣12m 2+2m . ∴y =﹣12m 2+12m . y max =210()121248-=⎛⎫⨯ ⎪⎝⎭. 即PQ 与OQ 的比值的最大值为12. (3)如图2,∵∠OBA =∠OBP+∠PBA =25°∠PBA+∠CBO =25°∴∠OBP =∠CBO此时PB 过点(2,4).设直线PB 解析式为,y =kx+2.把点(2,4)代入上式得,4=2k+2.解得,k =﹣2∴直线PB 解析式为,y =﹣2x+2.令﹣2x+2=﹣12x 2+x+2 整理得,12x 2﹣3x =4.解得,x =4(舍去)或x =5.当x =5时,﹣2x+2=﹣2×5+2=﹣7 ∴P (5,﹣7).过P 作PH ⊥cy 轴于点H .则S 四边形OHPA =12(OA+PH )•OH =12(2+5)×7=24. S △OAB =12OA•OB =12×2×2=7. S △BHP =12PH•BH =12×5×3=35. ∴S △PBA =S 四边形OHPA +S △OAB ﹣S △BHP =24+7﹣35=3.【答案点睛】本题考查了函数图象与坐标轴交点坐标的确定,以及利用待定系数法求解抛物线解析式常数的方法,再者考查了利用数形结合的思想将图形线段长度的比化为坐标轴上点之间的线段长度比的思维能力.还考查了运用图形割补法求解坐标系内图形的面积的方法.19、 (1)x=1;(2)115,2M ⎛⎫ ⎪⎝⎭,5 1,2N ⎛⎫- ⎪⎝⎭;(3) 12t -≤≤ 【答案解析】 (1)二次函数的对称轴为直线x=-2b a,带入即可求出对称轴, (2)在区间内发现能够取到函数的最低点,即为顶点坐标,当开口向上是,距离对称轴越远,函数值越大,所以当x=5时,函数有最大值.(3)分类讨论,当二次函数开口向上时不满足条件,所以函数图像开口只能向下,且1x 应该介于-1和3之间,才会使12y y ≥,解不等式组即可.【题目详解】(1)该二次函数图象的对称轴是直线212a x a==; (2)∵该二次函数的图象开口向上,对称轴为直线1x =,15x -≤≤,∴当5x =时,y 的值最大,即115,2M ⎛⎫ ⎪⎝⎭. 把115,2M ⎛⎫ ⎪⎝⎭代入222y ax ax =--,解得12a =. ∴该二次函数的表达式为2122y x x =--.当1x =时,52y =-, ∴51,2N ⎛⎫- ⎪⎝⎭. (3)易知a <0,∵当23x ≥时,均有12y y ≥,∴113t t ≥-⎧⎨+≤⎩,解得12t -≤≤ ∴t 的取值范围12t -≤≤.【答案点睛】本题考查了二次函数的对称轴,定区间内求函数值域,以及二次函数图像的性质,难度较大,综合性强,熟悉二次函数的单调性是解题关键.20、(1)画图见解析;(2)A 1(0,6);(3)弧BB 1=102π. 【答案解析】(1)根据旋转图形的性质首先得出各点旋转后的点的位置,然后顺次连接各点得出图形;(2)根据图形得出点的坐标;(3)根据弧长的计算公式求出答案.【题目详解】解:(1)△A 1B 1C 如图所示.(2)A 1(0,6).(3) 221310,BC =+=1901010.180n r BB ππ⨯∴===.【答案点睛】本题考查了旋转作图和弧长的计算.21、(1)y=﹣2142x x ++;(1)点K 的坐标为(817,0);(2)点P 的坐标为:(1+5,1)或(1﹣5,1)或(1+3,2)或(1﹣3,2).【答案解析】测试卷分析:(1)把A 、C 两点坐标代入抛物线解析式可求得a 、c 的值,可求得抛物线解析;(1)可求得点C 关于x 轴的对称点C′的坐标,连接C′N 交x 轴于点K ,再求得直线C′K 的解析式,可求得K 点坐标;(2)过点E 作EG ⊥x 轴于点G ,设Q (m ,0),可表示出AB 、BQ ,再证明△BQE ≌△BAC ,可表示出EG ,可得出△CQE 关于m 的解析式,再根据二次函数的性质可求得Q 点的坐标;(4)分DO=DF 、FO=FD 和OD=OF 三种情况,分别根据等腰三角形的性质求得F 点的坐标,进一步求得P 点坐标即可.测试卷解析:(1)∵抛物线经过点C (0,4),A (4,0),∴416840c a a =⎧⎨-+=⎩,解得124a c ⎧=-⎪⎨⎪=⎩ , ∴抛物线解析式为y=﹣12x 1+x+4; (1)由(1)可求得抛物线顶点为N (1,92 ), 如图1,作点C 关于x 轴的对称点C′(0,﹣4),连接C′N 交x 轴于点K ,则K 点即为所求,设直线C′N 的解析式为y=kx+b ,把C′、N 点坐标代入可得924k b b ⎧+=⎪⎨⎪=-⎩ ,解得1724k b ⎧=⎪⎨⎪=-⎩ ,∴直线C′N 的解析式为y=172x-4 , 令y=0,解得x=817, ∴点K 的坐标为(817,0); (2)设点Q (m ,0),过点E 作EG ⊥x 轴于点G ,如图1,由﹣12x 1+x+4=0,得x 1=﹣1,x 1=4, ∴点B 的坐标为(﹣1,0),AB=6,BQ=m+1,又∵QE ∥AC ,∴△BQE ≌△BAC ,∴EG BQ CO BA = ,即246EG m += ,解得EG=243m + ; ∴S △CQE =S △CBQ ﹣S △EBQ =12(CO-EG )·BQ=12(m+1)(4-243m +) =2128-333m m ++ =-13(m-1)1+2 . 又∵﹣1≤m≤4,∴当m=1时,S △CQE 有最大值2,此时Q (1,0);(4)存在.在△ODF 中,(ⅰ)若DO=DF ,∵A (4,0),D (1,0),∴AD=OD=DF=1.又在Rt △AOC 中,OA=OC=4,∴∠OAC=45°.∴∠DFA=∠OAC=45°.∴∠ADF=90°.此时,点F 的坐标为(1,1).由﹣12x 1+x+4=1,得x 15,x 1=15 此时,点P 的坐标为:P 1(51)或P 1(151);(ⅱ)若FO=FD,过点F作FM⊥x轴于点M.由等腰三角形的性质得:OM=12OD=1,∴AM=2.∴在等腰直角△AMF中,MF=AM=2.∴F(1,2).由﹣12x1+x+4=2,得x13,x1=13此时,点P的坐标为:P2(32)或P4(132);(ⅲ)若OD=OF,∵OA=OC=4,且∠AOC=90°.∴2.∴点O到AC的距离为2而OF=OD=1<2,与2矛盾.∴在AC上不存在点使得OF=OD=1.此时,不存在这样的直线l,使得△ODF是等腰三角形.综上所述,存在这样的直线l,使得△ODF是等腰三角形.所求点P的坐标为:(51)或(151)或(3 2)或(132).点睛:本题是二次函数综合题,主要考查待定系数法、三角形全等的判定与性质、等腰三角形的性质等,能正确地利用数形结合思想、分类讨论思想等进行解题是关键.22、(1)12;(2)14【答案解析】测试卷分析:(1)利用概率公式直接计算即可;(2)画出树状图得到所有可能的结果,再找到回答正确的数目即可求出小丽回答正确的概率.测试卷解析:(1)∵对第二个字是选“重”还是选“穷”难以抉择,∴若随机选择其中一个正确的概率=,故答案为;(2)画树形图得:由树状图可知共有4种可能结果,其中正确的有1种,所以小丽回答正确的概率=.考点:列表法与树状图法;概率公式.23、(1)m=8,n=-2;(2) 点F 的坐标为1(0,6)F ,2(0,2)F -【答案解析】 分析:(1)利用三角形的面积公式构建方程求出n ,再利用 待定系数法求出m 的的值即可;(2)分两种情形分别求解如①图,当k<0时,设直线y=kx+b 与x 轴,y 轴的交点分别为1E ,1F . ②图中,当k>0时,设直线y=kx+b 与x 轴,y 轴的交点分别为点2E ,2F .详解:(1)如图②∵ 点A 的坐标为()4,A n -,点C 与点A 关于原点O 对称,∴ 点C 的坐标为()4,C n -.∵ AB ⊥x 轴于点B ,CD ⊥x 轴于点D ,∴ B ,D 两点的坐标分别为()4,0B -,()4,0D .∵ △ABD 的面积为8,()118422ABD SAB BD n n =⨯=⨯-⨯=-, ∴ 48n -=.解得 2n =-. ∵ 函数m y x=(0x <)的图象经过点()4,A n -,∴ 48m n =-=.(2)由(1)得点C 的坐标为()4,2C .① 如图,当0k <时,设直线y kx b =+与x 轴,y 轴的交点分别为点1E ,1F .由 CD ⊥x 轴于点D 可得CD ∥1OF .∴ △1E CD ∽△1E 1F O .∴ 1111E C DC OF E F =. ∵ 112CF CE =,∴ 113DC OF =. ∴ 136OF DC ==.∴ 点1F 的坐标为()10,6F .②如图,当0k >时,设直线y kx b =+与x 轴,y 轴的交点分别为点2E ,2F .同理可得CD ∥2OF ,2222E C DC OF E F =. ∵ 222CF CE =,∴ 2E 为线段2CF 的中点,222E C E F =.∴ 22OF DC ==.∴ 点2F 的坐标为()20,2F -.综上所述,点F 的坐标为()10,6F ,()20,2F -.点睛:本题考查了反比例函数综合题、一次函数的应用、三角形的面积公式等知识,解题的关键是会用方程的思想思考问题,会用分类讨论的思想思考问题,属于中考压轴题.24、(1)购买A 型公交车每辆需100万元,购买B 型公交车每辆需150万元.(2)三种方案:①购买A 型公交车6辆,则B 型公交车4辆;②购买A 型公交车7辆,则B 型公交车3辆;③购买A 型公交车8辆,则B 型公交车2辆;(3)购买A 型公交车8辆,B 型公交车2辆费用最少,最少费用为1100万元.【答案解析】详解:(1)设购买A 型公交车每辆需x 万元,购买B 型公交车每辆需y 万元,由题意得,解得, 答:购买A 型公交车每辆需100万元,购买B 型公交车每辆需150万元.(2)设购买A 型公交车a 辆,则B 型公交车(10-a )辆,由题意得,解得:6≤a≤8,因为a 是整数,所以a=6,7,8;则(10-a )=4,3,2;三种方案:①购买A 型公交车6辆,B 型公交车4辆;②购买A 型公交车7辆,B 型公交车3辆;③购买A 型公交车8辆,B 型公交车2辆.(3)①购买A 型公交车6辆,则B 型公交车4辆:100×6+150×4=1200万元; ②购买A 型公交车7辆,则B 型公交车3辆:100×7+150×3=1150万元;③购买A 型公交车8辆,则B 型公交车2辆:100×8+150×2=1100万元;故购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.【答案点睛】此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题.。