泛函分析讲义张恭庆答案
- 格式:docx
- 大小:16.11 KB
- 文档页数:12
1.1.51.1.61.1.71.2.21.2.31.2.41.3.31.3.41.3.51.3.71.3.81.3.91.4.11.4.5-61.4.91.4.111.4.121.4.131.4.141.4.151.4.171.5.1证明:(1) (⇒) 若x∈int(E),存在δ > 0,使得Bδ(x) ⊆E.注意到x + x/n→x ( n→∞ ),故存在N ∈+,使得x + x/N ∈Bδ(x) ⊆E.即x/( N/( 1 + N ) ) ∈E.因此P(x) ≤N/( 1 + N ) < 1.(⇐) 若P(x) < 1.则存在a > 1,使得y = a x∈E.因θ∈int(E),故存在δ > 0,使得Bδ(θ) ⊆E.令η = δ(a - 1)/a,∀z∈Bη(x),令w = (a z-y )/(a - 1),则|| w || = || (a z-y )/(a - 1) || = || a z-y ||/(a - 1)= || a z-a x ||/(a - 1) = a || z-x ||/(a - 1) < aη/(a - 1) = δ.故w∈Bδ(θ) ⊆E.故z= ((a -1)w+ y)/a ∈E,因此,Bη(x) ⊆E.所以x∈int(E).(2) 因int(E) = E,故有cl(int(E)) ⊆ cl(E).下面证明相反的包含关系.若x∈cl(E),则∀ε > 0,存在y∈E,使得|| x -y || < ε/2.因ny/(n + 1) →y ( n →∞ ).故存在N ∈+,使得|| Ny/(N + 1) -y || < ε/2.令z = Ny/(N + 1),则z∈E,且P(z) ≤N/(N + 1) < 1,由(1)知z∈int(E).而|| z -x || ≤ || z -y || + || y -x || < ε/2 + ε/2 = ε.故x∈cl(int(E)),因此cl(E) ⊆ cl(int(E))所以cl(int(E)) = cl(E).1.5.3证明:因为C是紧集,所以C是闭集.因为C是紧集,故C的任意子集都列紧.而T(C) C,故T(C)列紧.于是,由Schauder不动点定理,T在C上有一个不动点.[Schauder定理:B*空间中闭凸集C上使T(C)列紧的连续自映射T必有不动点]1.5.41.5.5证明:设C = {x = (x1, x2, ..., x n)∈n | ∑ 1 ≤i ≤n x i = 1,x i ≥ 0 ( i = 1,2, ..., n) }.则C是有界闭集,且是凸集,因此C是紧凸集.因为∀x∈C,x i 不全为0,而a ij> 0,故Ax的各分量也非负但不全为零.∀x∈C,设f (x) = (Ax)/( ∑ 1 ≤i ≤n (Ax)i ),则f (x)∈C.容易验证f : C→C还是连续的.由Brouwer不动点定理,存在f的不动点x0∈C.即f (x0) = x0,也就是(Ax0)/( ∑ 1 ≤i ≤n (Ax0)i ) = x0.令λ= ∑ 1 ≤i ≤n (Ax0)i,则有Ax0 = λ x0.1.5.6证明:设B = { u∈C[0, 1] | ⎰[0, 1]u(x) dx = 1,u(x) ≥ 0 },则B是C[0, 1]中闭凸集.设max (x, y)∈[0, 1]⨯[0, 1]K(x, y) = M,min (x, y)∈[0, 1]⨯[0, 1]K(x, y) = m,⎰[0, 1] (⎰[0, 1]K(x, y) dy) dx = N,max x∈[0, 1] | ⎰[0, 1]K(x, y) dy |= P.令(S u)(x) = (⎰[0, 1]K(x, y) u(y) dy)/(⎰[0, 1] (⎰[0, 1]K(x, y) u(y) dy) dx )则⎰[0, 1] (S u)(x) dx = 1,u(x) ≥ 0;即S u∈B.因此S是从B到B内的映射.∀u, v∈B,|| ⎰[0, 1]K(x, y) u(y) dy -⎰[0, 1]K(x, y) v(y) dy ||= || ⎰[0, 1]K(x, y) (u(y)-v(y)) dy ||= max x∈[0, 1] | ⎰[0, 1]K(x, y) (u(y)-v(y)) dy |≤M· || u -v ||;因此映射u #⎰[0, 1]K(x, y) u(y) dy在B上连续.类似地,映射u #⎰[0, 1] (⎰[0, 1]K(x, y) u(y) dy) dx也在B上连续.所以,S在B上连续.下面证明S(B)列紧.首先,证明S(B)是一致有界集.∀u∈B,|| S u || = || (⎰[0, 1]K(x, y) u(y) dy )/(⎰[0, 1] (⎰[0, 1]K(x, y) u(y) dy) dx )|| = max x∈[0, 1] | ⎰[0, 1]K(x, y) u(y) dy |/(⎰[0, 1] (⎰[0, 1]K(x, y) u(y) dy) dx )≤ (M ·⎰[0, 1]u(y) dy |/(m ⎰[0, 1] (⎰[0, 1]u(y) dy) dx ) = M/m,故S(B)是一致有界集.其次,证明S(B)等度连续.∀u∈B,∀t1, t2∈[0, 1],| (S u)(t1) - (S u)(t2)|= | ⎰[0, 1]K(t1, y) u(y) dy-⎰[0, 1]K(t2, y) u(y) dy |/(⎰[0, 1] (⎰[0, 1]K(x, y) u(y) dy) dx )≤⎰[0, 1] | K(t1, y) -K(t2, y) | u(y) dy /(m⎰[0, 1] (⎰[0, 1]u(y) dy) dx )≤ (1/m) · max y∈[0, 1] | K(t1, y) -K(t2, y) |由K(x, y)在[0, 1]⨯[0, 1]上的一致连续性,∀ε > 0,存在δ> 0,使得∀(x1, y1), (x2, y2)∈[0, 1],只要|| (x1, y1) - (x2, y2) || < δ,就有| K(x1, y1) -K(x2, y2) | < m ε.故只要| t1-t2 | < δ时,y∈[0, 1],都有| K(t1, y) -K(t2, y) | < m ε.此时,| (S u)(t1) - (S u)(t2)| ≤ (1/m) · max y∈[0, 1] | K(t1, y) -K(t2, y) | ≤ (1/m) ·m ε = ε.故S(B)是等度连续的.所以,S(B)是列紧集.根据Schauder不动点定理,S在C上有不动点u0.令λ= (⎰[0, 1] (⎰[0, 1]K(x, y) u0(y) dy) dx.则(S u0)(x) = (⎰[0, 1]K(x, y) u0(y) dy)/λ= (T u0)(x)/λ.因此(T u0)(x)/λ= u0(x),T u0 = λ u0.显然上述的λ和u0满足题目的要求.1.6.1 (极化恒等式)证明:∀x, y∈X,q(x + y) -q(x-y) = a(x + y, x + y) -a(x-y, x-y)= (a(x, x) + a(x, y) + a(y, x) + a(y, y)) - (a(x, x) -a(x, y) -a(y, x) + a(y, y))= 2 (a(x, y) + a(y, x)),将i y代替上式中的y,有q(x + i y) -q(x-i y) = 2 (a(x, i y) + a(i y, x))= 2 (-i a(x, y) + i a( y, x)),将上式两边乘以i,得到i q(x + i y) -i q(x-i y) = 2 ( a(x, y) -a( y, x)),将它与第一式相加即可得到极化恒等式.1.6.2证明:若C[a, b]中范数|| · ||是可由某内积( · , · )诱导出的,则范数|| · ||应满足平行四边形等式.而事实上,C[a, b]中范数|| · ||是不满足平行四边形等式的,因此,不能引进内积( · , · )使其适合上述关系.范数|| · ||是不满足平行四边形等式的具体例子如下:设f(x) = (x–a)/(b–a),g(x) = (b–x)/(b–a),则|| f || = || g || = || f + g || = || f –g || = 1,显然不满足平行四边形等式.1.6.3证明:∀x∈L2[0, T],若|| x || = 1,由Cauchy-Schwarz不等式,有| ⎰[0, T]e- ( T-τ)x(τ) dτ |2≤ (⎰[0, T] (e- ( T-τ))2dτ ) (⎰[0, T] ( x(τ))2dτ )= ⎰[0, T] (e- ( T-τ))2dτ = e- 2T ⎰[0, T]e 2τdτ= (1-e- 2T )/2.因此,该函数的函数值不超过M = ((1-e- 2T )/2)1/2.前面的不等号成为等号的充要条件是存在λ∈,使得x(τ) = λ e- ( T-τ).再注意|| x || = 1,就有⎰[0, T] (λ e- ( T-τ))2dτ= 1.解出λ= ±((1-e- 2T )/2)- 1/2.故当单位球面上的点x(τ) = ±((1-e- 2T )/2)- 1/2 ·e- ( T-τ)时,该函数达到其在单位球面上的最大值((1-e- 2T )/2)1/2.1.6.4证明:若x∈N⊥,则∀y∈N,(x, y) = 0.而M⊆N,故∀y∈M,也有(x, y) = 0.因此x∈M⊥.所以,N⊥⊆M⊥.1.6.51.6.6解:设偶函数集为E,奇函数集为O.显然,每个奇函数都与正交E.故奇函数集O ⊆E⊥.∀f∈E⊥,注意到f总可分解为f = g + h,其中g是奇函数,h是偶函数.因此有0 = ( f, h) = ( g + h, h) = ( g, h) + ( h, h) = ( h, h).故h几乎处处为0.即f = g是奇函数.所以有E⊥⊆O.这样就证明了偶函数集E的正交补E⊥是奇函数集O.1.6.7证明:首先直接验证,∀c∈,S = {e2π i n x| n∈ }是L2[c, c + 1]中的一个正交集.再将其标准化,得到一个规范正交集S1 = {ϕn(x) = d n e2π i n x| n∈ }.其中的d n= || e2π i n x|| (n∈),并且只与n有关,与c的选择无关.(1) 当b–a =1时,根据实分析结论有S⊥ = {θ}.当b–a <1时,若u∈L2[a, b],且u∈S⊥,我们将u延拓成[a, a + 1]上的函数v,使得v(x) = 0 (∀x∈(b, a + 1]).则v∈L2[a, a + 1].同时把S = {e2π i n x| n∈ }也看成L2[a, a + 1]上的函数集.那么,在L2[a, a + 1]中,有v∈S⊥.根据前面的结论,v = θ.因此,在L2[a, b]中就有u = θ.故也有S⊥ = {θ};(2) 分成两个区间[a, b– 1)和[b– 1, b]来看.在[a, b– 1)上取定非零函数u(x) = 1 ( ∀x∈[a, b– 1) ).记p n = ⎰[a, b– 1)u(x)ϕn(x) dx.我们再把u看成是[b– 2, b– 1]上的函数(u在[b– 2, a)上去值为0).那么p n就是u在L2[b– 2, b– 1]上关于正交集S1 = {ϕn(x)| n∈ }的Fourier 系数.由Bessel不等式,∑n∈ | p n |2 < +∞.再用Riesz-Fischer定理,在L2[b– 1, b]中,∑n∈p n ϕn收敛.并且,若令v = -∑n∈p n ϕn,则(v, ϕn)= -p n (∀n∈).设f : [a, b] →为:f(x) = u(x) (当x∈[a, b– 1)),f(x) = v(x) (当x∈[b– 1, b]).则f∈L2[a, b],f≠θ,但( f, ϕn) = ⎰[a, b– 1)f(x)ϕn(x) dx + ⎰[b– 1, b]f(x)ϕn(x) dx= ⎰[a, b– 1)u(x)ϕn(x) dx + ⎰[b– 1, b]v(x)ϕn(x) dx= p n -p n = 0,因此,f∈S1⊥= S⊥,故S⊥≠ {θ}.1.6.8证明:( z n/(2π)1/2, z n/(2π)1/2 ) = (1/i)⎰| z | = 1( z n/(2π)1/2· (z*)n/(2π)1/2 )/z dz= (1/(2πi))⎰| z | = 1z n· (z*)n/z dz = (1/(2πi))⎰| z | = 1 1/z dz = 1.若n > m,则n- m - 1 ≥ 0,从z n -m - 1而解析.( z n/(2π)1/2, z m/(2π)1/2 ) = (1/i)⎰| z | = 1 ( z n/(2π)1/2· (z*)m/(2π)1/2 )/z dz= (1/(2πi))⎰| z | = 1z n· (z*)m/z dz = (1/(2πi))⎰| z | = 1z n -m - 1dz = 0.因此,{ z n/(2π)1/2 }n ≥ 0是正交规范集.1.6.91.6.10证明:容易验证{e n}⋂{ f n}是正交规范集,下面只证明{e n}⋂{ f n}是X的基.∀x∈X,由正交分解定理,存在x关于X0的正交分解x = y + z,其中y∈X0,z∈X0⊥.因{e n}, { f n}分别是X0和X0⊥的正交规范基,故y = ∑ n∈( y, e n ) e n,z = ∑ n∈( z, f n ) f n.因z∈X0⊥,故(x, e n) = ( y + z, e n) = ( y, e n) + ( z, e n) = ( y, e n).因y∈X0,故(x, f n) = ( y + z, f n) = ( y, f n) + ( z, f n) = ( z, f n).故x = y + z = ∑ n∈( y, e n ) e n + ∑ n∈( z, f n ) f n= ∑ n∈( x, e n ) e n + ∑ n∈( x, f n ) f n.因此{e n}⋂{ f n}是X的正交规范基.1.6.11证明:首先,令ϕk (z) = (( k +1 )/π)1/2 z k ( k≥ 0 ),则{ ϕk }k≥ 0是H2(D)中的正交规范基.那么,∀u(z)∈H2(D),设u(z) = ∑k≥ 0 a k z k,则∀k∈,有(u, ϕk) = ⎰D u(z) ·ϕk(z)*dxdy= ⎰D (∑j≥ 0 a j z j) ·ϕk(z)*dxdy= ∑j≥ 0 a j(π/( j +1 ))1/2⎰D (( j +1 )/π)1/2 z j·ϕk(z)*dxdy= ∑j≥ 0 a j(π/( j +1 ))1/2⎰Dϕj(z) ·ϕk(z)*dxdy= ∑j≥ 0 a j(π/( j +1 ))1/2 (ϕj, ϕk)= a k(π/( k +1 ))1/2.即u(z)的关于正交规范基{ ϕk }k≥ 0的Fourier系数为a k(π/( k +1 ))1/2( k≥ 0 ).(1) 如果u(z)的Taylor展开式是u(z) = ∑k≥ 0 b k z k,则u(z)的Fourier系数为b k(π/( k +1 ))1/2( k≥ 0 ).由Bessel不等式,∑k≥ 0| b k(π/( k +1 ))1/2|2≤ || u || < +∞,于是有∑k≥ 0| b k|2/( k +1 ) < +∞.(2) 设u(z), v(z)∈H2(D),并且u(z) = ∑k≥ 0 a k z k,v(z) = ∑k≥ 0 b k z k.则u(z) = ∑k≥ 0 a k(π/( k +1 ))1/2ϕk (z),v(z) = ∑j≥ 0 b j(π/( j +1 ))1/2ϕj (z),(u, v) = ( ∑k≥ 0 a k(π/( k +1 ))1/2ϕk (z), ∑j≥ 0 b j(π/( j +1 ))1/2ϕj (z) )= ∑k≥ 0∑j≥ 0 (a k(π/( k +1 ))1/2ϕk (z), b j(π/( j +1 ))1/2ϕj (z))= ∑k≥ 0∑j≥ 0 (a k(π/( k +1 ))1/2 ·b j*(π/( j +1 ))1/2) (ϕk (z), ϕj (z))= ∑k≥ 0(a k(π/( k +1 ))1/2 ·b k* (π/( k +1 ))1/2) = π∑k≥ 0(a k·b k* )/( k +1 ).(3) 设u(z)∈H2(D),且u(z) = ∑k≥ 0 a k z k.因1/(1 -z) = ∑k≥ 0z k,1/(1 -z)2 = ∑k≥ 0 (k +1) z k,其中| z | < 1.故当| z | < 1时,有1/(1 - | z | )2 = ∑k≥ 0 (k +1) | z | k.根据(2),|| u(z) ||2 = π∑k≥ 0 (a k·a k* )/( k +1 ) = π∑k≥ 0 | a k|2/( k +1 ).|| u ||2/(1 - | z |)2 = (π∑k≥ 0 | a k|2/( k +1 )) · ( ∑k≥ 0 (k +1) | z | k )≥ (π∑k≥ 0 | a k|2/( k +1 ) | z | k) · ( ∑k≥ 0 (k +1) | z | k )≥π( ∑k≥0( | a k|/( k +1 )1/2| z |k/2) · ((k +1)1/2| z |k/2))2 (Cauchy-Schwarz 不等式)= π ( ∑k≥ 0 | a k| · | z | k )2≥π | ∑k≥ 0a k z k |2 = π | u(z)|2,故| u(z) | ≤ || u ||/(π1/2 ( 1 - | z | )).(4) 先介绍复分析中的Weierstrass定理:若{ f n }是区域U ⊆上的解析函数列,且{ f n }在U上内闭一致收敛到f,则f在U上解析.(见龚升《简明复分析》)回到本题.设{ u n }是H2(D)中的基本列.则∀z∈D,由(3)知{ u n(z) }是中的基本列,因此是收敛列.设u n(z) →u(z).对中任意闭集F⊆D,存在0 < r < 1使得F⊆B(0, r) ⊆D.∀ε > 0,存在N∈+,使得∀m, n > N,都有|| u n-u m|| < επ1/2 ( 1 -r ).再由(3),∀z∈F,| u n(z) -u m(z) | ≤ || u n-u m||/(π1/2 ( 1 - | z | )) ≤ || u n-u m||/(π1/2 ( 1 -r )) < ε.令m→∞,则| u n(z) -u(z) | ≤ε.这说明{ u n }在D上内闭一致收敛到u.由前面所说的Weierstrass定理,u在D上解析.把{ u n }看成是L2(D)中的基本列,因L2(D),故{ u n }是L2(D)中的收敛列.设{ u n }在L2(D)中的收敛于v.则v必然与u几乎处处相等.即{ u n }在L2(D)中的收敛于u.因此{ u n }在H2(D)中也是收敛的,且收敛于u.所以,H2(D)完备.1.6.12证明:由Cauchy-Schwarz不等式以及Bessel不等式,∀x, y∈X,有| ∑n≥ 1 (x, e n) · (y, e n)* |2≤ (∑n≥ 1 | (x, e n) |· | (y, e n)* | )2= (∑n≥ 1 | (x, e n) |· | (y, e n) | )2≤(∑n≥ 1 |(x, e n) |2) · (∑n≥ 1 | (y, e n)|2)≤|| x ||2· || y ||2.因此,| ∑n≥ 1 (x, e n) · (y, e n)* | ≤ || x || · || y ||.1.6.13证明:(1) 因范数是连续函数,故C = { x ∈X | || x - x0 || ≤r }是闭集.∀x, y∈C,因|| x - x0 || ≤r,|| x - x0 || ≤r },故∀λ∈[0, 1],|| (λ x + (1-λ) y ) - x0 || = || λ( x-x0 ) + (1-λ) (y - x0)||≤ || λ( x-x0 ) + (1-λ) (y - x0)|| ≤λ|| x-x0 || + (1-λ) || y - x0 || ≤λ r + (1-λ) r = r.所以,C是X中的闭凸集.(2) 当x ∈C时,y = x.显然y是x在C中的最佳逼近元.当x ∈C时,y = x0 + r (x - x0)/|| x - x0 ||.∀z∈C,|| x-y || = || ( x-x0 -r (x - x0)/|| x - x0 ||) ||= || (1 -r/|| x - x0 ||) (x - x0) || = || x - x0 || -r.≤ || x - x0 || - || z - x0 || ≤ || x - z||.因此,y是x在C中的最佳逼近元.1.6.14解:即是求e t在span{1, t, t2}中的最佳逼近元 (按L2[0, 1]范数).将{1, t, t2}正交化为{1, t- 1/2, (t- 1/2)2 - 1/12 } (按L2[0, 1]内积)再标准化为{ϕ0(t), ϕ1(t), ϕ2(t)},则所求的a k= (e t, ϕ k(t)) = ⎰[0, 1]e tϕ k(t) dt,k = 0, 1, 2.1.6.15证明:设g(x) = (x-a) (x-b)2,则g(a) = g (b) = 0,g’(a) = (b-a)2,g’(b) = 0.由Cauchy- Schwarz不等式,我们有(⎰[a, b]| f’’(x) |2 dx)· (⎰[a, b]| g’’(x) |2 dx)≥(⎰[a, b]f’’(x) ·g’’(x) dx )2.因g’’(x) = 3x- (a + 2b),故⎰[a, b] | g’’(x) |2 dx = ⎰[a, b] (3x- (a + 2b))2 dx = (b-a)3;又⎰[a, b]f’’(x) ·g’’(x) dx = ⎰[a, b] (3x- (a + 2b)) ·f’’(x) dx = ⎰[a, b] (3x - (a + 2b))d f’(x)= (3x- (a + 2b)) ·f’(x)| [a, b] - 3⎰[a, b]f’(x) dx = 2(b-a);故(b-a)3 ·⎰[a, b] | f’’(x) |2 dx ≥ (2(b-a))2 = 4(b-a)2.所以⎰[a, b] | f’’(x)|2 dx≥ 4/(b-a).1.6.16 (变分不等式)证明:设f(x)= a(x, x) - Re(u0, x).则f(x) = a(x, x) - Re(u0, x) ≥δ || x ||2 - | (u0, x) |≥δ || x ||2 - || u0 || · || x || ≥- || u0 ||2/(4δ) > -∞.即f在X上有下界,因而f在C有下确界μ = inf x∈C f(x).注意到a(x, y)实际上是X上的一个内积,记它所诱导的范数为|| x ||a = a(x, x)1/2,则|| · ||a与|| · ||是等价范数.因此f(x) = a(x, x) - Re(u0, x) = || x ||a2- Re(u0, x).设C中的点列{ x n }是一个极小化序列,满足μ≤f(x n ) < μ + 1/n ( ∀n∈+ ).则由平行四边形等式,|| x n-x m ||a2 = 2(|| x n ||a2 + || x m ||a2 ) - 4|| (x n + x m)/2||a2= 2( f(x n) + Re(u0, x n) + f(x m) + Re(u0, x m) ) - 4( f((x n + x m)/2) + Re(u0, (x n + x m)/2))= 2( f(x n) + f(x m)) - 4 f((x n + x m)/2) + 2 Re( (u0, x n) + (u0, x m) - (u0, x n + x m) )= 2( f(x n) + f(x m)) - 4 f((x n + x m)/2)≤ 2( μ + 1/n + μ + 1/m ) - 4 μ= 2(1/n + 1/m) → 0 ( m, n→∞ ).因此|| x n-x m ||2≤ (1/δ) || x n-x m ||a2→ 0 ( m, n→∞ ).即{ x n }为X中的基本列.由于X完备,故{ x n }收敛.设x n→x0 ( n→∞ ).则|| x n-x0 ||a2≤M || x n-x0 ||2→ 0 ( m, n→∞ ).而由内积a( · , ·),( · , ·)的连续性,有a( x n , x n) →a( x0 , x0 ),且(u0, x n) → (u0, x0),( n→∞ ).因此f(x n) = a(x n, x n) -Re(u0, x n) →a(x0, x0) -Re(u0, x0) = f(x0),( n→∞).由极限的唯一性,f(x0) = μ = inf x∈C f(x).至此,我们证明了f在C上有最小值.下面说明最小值点是唯一的.若x0, y0都是最小值点,则交错的点列{ x0, y0, x0, y0, x0, ... }是极小化序列.根据前面的证明,这个极小化序列必须是基本列,因此,必然有x0 = y0.所以最小值点是唯一的.最后我们要证明最小点x0∈C满足给出的不等式.∀x∈C,∀t∈[0, 1],有x0 + t ( x - x0)∈C,因此有f(x0 + t ( x - x0)) ≥f(x0).即|| x0 + t ( x - x0) ||a2- Re(u0, x0 + t ( x - x0)) ≥ || x0 ||a2- Re(u0, x0).展开并整理得到t Re ( 2a(x0, x - x0) - (u0, x - x0) ) ≥-t2 || x - x0 ||a2.故当∀t∈(0, 1],有Re ( 2a(x0, x - x0) - (u0, x - x0) ) ≥-t|| x - x0 ||a2.令t→ 0就得到 Re ( 2a(x0, x - x0) - (u0, x - x0) ) ≥ 0.2.1.22.1.32.1.42.1.52.1.62.1.72.1.82.1.92.2.22.2.52.3.12.3.3-22.3.42.3.52.3.72.3.82.3.92.3.112.3.122.3.132.3.142.4.42.4.52.4.62.4.72.4.82.4.92.4.102.4.112.4.122.4.132.4.142.5.42.5.52.5.7。
1.1.61.1.71.2.21.2.31.2.41.3.3 1.3.5 1.3.81.3.91.5.3证明:因为C是紧集,所以C是闭集.因为C是紧集,故C的任意子集都列紧.而T(C) C,故T(C)列紧.于是,由Schauder不动点定理,T在C上有一个不动点.[Schauder定理:B*空间中闭凸集C上使T(C)列紧的连续自映射T必有不动点] 答案21.5.6证明:设B = { u∈C[0, 1] | ⎰[0, 1]u(x) dx = 1,u(x) ≥ 0 },则B是C[0, 1]中闭凸集.设max (x, y)∈[0, 1]⨯[0, 1]K(x, y) = M,min (x, y)∈[0, 1]⨯[0, 1]K(x, y) = m,⎰[0, 1] (⎰[0, 1]K(x, y) dy) dx = N,max x∈[0, 1] | ⎰[0, 1]K(x, y) dy |= P.令(S u)(x) = (⎰[0, 1]K(x, y) u(y) dy)/(⎰[0, 1] (⎰[0, 1]K(x, y) u(y) dy) dx )则⎰[0, 1] (S u)(x) dx = 1,u(x) ≥ 0;即S u∈B.因此S是从B到B内的映射.∀u, v∈B,|| ⎰[0, 1]K(x, y) u(y) dy -⎰[0, 1]K(x, y) v(y) dy ||= || ⎰[0, 1]K(x, y) (u(y)-v(y)) dy ||= max x∈[0, 1] | ⎰[0, 1]K(x, y) (u(y)-v(y)) dy |≤M · || u -v ||;因此映射u #⎰[0, 1]K(x, y) u(y) dy在B上连续.类似地,映射u #⎰[0, 1] (⎰[0, 1]K(x, y) u(y) dy) dx也在B上连续.所以,S在B上连续.下面证明S(B)列紧.首先,证明S(B)是一致有界集.∀u∈B,|| S u || = || (⎰[0, 1]K(x, y) u(y) dy )/(⎰[0, 1] (⎰[0, 1]K(x, y) u(y) dy) dx )||= max x∈[0, 1] | ⎰[0, 1]K(x, y) u(y) dy |/(⎰[0, 1] (⎰[0, 1]K(x, y) u(y) dy) dx )≤ (M ·⎰[0, 1]u(y) dy |/(m ⎰[0, 1] (⎰[0, 1]u(y) dy) dx ) = M/m,故S(B)是一致有界集.其次,证明S(B)等度连续.∀u∈B,∀t1, t2∈[0, 1],| (S u)(t1) - (S u)(t2)|= | ⎰[0, 1]K(t1, y) u(y) dy-⎰[0, 1]K(t2, y) u(y) dy |/(⎰[0, 1] (⎰[0, 1]K(x, y) u(y) dy) dx )≤⎰[0, 1] | K(t1, y) -K(t2, y) | u(y) dy /(m⎰[0, 1] (⎰[0, 1]u(y) dy) dx )≤ (1/m) · max y∈[0, 1] | K(t1, y) -K(t2, y) |由K(x, y)在[0, 1]⨯[0, 1]上的一致连续性,∀ε > 0,存在δ> 0,使得∀(x1, y1), (x2, y2)∈[0, 1],只要|| (x1, y1) - (x2, y2) || < δ,就有| K(x1, y1) -K(x2, y2) | < m ε.故只要| t1-t2 | < δ时,y∈[0, 1],都有| K(t1, y) -K(t2, y) | < m ε.此时,| (S u)(t1) - (S u)(t2)| ≤ (1/m) · max y∈[0, 1] | K(t1, y) -K(t2, y) |≤ (1/m) ·m ε = ε.故S(B)是等度连续的.所以,S(B)是列紧集.根据Schauder不动点定理,S在C上有不动点u0.令λ= (⎰[0, 1] (⎰[0, 1]K(x, y) u0(y) dy) dx.则(S u0)(x) = (⎰[0, 1]K(x, y) u0(y) dy)/λ= (T u0)(x)/λ.因此(T u0)(x)/λ= u0(x),T u0 = λ u0.显然上述的λ和u0满足题目的要求.答案二1.6.1 (极化恒等式)证明:∀x, y∈X,q(x + y) -q(x-y) = a(x + y, x + y) -a(x-y, x-y) = (a(x, x) + a(x, y) + a(y, x) + a(y, y)) - (a(x, x) -a(x, y) -a(y, x) + a(y, y))= 2 (a(x, y) + a(y, x)),将i y代替上式中的y,有q(x + i y) -q(x-i y) = 2 (a(x, i y) + a(i y, x))= 2 (-i a(x, y) + i a( y, x)),将上式两边乘以i,得到i q(x + i y) -i q(x-i y) = 2 ( a(x, y) -a( y, x)),将它与第一式相加即可得到极化恒等式.1.6.2证明:若C[a, b]中范数|| · ||是可由某内积( · , · )诱导出的,则范数|| · ||应满足平行四边形等式.而事实上,C[a, b]中范数|| · ||是不满足平行四边形等式的,因此,不能引进内积( · , · )使其适合上述关系.范数|| · ||是不满足平行四边形等式的具体例子如下:设f(x) = (x–a)/(b–a),g(x) = (b–x)/(b–a),则|| f || = || g || = || f + g || = || f –g || = 1,显然不满足平行四边形等式.2.1.2 2.1.32.1.42.3.12.3.52.3.72.3.92.4.42.4.52.4.62.4.72.4.10 2.4.112.4.1359-61。
泛函分析答案泛函分析解答(张恭庆)第五章习题第⼀部分01-151. M 为线性空间X 的⼦集,证明span( M )是包含M 的最⼩线性⼦空间.[证明] 显然span( M )是X 的线性⼦空间.设N 是X 的线性⼦空间,且M ? N .则由span( M )的定义,可直接验证span( M ) ? N .所以span( M )是包含M 的最⼩线性⼦空间.2. 设B 为线性空间X 的⼦集,证明conv(B ) = {∑=ni i i x a 1| a i ≥ 0,∑=ni i a 1= 1, x i ∈B , n 为⾃然数}.[证明] 设A = {∑=ni i i x a 1| a i ≥ 0,∑=ni i a 1= 1, x i ∈B , n 为⾃然数}.⾸先容易看出A 为包含B 的凸集,设F 也是包含B 的凸集,则显然有A ? F ,故A 为包含B 的最⼩凸集.3. 证明[a , b ]上的多项式全体P [a , b ]是⽆限维线性空间,⽽E = {1, t , t 2, ..., t n , ...}是它的⼀个基底.[证明] ⾸先可以直接证明P [a , b ]按通常的函数加法和数乘构成线性空间,⽽P [a , b ]中的任⼀个元素皆可由E 中有限个元素的线性组合表⽰.设c 0, c 1, c 2, ..., c m 是m + 1个实数,其中c m ≠ 0,m ≥ 1.若∑=mn n n t c 0= 0,由代数学基本定理知c 0 = c 1 = c 2 = ... = c m = 0,所以E 中任意有限个元素线性⽆关,故P [a , b ]是⽆限维线性空间,⽽E 是它的⼀个基底。
4. 在 2中对任意的x = (x 1, x 2)∈ 2,定义|| x ||1 = | x 1 | + | x 2 |,|| x ||2 = (x 12 + x 22)1/2,|| x ||∞ = max{ | x 1 |, | x 2 | }.证明它们都是 2中的范数,并画出各⾃单位球的图形.[证明] 证明是直接的,只要逐条验证范数定义中的条件即可.单位球图形略.5. 设X 为线性赋范空间,L 为它的线性⼦空间。
大学教材部分答案参考网站 (供大家学习)1、C 程序设计第三版 (谭浩强著) 清华大学出版社课后答案/bbs/viewthread.php?tid=80&fromuid=92、复变函数与积分变换第四版 (张元林西安交大著) 高等教育出版社课后答案/bbs/viewthread.php?tid=612&fromuid=9C 语言程序设计教程第三版(谭浩强张基温著) 高等教育出版社课后答案[khdaw_lxywyl]/bbs/viewthread.php?tid=79&fromuid=9C 语言程序设计教程第二版 (谭浩强张基温著) 高等教育出版社课后答案【khdaw】/bbs/viewthread.php?tid=256&fromuid=9离散数学(第三版)(耿素云屈婉玲张立昂著) 清华大学出版社课后答案【khdaw_ricardo】/bbs/viewthread.php?tid=293&fromuid=9耿国华数据结构课后答案/bbs/viewthread.php?tid=103&fromuid=9严蔚敏《数据结构(c 语言版)习题集》答案/bbs/viewthread.php?tid=102&fromuid=9谭浩强C++程序设计习题答案/bbs/viewthread.php?tid=420&fromuid=9《微机原理与接口技术》清华(冯博琴吴宁)版课后答案/bbs/viewthread.php?tid=707&fromuid=9数据库系统概论 (王珊萨师煊著) 清华大学出版社课后答案/bbs/viewthread.php?tid=991&fromuid=9C 程序设计第二版 (谭浩强著) 课后答案/bbs/viewthread.php?tid=47&fromuid=9清华大学《数据结构》习题+课后答案/bbs/viewthread.php?tid=249&fromuid=9《数学物理方法》(梁昆淼第二版)习题解答谢希仁版《计算机网络教程》课后答案/bbs/viewthread.php?tid=203&fromuid=9《计算机网络第四版》答案【khdaw】/bbs/viewthread.php?tid=340&fromuid=9数据结构习题集(C 版)答案/bbs/viewthread.php?tid=374&fromuid=9计算机操作系统 (汤子赢著) 西安电子科技大学课后答案/bbs/viewthread.php?tid=1083&fromuid=9离散数学 (左孝凌著) 上海科学技术文献出版社课后答案【khdaw】/bbs/viewthread.php?tid=466&fromuid=9近世代数基础 (刘绍学著) 高等教育出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=177&fromuid=9计算机组成原理习题&答案唐朔飞高等教育出版社【khdaw】/bbs/viewthread.php?tid=984&fromuid=9计算机网络(第4 版)清华(Andrew S.Tanenbaum)版答案(中文版)【khdaw】/bbs/viewthread.php?tid=201&fromuid=9《常微分方程》王高雄高等教育出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=567&fromuid=9数学分析(陈传璋版)习题答案下载/bbs/viewthread.php?tid=714&fromuid=9计算机算法设计与分析(第 3 版) (王晓东著) 电子工业出版社课后答案【khdaw_ricardo】/bbs/viewthread.php?tid=3162&fromuid=9《计算机系统结构》清华第2 版习题解答(chm)【khdaw】/bbs/viewthread.php?tid=1303&fromuid=9《编译原理》课后习题答案/bbs/viewthread.php?tid=175&fromuid=9《计算机网络》(第三版) (Andrew S.Tanenbaum 著) 清华大学出版社课后答案《软件工程》课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=896&fromuid=9C++语言程序设计(第3 版) (郑莉著) 清华大学出版社课后答案/bbs/viewthread.php?tid=988&fromuid=9计算机操作系统第三版 (汤子瀛哲凤屏汤小丹著) 西安电子科技大学出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=691&fromuid=9微型计算机接口技术及应用【khdaw】/bbs/viewthread.php?tid=375&fromuid=9常微分方程 (王高雄)第三版高等教育出版社课后答案【khdaw】/bbs/viewthread.php?tid=2563&fromuid=9编译原理第三版 (陈火旺著) 国防工业出版社课后答案/bbs/viewthread.php?tid=1476&fromuid=9《常微分方程》(王高雄版)习题答案/bbs/viewthread.php?tid=489&fromuid=9大学计算机基础教程答案/bbs/viewthread.php?tid=379&fromuid=980x86 汇编语言程序设计 (沈明美温冬禅著) 清华大学出版社课后答案/bbs/viewthread.php?tid=523&fromuid=9IBM-PC 汇编语言程序设计课后习题答案 (美明温冬婵著) 清华大学出版社课后答案/bbs/viewthread.php?tid=370&fromuid=9数学分析 (华东师范大学数学系著) 高等教育出版社课后答案/bbs/viewthread.php?tid=238&fromuid=9李春葆:数据结构习题与解析-C 语言版/bbs/viewthread.php?tid=1005&fromuid=9visual basic 示例程序、实验答案下载/bbs/viewthread.php?tid=508&fromuid=9汇编语言 (王爽著) 课后答案清华版《编译原理》课后答案/bbs/viewthread.php?tid=228&fromuid=9离散数学(高等教育出版社)耿素云屈婉玲【khdaw】/bbs/viewthread.php?tid=1224&fromuid=9离散数学及其应用 (傅彦顾小丰著) 电子工业出版社课后答案/bbs/viewthread.php?tid=233&fromuid=9《计算机网络》机械工业出版社(James F.Kurose, Keith W.Ross)答案【khdaw_cola】/bbs/viewthread.php?tid=730&fromuid=9计算机网络(第5 版)课后习题答案【khdaw】/bbs/viewthread.php?tid=2981&fromuid=9常微分方程课后习题答案(华东师范版)/bbs/viewthread.php?tid=172&fromuid=9《Visual FoxPro 程序设计教程》课后习题答案(刘卫国主编)/bbs/viewthread.php?tid=232&fromuid=9有关《计算机组成原理》相关课后答案发布/bbs/viewthread.php?tid=3565&fromuid=9《计算机组成原理》课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=505&fromuid=9C 程序设计第三版 (谭浩强著) 清华大学出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=3690&fromuid=9离散数学教程 (耿素云屈婉玲王捍贫著) 北京大学出版社课后答案/bbs/viewthread.php?tid=36&fromuid=9数据库系统概念答案【khdaw_cola】/bbs/viewthread.php?tid=759&fromuid=9数据库系统概论答案清华版【khdaw_cola】/bbs/viewthread.php?tid=337&fromuid=9所有有关《操作系统》的答案发布和一些版本的答案求助【khdaw】/bbs/viewthread.php?tid=3320&fromuid=9/bbs/viewthread.php?tid=2653&fromuid=9数据库系统概论(第四版)王珊、萨师煊【khdaw】/bbs/viewthread.php?tid=2291&fromuid=9数学分析答案复旦陈纪修【khdaw_cola】/bbs/viewthread.php?tid=328&fromuid=9《数据库系统概论》课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=219&fromuid=9数据库系统概论-第四版-高教版-王珊-封面看内图【khdaw_cola】/bbs/viewthread.php?tid=2344&fromuid=9计算机组成原理课后答案(白中英版)/bbs/viewthread.php?tid=173&fromuid=9所有《数据结构》版本课后答案发布/bbs/viewthread.php?tid=4310&fromuid=9《数值分析》(第4版)李庆扬编清华大学出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=3596&fromuid=9《数学分析》(第三版)华东师范大学高等教育出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=7192&fromuid=9数学分析复旦大学陈传章/bbs/viewthread.php?tid=448&fromuid=9近世代数基础 (张禾瑞著) 课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=269&fromuid=9《计算机组成与结构》王爱英(第四版)答案/bbs/viewthread.php?tid=4836&fromuid=9《软件工程导论》张海潘第五版清华大学出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=7159&fromuid=9所有有关《数据库系统概论》的答案发布和一些有关数据库版本的答案求助【khdaw】/bbs/viewthread.php?tid=3321&fromuid=9离散数学耿素云屈婉玲高等教育出版社课后习题参考答案【khdaw】C++语言程序设计(第3 版)(郑莉版)郑莉清华大学出版社【khdaw_lxywyl】/bbs/viewthread.php?tid=1106&fromuid=9目前最完整的数据结构1800 题包括完整答案(word 版本)/bbs/viewthread.php?tid=1244&fromuid=9《操作系统》(中国铁道出版社,刘振鹏,李亚平,王煜,张明)习题答案/bbs/viewthread.php?tid=348&fromuid=9机械工业版《c++程序设计语言》题解下载/bbs/viewthread.php?tid=254&fromuid=9《数字逻辑》(第二版)鲍家元毛文林高教出版课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=1081&fromuid=9《Visual FoxPro 及其应用系统开发》(简明版)谭浩强清华大学出版【khdaw_cola】/bbs/viewthread.php?tid=1362&fromuid=9《数据结构题集》严蔚敏 (C 语言版)答案【khdaw】/bbs/viewthread.php?tid=3319&fromuid=9《计算机组成原理与汇编语言程序设计》教材答案【khdaw_cola】/bbs/viewthread.php?tid=1233&fromuid=9计算机网络第二版 (吴功宜著) 清华大学出版社课后答案/bbs/viewthread.php?tid=4403&fromuid=9计算机网络谢希仁第五版电子工业出版社课后参考答案【khdaw_cola】/bbs/viewthread.php?tid=6495&fromuid=9复变函数与积分变换第四版西安交大课后答案/bbs/viewthread.php?tid=2181&fromuid=9《数学物理方法》学习指导【khdaw_cola】/bbs/viewthread.php?tid=1142&fromuid=9数值分析【khdaw_cola】/bbs/viewthread.php?tid=1521&fromuid=9信息论与编码学习辅导及习题详解/bbs/viewthread.php?tid=1903&fromuid=9/bbs/viewthread.php?tid=3048&fromuid=9VB 高教版课后答案/bbs/viewthread.php?tid=250&fromuid=9实变函数与泛函分析课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=1332&fromuid=9《微机系统原理与接口技术》课后答案【khdaw_cola】/bbs/viewthread.php?tid=1304&fromuid=9清华版编译原理课后答案(chm)【khdaw】/bbs/viewthread.php?tid=1302&fromuid=9计算机网络教程谢希仁版/bbs/viewthread.php?tid=1082&fromuid=9数值分析第四版 (李庆扬王能超易大义著) 清华大学出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=8086&fromuid=9耿国华数据结构---C 语言的描课后大部分习题答案西安电大学出版社【khdaw_cola】/bbs/viewthread.php?tid=2015&fromuid=9新版汇编语言程序设计 (钱晓捷著) 电子工业出版社课后答案/bbs/viewthread.php?tid=692&fromuid=9《计算机组成原理》唐朔飞第二版高等教育出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=9774&fromuid=9计算机组成原理白中英第四版课后答案【khdaw_cola】/bbs/viewthread.php?tid=3419&fromuid=9IBM-PC 汇编语言程序设计(第2 版) (沈美明温冬婵编著著) 清华出版社课后答案/bbs/viewthread.php?tid=3497&fromuid=9初等数论答案严士健高教版【khdaw_cola】/bbs/viewthread.php?tid=2360&fromuid=9计算机组成原理唐朔飞版高等教育出版社(部分答案)【khdaw】/bbs/viewthread.php?tid=3422&fromuid=9西电汤操作系统第三版【khdaw_cola】计算机应用基础 (不详著) 不详课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=262&fromuid=9数学模型(第三版)习题参考解答/bbs/viewthread.php?tid=4879&fromuid=9微型计算机原理与接口技术 (冯博琴著) 清华出版课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=2617&fromuid=9离散答案(王元元张桂蕓编著)科学出版社【khdaw_cola】/bbs/viewthread.php?tid=1100&fromuid=9《C 程序设计》谭浩强(第三版)清华大学出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=2608&fromuid=9C++ 程序设计(第二版)高等教育出版课件例题源代码及习题答案/bbs/viewthread.php?tid=1751&fromuid=9计算机网络教程第五版 (谢希仁著) 电子工业出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=11354&fromuid=9计算机网络第4 版 (谢希仁著) 电子工业出版社课后答案【khdaw】/bbs/viewthread.php?tid=225&fromuid=9软件工程导论第五版 (张海藩著) 清华大学出版社课后答案【khdaw】/bbs/viewthread.php?tid=7449&fromuid=9数据结构教程(第2 版)李春葆答案/bbs/viewthread.php?tid=3334&fromuid=9数值分析 (未知著) 华中科技大课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=3525&fromuid=9数据结构(C 语言版) (严蔚敏吴伟民米宁著) 清华大学出版社课后答案/bbs/viewthread.php?tid=2067&fromuid=9泛函分析讲义-习题解答张恭庆、林源渠北大版【khdaw_cola】/bbs/viewthread.php?tid=3139&fromuid=9近世代数基础 (张禾瑞著) 课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=3510&fromuid=9【khdaw_ricardo】/bbs/viewthread.php?tid=11229&fromuid=9白中英《计算机组成原理_试题、题解与题库》电子书(超星版)/bbs/viewthread.php?tid=1085&fromuid=9电子工业版《vb 语言程序设计》习题答案/bbs/viewthread.php?tid=107&fromuid=9C++ 程序设计教程(第二版) (钱能著) 清华大学出版课后答案/bbs/viewthread.php?tid=2503&fromuid=9计算机应用基础理论习题参考答案/bbs/viewthread.php?tid=116&fromuid=9数学模型第三版 (姜启源谢金星叶俊著) 高等教育出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=1972&fromuid=9Java 编程思想.第四版.课后练习答案/bbs/viewthread.php?tid=1846&fromuid=9《Java2 实用教程》(第三版)清华(耿祥义张跃平)版课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=6922&fromuid=9中文原版《编译原理》课后答案机械工业出版社李建中编/bbs/viewthread.php?tid=1847&fromuid=9计算机组成原理(教师用书)附带答案蒋本珊清华大学出版社【khdaw】/bbs/viewthread.php?tid=9254&fromuid=9《积分变换》张元林第四版东南大学答案【khdaw_lxywyl】/bbs/viewthread.php?tid=5074&fromuid=9《马克思主义基本原理概论》课后答案(很全哦)(2008 年修订版)【khdaw_cola】/bbs/viewthread.php?tid=6053&fromuid=9<计算机操作系统教程>清华大学第二版/第三版张尧学课后习题答案【khdaw】/bbs/viewthread.php?tid=9091&fromuid=9<计算机网络教程> 谢希仁第二版人民邮电出版社课后答案【khdaw_cola】/bbs/viewthread.php?tid=4862&fromuid=9/bbs/viewthread.php?tid=7785&fromuid=9vfp 数据库课后题答案/bbs/viewthread.php?tid=231&fromuid=9单片机基础第3 版李广第朱月秀冷祖祁编著北京航空航天大学出版社【khdaw_cola】/bbs/viewthread.php?tid=4271&fromuid=9电工学第六版 (秦曾煌著) 高等教育出版社课后答案【khdaw_ricardo】/bbs/viewthread.php?tid=11241&fromuid=9《数据通信与计算机网络》高传善(第二版)高等教育出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=6610&fromuid=9《计算机组成原理》唐朔飞第4,5 章课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=1144&fromuid=9软件工程导论第五版 (张海藩著) 清华大学出版社课后答案【khdaw】/bbs/viewthread.php?tid=13716&fromuid=9初等数论第三版 (闵嗣鹤著) 高等教育出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=1508&fromuid=9《数据库系统概论》王珊萨师煊(第四版)高等教育出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=5249&fromuid=9计算机数值方法 (施吉林著) 高等教育出版社课后答案/bbs/viewthread.php?tid=3903&fromuid=9离散数学耿素云屈婉玲课后答案/bbs/viewthread.php?tid=7839&fromuid=9数据结构---C 语言描述答案(耿国华)高教版【khdaw_cola】/bbs/viewthread.php?tid=2094&fromuid=9软件工程导论课后答案/bbs/viewthread.php?tid=5172&fromuid=9数据结构(殷人昆主编)【khdaw】/bbs/viewthread.php?tid=3077&fromuid=9《c 程序设计语言》英文第2 版课后答案严蔚敏数据结构例题算法代码/bbs/viewthread.php?tid=1031&fromuid=9国防科学技术大学计算机学院离散数学课后习题答案/bbs/viewthread.php?tid=100&fromuid=9计算机网络-自顶向下方法与Internet 特色第三版英文课后答案【khdaw_cola】/bbs/viewthread.php?tid=2495&fromuid=9《计算机组成原理》白中英第三版课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=3423&fromuid=9数据结构(C++版)王红梅,胡明,王涛版课后答案【khdaw_cola】/bbs/viewthread.php?tid=4426&fromuid=9清华版编译原理【khdaw_cola】/bbs/viewthread.php?tid=1027&fromuid=9微机原理与接口技术-基于IA-32 处理器和32 为汇编语言 (钱晓捷著) 机械工业出版社课后答案【khdaw_cola】/bbs/viewthread.php?tid=5668&fromuid=9《离散数学》左孝凌,刘永才上海科学技术文献出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=5236&fromuid=9网络操作系统课后答案/bbs/viewthread.php?tid=430&fromuid=9《点集拓扑讲义》高教(熊金城)版课后答案【khdaw_cola】/bbs/viewthread.php?tid=6441&fromuid=9数学分析第二版 (陈传章著) 高等教育出版社课后答案【khdaw_cola】/bbs/viewthread.php?tid=2442&fromuid=9软件工程【khdaw】/bbs/viewthread.php?tid=3072&fromuid=9操作系统教程第4 版 (张钟秀著) 高等教育出版社课后答案/bbs/viewthread.php?tid=7703&fromuid=9信息论与编码技术--冯桂林其伟陈东华--清华大学出版社【khdaw_cola】/bbs/viewthread.php?tid=3332&fromuid=9编译原理课程设计报告(词法,语法等)【khdaw_cola】/bbs/viewthread.php?tid=2514&fromuid=9微机原理与接口技术楼顺天,周佳社科学出版社【khdaw_cola】/bbs/viewthread.php?tid=5304&fromuid=9《单片机原理及接口技术》梅丽凤清华大学出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=5538&fromuid=9数据库系统概论_王珊、萨师煊第四版(chm 格式)【khdaw】/bbs/viewthread.php?tid=6403&fromuid=9数字逻辑答案第三版(华中科大欧阳星明)/bbs/viewthread.php?tid=6833&fromuid=9算法导论(英文版)答案【khdaw_cola】/bbs/viewthread.php?tid=2792&fromuid=9数学物理方法第三版 (梁昆淼著) 高等教育出版社课后答案/bbs/viewthread.php?tid=2398&fromuid=9微型计算机原理与接口技术 (周荷琴吴秀清著) 课后答案/bbs/viewthread.php?tid=4086&fromuid=9《工程数学概率统计简明教程(同济大学应用数学系)》课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=7219&fromuid=9复变函数答案【khdaw_cola】/bbs/viewthread.php?tid=6557&fromuid=9复变函数与积分变换 (马柏林著) 复旦大学课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=14749&fromuid=9计算机操作系统教程(第二版)左万历周长林【khdaw_cola】/bbs/viewthread.php?tid=1690&fromuid=9计算机组成原理(唐朔飞)答案高等教育出版社【khdaw】/bbs/viewthread.php?tid=8804&fromuid=9信息论与编码陈运电子工业出版社【khdaw_cola】/bbs/viewthread.php?tid=2828&fromuid=9计算机网络英文原版(第4 版)【khdaw】/bbs/viewthread.php?tid=3239&fromuid=9《数据库系统概念》(第五版影印版)高级教育出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=5283&fromuid=9离散数学 (王义和著) 哈尔滨工业大学出版社课后答案【khdaw_ricardo】/bbs/viewthread.php?tid=5724&fromuid=9IBM-PC 汇编语言程序设计(沈美明2 版)【khdaw_cola】/bbs/viewthread.php?tid=5203&fromuid=9《C 程序设计解题与上机指导》谭浩强第二版清华大学出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=1551&fromuid=9《组合数学》第四版机械工业出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=4346&fromuid=9《计算机英语(第2 版)》参考译文与习题解答【khdaw】/bbs/viewthread.php?tid=2963&fromuid=9C 语言程序设计教程杨路明北京邮电大学出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=10074&fromuid=9《数据库系统及应用》崔魏(第二版)高等教育出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=2482&fromuid=9编译原理第三板 (陈火旺刘春林著) 国防工业课后答案/bbs/viewthread.php?tid=7680&fromuid=9《SQL SERVER 2005 数据库开发与实现》微软公司课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=1335&fromuid=9信号与线性系统管致中第4 版答案/bbs/viewthread.php?tid=6729&fromuid=9《计算机算法基础》(第三版)华中科技大4、5、6、8 章课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=4348&fromuid=9计算机系统结构第二版清华大学出版社课后答案/bbs/viewthread.php?tid=5370&fromuid=9《visual basic》课后作业答案【khdaw_lxywyl】常微分方程(张禾瑞)第三版【khdaw_cola】/bbs/viewthread.php?tid=1654&fromuid=9《数学分析》陈传璋课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=2217&fromuid=9高等几何梅学明高教版【khdaw_cola】/bbs/viewthread.php?tid=5698&fromuid=9数学分析高教出版社第二版复旦数学系主编/bbs/viewthread.php?tid=3025&fromuid=9编译原理第三版西北工业大学出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=5614&fromuid=9数值分析数值计算方法曾金平湖南大学出版社课后答案【khdaw】/bbs/viewthread.php?tid=9628&fromuid=9C 语言程序设计 (何钦铭颜晖著) 浙江科学技术出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=14395&fromuid=9计算机网络第四版【khdaw_cola】/bbs/viewthread.php?tid=1084&fromuid=9数据结构课后答案(高等教育出版社唐策善版))【khdaw】/bbs/viewthread.php?tid=5994&fromuid=9微型计算机技术及应用答案/bbs/viewthread.php?tid=6013&fromuid=9实变函数论第三版(江泽坚吴智泉纪友清著) 高等教育出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=11505&fromuid=9《微积分》人教版课后课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=5190&fromuid=9严蔚敏《数据结构(c 语言版)习题集》答案/bbs/viewthread.php?tid=6170&fromuid=9微型计算机原理与接口技术 (邹逢兴著) 清华大学出版社课后答案【khdaw_cola】数据结构习题答案+耿国华主编【khdaw_cola】/bbs/viewthread.php?tid=7218&fromuid=9《数据库系统概论》王珊萨师煊(第四版)课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=6054&fromuid=9计算机组成与结构第四版 (王爱英著) 清华大学出版社课后答案【khdaw_ricardo】/bbs/viewthread.php?tid=11208&fromuid=9《数据结构习题集》答案严蔚敏【khdaw_cola】/bbs/viewthread.php?tid=6552&fromuid=9概率论与数理统计 (同济大学应用数学系著) 高等教育出版社课后答案/bbs/viewthread.php?tid=9101&fromuid=9立体几何大题30 题(有详细答案)[整理]人教版/bbs/viewthread.php?tid=333&fromuid=9计算机答案合集(组成原理,操作系统...)/bbs/viewthread.php?tid=5204&fromuid=9《应用概率统计》(张国权)版科学出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=7334&fromuid=9《C 程序设计》谭浩强编习题答案【khdaw_cola】/bbs/viewthread.php?tid=7836&fromuid=9数据结构(C 语言版)习题答案/bbs/viewthread.php?tid=5200&fromuid=9编译原理 (陈火旺著) 国防工业出版社课后答案/bbs/viewthread.php?tid=2978&fromuid=9微机原理与接口技术第三章 (郭兰英赵祥模著) 清华出版社课后答案_khdaw/bbs/viewthread.php?tid=7347&fromuid=9计算机网络第二版) (冯博琴陈文革著) 高等教育出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=5989&fromuid=9《数据结构》清华大学答案+例程+ppt 课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=9713&fromuid=9软件工程第二版 (张海藩著) 人民邮电出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=10940&fromuid=9计算机专业英语课后答案【khdaw_cola】/bbs/viewthread.php?tid=7258&fromuid=9数值计算课后答案曾喆昭文卉编著【khdaw_cola】/bbs/viewthread.php?tid=2538&fromuid=9计算机组成与结构(第4 版)习题解答(上)【khdaw_cola】/bbs/viewthread.php?tid=6286&fromuid=9数据结构(c 语言版)习题集答案/bbs/viewthread.php?tid=6096&fromuid=9vb 程序设计(第四版)课后习题答案【khdaw】/bbs/viewthread.php?tid=2994&fromuid=9汇编语言(清华大学出版社)【khdaw】/bbs/viewthread.php?tid=3421&fromuid=9离散数学答案修订版 (耿素云屈婉玲著) 高等教育出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=15917&fromuid=9《编译原理》蒋立源课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=4518&fromuid=9《数字逻辑》(第二版)华中科技大学出版社(欧阳星明)版课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=7332&fromuid=9严蔚敏数据机构实习报告部分答案【khdaw_cola】/bbs/viewthread.php?tid=1036&fromuid=9数值分析部分答案/bbs/viewthread.php?tid=3523&fromuid=9《数字图像处理》(第二版)英文版习题答案(全)【khdaw_lxywyl】/bbs/viewthread.php?tid=5854&fromuid=9C 程序设计(第二版)谭浩强习题解答清华大学出版社课后答案【khdaw_cola】/bbs/viewthread.php?tid=5679&fromuid=9微分几何梅向明第三版黄敬之高等教育出版社课后答案【khdaw】/bbs/viewthread.php?tid=9287&fromuid=9c++语言基础教程 (吕凤葛著) 清华大学出版社课后答案【khdaw】/bbs/viewthread.php?tid=14461&fromuid=9求《数值分析》第五版答案/bbs/viewthread.php?tid=6704&fromuid=9微分几何第三章、第四章 (梅向明著) 高等教育出版社课后答案/bbs/viewthread.php?tid=4721&fromuid=9《计算机组成原理》白中英(第四版•立体化教材)课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=5281&fromuid=9数值分析/bbs/viewthread.php?tid=4245&fromuid=9c 程序设计 (谭浩强著) 清华大学出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=7611&fromuid=9《数据库原理》课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=4345&fromuid=9数据结构/bbs/viewthread.php?tid=1624&fromuid=9现代微机原理与接口技术 (杨全胜著) 电子工业出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=11531&fromuid=9《计算机系统组成与体系结构》人民邮电出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=2852&fromuid=9求数值分析(第4版)李庆扬编/bbs/viewthread.php?tid=6580&fromuid=9java2 实用教程(第三版)【khdaw_cola】/bbs/viewthread.php?tid=7256&fromuid=9数据结构答案【khdaw】/bbs/viewthread.php?tid=2066&fromuid=9人工智能原理及其应用王万森电子工业出版社(2-7 章)【khdaw】/bbs/viewthread.php?tid=9145&fromuid=9JAVA 大学实用教程第二版 (耿祥义张跃平著) 电子工业出版社课后答案【khdaw】/bbs/viewthread.php?tid=15805&fromuid=9Visual C++面向对象编程教程(第2 版) (王育坚著) 清华大学出版社课后答案【khdaw】/bbs/viewthread.php?tid=14404&fromuid=9清华大学出版社计算机网络第4 版中文答案【khdaw_cola】/bbs/viewthread.php?tid=8080&fromuid=9计算机网络第四版 (潘爱民译著) 清华大学出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=15080&fromuid=9初等数学研究学习指导 (叶立军著) 华东师范大学出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=13939&fromuid=9《复变函数论》张锦豪邱维元版高等教育出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=5919&fromuid=9算法导论原书第二版 (潘金贵顾铁成李成法著) 机械工业出版社课后答案【khdaw】/bbs/viewthread.php?tid=12100&fromuid=9张禾瑞的<<近世代数基础>>的答案/bbs/viewthread.php?tid=1540&fromuid=9c++程序设计/bbs/viewthread.php?tid=5608&fromuid=9《概率论与统计学》浙大出版社(复习指南)课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=4871&fromuid=9计算机基础课后答案(浙江科学出版社)/bbs/viewthread.php?tid=2014&fromuid=9《C 语言程序设计》张世禄,潘大志,冯天敏电子工业出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=2568&fromuid=9C 语言程序设计(洪维恩)课后答案【khdaw】/bbs/viewthread.php?tid=1955&fromuid=9《计算机组成原理》白中英第四版科学出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=6433&fromuid=9微机原理与接口技术第 4 版 (周荷琴,吴秀清著) 中国科学技术大学出版社课后答案【khdaw】/bbs/viewthread.php?tid=15151&fromuid=9数值计算课后答案(清华大学出版)/bbs/viewthread.php?tid=5246&fromuid=9java 程序设计【khdaw_cola】/bbs/viewthread.php?tid=7541&fromuid=9《高等数值分析》清华大学出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=5692&fromuid=9数据与计算机通信(第七版) William Stallings 等【khdaw_cola】/bbs/viewthread.php?tid=5201&fromuid=9数值方法第二版 (金一庆陈越著) 机械工业出版社课后答案/bbs/viewthread.php?tid=11539&fromuid=9高等代数北师大高教第三版张和瑞【khdaw】/bbs/viewthread.php?tid=8607&fromuid=9微波技术与天线(第二版) 王新稳李萍李延平编电子工业出版社【khdaw_cola】/bbs/viewthread.php?tid=6534&fromuid=9数据结构(陈慧南编 C++描述)南京邮电大学课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=9506&fromuid=9四川大学出版社编的离散数学教程答案【khdaw_cola】/bbs/viewthread.php?tid=7402&fromuid=9计算机组成原理(白中英版)【khdaw_cola】/bbs/viewthread.php?tid=3243&fromuid=9现代微型计算机与接口教程课后答案杨文显主编寿庆余副主编【khdaw_cola】/bbs/viewthread.php?tid=7964&fromuid=9C 语言程序设计 3-5 章部分程序题答案杨路明北京邮电大学出版社【khdaw】/bbs/viewthread.php?tid=8775&fromuid=9《操作系统》汤子赢西安电子科技大学答案【khdaw_lxywyl】/bbs/viewthread.php?tid=6055&fromuid=9数据库原理与应用教程第二版陈志泊人民邮电出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=9933&fromuid=9数据结构与算法分析(C++ 第二版)Clifford A. Shaffer 电子工业出版社【khdaw】/bbs/viewthread.php?tid=9211&fromuid=9《程序设计基础》练习题及答案【khdaw_lxywyl】/bbs/viewthread.php?tid=2801&fromuid=9《多媒体技术基础(第2 版)》林福宗清华大学出版社课后参考答案【khdaw】/bbs/viewthread.php?tid=9299&fromuid=9计算机专业英语(含课文、译文、模拟试题、专业英语习题、答案)【khdaw】/bbs/viewthread.php?tid=9364&fromuid=908 版考研概率复习指南答案/bbs/viewthread.php?tid=509&fromuid=9计算机网络(第4 版) (Andrew S.Tanenbaum 著) 清华大学出版社课后答案/bbs/viewthread.php?tid=11361&fromuid=9计算机图形学王汝传 1-4 章人民邮电出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=10000&fromuid=9计算机网络教程(第3 版)习题答案【khdaw_cola】/bbs/viewthread.php?tid=7777&fromuid=9c++语言程序设计(实验部分)第 3 版(郑莉著) 清华大学出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=15124&fromuid=9数字信号处理学习指导与题解 (丁美玉高西全王军宁著) 电子工业出版社课后答案【khdaw】/bbs/viewthread.php?tid=15168&fromuid=9计算机网络第五版 (谢希仁著) 电子工业出版社课后答案/bbs/viewthread.php?tid=16108&fromuid=9数学物理方程与特殊函数第三版完整 (东南大学数学系王元明著) 高等教育出版社课后答案【khdaw】/bbs/viewthread.php?tid=17311&fromuid=9《操作系统概念》英文版高等教育出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=3491&fromuid=9计算机网络第二版蔡开裕朱培栋徐明(国防科技大学版)【khdaw】/bbs/viewthread.php?tid=9239&fromuid=9《C++语言程序设计教程》吕凤翥人民邮电出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=8119&fromuid=9电工学第七版下册 (秦曾黄著) 高等教育出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=19778&fromuid=9vfp 表修复工具/bbs/viewthread.php?tid=73&fromuid=9C++语言基础教程吕凤翥人民邮电出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=10016&fromuid=9数据库及其应用教材课后习题答案_【khdaw_lxywyl】/bbs/viewthread.php?tid=9530&fromuid=9Turbo C 错误信息表/bbs/viewthread.php?tid=70&fromuid=9《微机原理及汇编技术》课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=5684&fromuid=9复变函数答案第四版 (余家荣著) 高等教育出版社课后答案【khdaw】/bbs/viewthread.php?tid=17004&fromuid=9Java 程序设计(第二版) (朱喜福著) 人民邮电出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=10576&fromuid=9计算机专业英语教程译文(第 4 版) (金志权等主编著) 电子工业出版社课后答案【khdaw】/bbs/viewthread.php?tid=14170&fromuid=9数据结构习题/bbs/viewthread.php?tid=4344&fromuid=9《计算机英语》第2版全书翻译及课后答案_【khdaw_lxywyl】。
泛函分析讲义第二版课后答案第一章函数的概念1.定义函数:函数是一种特殊的数学关系,它把一个或多个自变量映射到一个或多个因变量。
它可以用来描述物理现象、经济关系、社会现象等。
2.定义函数的基本要素:函数的基本要素包括:自变量、因变量、函数表达式、函数图像。
3.定义函数的基本性质:函数的基本性质包括:单调性、可导性、可积性、可级数展开性、可积分性、可极限性、可微分性、可反函数性。
4.定义函数的基本概念:函数的基本概念包括:定义域、值域、增函数、减函数、奇函数、偶函数、有界函数、无界函数、连续函数、间断函数、有穷函数、无穷函数、可积函数、不可积函数、可微分函数、不可微分函数、可反函数函数、不可反函数函数。
第二章函数的极限1.定义极限:极限是指当自变量的值趋近于某一特定值时,函数的值趋近于某一特定值。
2.定义极限的基本性质:极限的基本性质包括:极限的存在性、极限的结合性、极限的分配性、极限的交换性、极限的绝对值性质、极限的恒等性、极限的连续性。
3.定义极限的基本概念:极限的基本概念包括:极限的定义、极限的计算、极限的应用、极限的性质、极限的极限点、极限的极限线、极限的极限面、极限的极限空间。
第三章函数的微分1.定义微分:微分是指求函数的导数,即求函数在某一点处的切线斜率。
2.定义微分的基本性质:微分的基本性质包括:微分的存在性、微分的结合性、微分的分配性、微分的交换性、微分的绝对值性质、微分的恒等性、微分的连续性。
3.定义微分的基本概念:微分的基本概念包括:微分的定义、微分的计算、微分的应用、微分的性质、微分的微分点、微分的微分线、微分的微分面、微分的微分空间。
1.1.51.1.61.1.71.2.21.2.31.2.41.3.31.3.41.3.51.3.71.3.81.3.91.4.11.4.5-61.4.91.4.111.4.121.4.131.4.141.4.151.4.171.5.1证明:(1) (⇒) 若x∈int(E),存在δ > 0,使得Bδ(x) ⊆E.注意到x + x/n→x ( n→∞ ),故存在N ∈+,使得x + x/N ∈Bδ(x) ⊆E.即x/( N/( 1 + N ) ) ∈E.因此P(x) ≤N/( 1 + N ) < 1.(⇐) 若P(x) < 1.则存在a > 1,使得y = a x∈E.因θ∈int(E),故存在δ > 0,使得Bδ(θ) ⊆E.令η = δ(a - 1)/a,∀z∈Bη(x),令w = (a z-y )/(a - 1),则|| w || = || (a z-y )/(a - 1) || = || a z-y ||/(a - 1)= || a z-a x ||/(a - 1) = a || z-x ||/(a - 1) < aη/(a - 1) = δ.故w∈Bδ(θ) ⊆E.故z = ((a - 1)w + y )/a ∈E,因此,Bη(x) ⊆E.所以x∈int(E).(2) 因int(E) = E,故有cl(int(E)) ⊆ cl(E).下面证明相反的包含关系.若x∈cl(E),则∀ε > 0,存在y∈E,使得|| x -y || < ε/2.因ny/(n + 1) →y ( n →∞ ).故存在N ∈+,使得|| Ny/(N + 1) -y || < ε/2.令z = Ny/(N + 1),则z∈E,且P(z) ≤N/(N + 1) < 1,由(1)知z∈int(E).而|| z -x || ≤ || z -y || + || y -x || < ε/2 + ε/2 = ε.故x∈cl(int(E)),因此cl(E) ⊆ cl(int(E))所以cl(int(E)) = cl(E).1.5.3证明:因为C是紧集,所以C是闭集.因为C是紧集,故C的任意子集都列紧.而T(C) C,故T(C)列紧.于是,由Schauder不动点定理,T在C上有一个不动点.[Schauder定理:B*空间中闭凸集C上使T(C)列紧的连续自映射T必有不动点] 1.5.41.5.5证明:设C = {x = (x1, x2, ..., x n)∈n | ∑ 1 ≤i ≤n x i = 1,x i ≥ 0 ( i = 1, 2, ..., n) }.则C是有界闭集,且是凸集,因此C是紧凸集.因为∀x∈C,x i 不全为0,而a ij> 0,故Ax的各分量也非负但不全为零.∀x∈C,设f (x) = (Ax)/( ∑ 1 ≤i ≤n (Ax)i ),则f (x)∈C.容易验证f : C→C还是连续的.由Brouwer不动点定理,存在f的不动点x0∈C.即f (x0) = x0,也就是(Ax0)/( ∑ 1 ≤i ≤n (Ax0)i ) = x0.令λ= ∑ 1 ≤i ≤n (Ax0)i,则有Ax0 = λ x0.1.5.6证明:设B = { u∈C[0, 1] | ⎰[0, 1]u(x) dx = 1,u(x) ≥ 0 },则B是C[0, 1]中闭凸集.设max (x, y)∈[0, 1]⨯[0, 1]K(x, y) = M,min (x, y)∈[0, 1]⨯[0, 1]K(x, y) = m,⎰[0, 1] (⎰[0, 1]K(x, y) dy) dx = N,max x∈[0, 1] | ⎰[0, 1]K(x, y) dy |= P.令(S u)(x) = (⎰[0, 1]K(x, y) u(y) dy)/(⎰[0, 1] (⎰[0, 1]K(x, y) u(y) dy) dx )则⎰[0, 1] (S u)(x) dx = 1,u(x) ≥ 0;即S u∈B.因此S是从B到B的映射.∀u, v∈B,|| ⎰[0, 1]K(x, y) u(y) dy -⎰[0, 1]K(x, y) v(y) dy ||= || ⎰[0, 1]K(x, y) (u(y)-v(y)) dy ||= max x∈[0, 1] | ⎰[0, 1]K(x, y) (u(y)-v(y)) dy |≤M · || u -v ||;因此映射u #⎰[0, 1]K(x, y) u(y) dy在B上连续.类似地,映射u #⎰[0, 1] (⎰[0, 1]K(x, y) u(y) dy) dx也在B上连续.所以,S在B上连续.下面证明S(B)列紧.首先,证明S(B)是一致有界集.∀u∈B,|| S u || = || (⎰[0, 1]K(x, y) u(y) dy )/(⎰[0, 1] (⎰[0, 1]K(x, y) u(y) dy) dx )||= max x∈[0, 1] | ⎰[0, 1]K(x, y) u(y) dy |/(⎰[0, 1] (⎰[0, 1]K(x, y) u(y) dy) dx )≤ (M ·⎰[0, 1]u(y) dy |/(m ⎰[0, 1] (⎰[0, 1]u(y) dy) dx ) = M/m,故S(B)是一致有界集.其次,证明S(B)等度连续.∀u∈B,∀t1, t2∈[0, 1],| (S u)(t1) - (S u)(t2)|= | ⎰[0, 1]K(t1, y) u(y) dy-⎰[0, 1]K(t2, y) u(y) dy |/(⎰[0, 1] (⎰[0, 1]K(x, y) u(y) dy) dx )≤⎰[0, 1] | K(t1, y) -K(t2, y) | u(y) dy /(m⎰[0, 1] (⎰[0, 1]u(y) dy) dx )≤ (1/m) · max y∈[0, 1] | K(t1, y) -K(t2, y) |由K(x, y)在[0, 1]⨯[0, 1]上的一致连续性,∀ε > 0,存在δ> 0,使得∀(x1, y1), (x2, y2)∈[0, 1],只要|| (x1, y1) - (x2, y2) || < δ,就有| K(x1, y1) -K(x2, y2) | < m ε.故只要| t1-t2 | < δ时,y∈[0, 1],都有| K(t1, y) -K(t2, y) | < m ε.此时,| (S u)(t1) - (S u)(t2)| ≤ (1/m) · max y∈[0, 1] | K(t1, y) -K(t2, y) |≤ (1/m) ·m ε = ε.故S(B)是等度连续的.所以,S(B)是列紧集.根据Schauder不动点定理,S在C上有不动点u0.令λ= (⎰[0, 1] (⎰[0, 1]K(x, y) u0(y) dy) dx.则(S u0)(x) = (⎰[0, 1]K(x, y) u0(y) dy)/λ= (T u0)(x)/λ.因此(T u0)(x)/λ= u0(x),T u0 = λ u0.显然上述的λ和u0满足题目的要求.1.6.1 (极化恒等式)证明:∀x, y∈X,q(x + y) -q(x-y) = a(x + y, x + y) -a(x-y, x-y) = (a(x, x) + a(x, y) + a(y, x) + a(y, y)) - (a(x, x) -a(x, y) -a(y, x) + a(y, y))= 2 (a(x, y) + a(y, x)),将i y代替上式中的y,有q(x + i y) -q(x-i y) = 2 (a(x, i y) + a(i y, x))= 2 (-i a(x, y) + i a( y, x)),将上式两边乘以i,得到i q(x + i y) -i q(x-i y) = 2 ( a(x, y) -a( y, x)),将它与第一式相加即可得到极化恒等式.1.6.2证明:若C[a, b]中数|| · ||是可由某积( · , · )诱导出的,则数|| · ||应满足平行四边形等式.而事实上,C[a, b]中数|| · ||是不满足平行四边形等式的,因此,不能引进积( · , · )使其适合上述关系.数|| · ||是不满足平行四边形等式的具体例子如下:设f(x) = (x–a)/(b–a),g(x) = (b–x)/(b–a),则|| f || = || g || = || f + g || = || f –g || = 1,显然不满足平行四边形等式.1.6.3证明:∀x∈L2[0, T],若|| x || = 1,由Cauchy-Schwarz不等式,有| ⎰[0, T]e- ( T-τ)x(τ) dτ|2≤ (⎰[0, T] (e- ( T-τ))2dτ) (⎰[0, T] ( x(τ))2dτ)= ⎰[0, T] (e- ( T-τ))2dτ = e- 2T ⎰[0, T]e 2τdτ= (1-e- 2T )/2.因此,该函数的函数值不超过M = ((1-e- 2T )/2)1/2.前面的不等号成为等号的充要条件是存在λ∈,使得x(τ) = λ e- ( T-τ).再注意|| x || = 1,就有⎰[0, T] (λ e- ( T-τ))2dτ= 1.解出λ= ±((1-e- 2T )/2)- 1/2.故当单位球面上的点x(τ) = ±((1-e- 2T )/2)- 1/2 ·e- ( T-τ)时,该函数达到其在单位球面上的最大值((1-e- 2T )/2)1/2.1.6.4证明:若x∈N⊥,则∀y∈N,(x, y) = 0.而M⊆N,故∀y∈M,也有(x, y) = 0.因此x∈M⊥.所以,N⊥⊆M⊥.1.6.51.6.6解:设偶函数集为E,奇函数集为O.显然,每个奇函数都与正交E.故奇函数集O ⊆E⊥.∀f∈E⊥,注意到f总可分解为f = g + h,其中g是奇函数,h是偶函数.因此有0 = ( f, h) = ( g + h, h) = ( g, h) + ( h, h) = ( h, h).故h几乎处处为0.即f = g是奇函数.所以有E⊥⊆O.这样就证明了偶函数集E的正交补E⊥是奇函数集O.1.6.7证明:首先直接验证,∀c∈,S = {e2π i n x| n∈ }是L2[c, c + 1]中的一个正交集.再将其标准化,得到一个规正交集S1 = {ϕn(x) = d n e2π i n x| n∈ }.其中的d n= || e2π i n x|| (n∈),并且只与n有关,与c的选择无关.(1) 当b–a =1时,根据实分析结论有S⊥ = {θ}.当b–a <1时,若u∈L2[a, b],且u∈S⊥,我们将u延拓成[a, a + 1]上的函数v,使得v(x) = 0 (∀x∈(b, a + 1]).则v∈L2[a, a + 1].同时把S = {e2π i n x| n∈ }也看成L2[a, a + 1]上的函数集.那么,在L2[a, a + 1]中,有v∈S⊥.根据前面的结论,v = θ.因此,在L2[a, b]中就有u = θ.故也有S⊥ = {θ};(2) 分成两个区间[a, b– 1)和[b– 1, b]来看.在[a, b– 1)上取定非零函数u(x) = 1 ( ∀x∈[a, b– 1) ).记p n = ⎰[a, b– 1)u(x)ϕn(x) dx.我们再把u看成是[b– 2, b– 1]上的函数(u在[b– 2, a)上去值为0).那么p n就是u在L2[b– 2, b– 1]上关于正交集S1 = {ϕn(x)| n∈ }的Fourier系数.由Bessel不等式,∑n∈ | p n |2 < +∞.再用Riesz-Fischer定理,在L2[b– 1, b]中,∑n∈p n ϕn收敛.并且,若令v = -∑n∈p n ϕn,则(v, ϕn)= -p n (∀n∈).设f : [a, b] →为:f(x) = u(x) (当x∈[a, b– 1)),f(x) = v(x) (当x∈[b– 1, b]).则f∈L2[a, b],f≠θ,但( f, ϕn) = ⎰[a, b– 1)f(x)ϕn(x) dx + ⎰[b– 1, b]f(x)ϕn(x) dx= ⎰[a, b– 1)u(x)ϕn(x) dx + ⎰[b– 1, b]v(x)ϕn(x) dx= p n -p n = 0,因此,f∈S1⊥= S⊥,故S⊥≠ {θ}.1.6.8证明:( z n/(2π)1/2, z n/(2π)1/2 ) = (1/i)⎰| z | = 1 ( z n/(2π)1/2 · (z*)n/(2π)1/2 )/z dz= (1/(2πi))⎰| z | = 1z n· (z*)n/z dz = (1/(2πi))⎰| z | = 1 1/z dz = 1.若n > m,则n- m - 1 ≥ 0,从z n -m - 1而解析.( z n/(2π)1/2, z m/(2π)1/2 ) = (1/i)⎰| z | = 1 ( z n/(2π)1/2 · (z*)m/(2π)1/2 )/z dz= (1/(2πi))⎰| z | = 1z n· (z*)m/z dz = (1/(2πi))⎰| z | = 1z n -m - 1dz = 0.因此,{ z n/(2π)1/2 }n ≥ 0是正交规集.1.6.91.6.10证明:容易验证{e n}⋂{ f n}是正交规集,下面只证明{e n}⋂{ f n}是X的基.∀x∈X,由正交分解定理,存在x关于X0的正交分解x = y + z,其中y∈X0,z∈X0⊥.因{e n}, { f n}分别是X0和X0⊥的正交规基,故y = ∑ n∈( y, e n ) e n,z = ∑ n∈( z, f n ) f n.因z∈X0⊥,故(x, e n) = ( y + z, e n) = ( y, e n) + ( z, e n) = ( y, e n).因y∈X0,故(x, f n) = ( y + z, f n) = ( y, f n) + ( z, f n) = ( z, f n).故x = y + z = ∑ n∈( y, e n ) e n + ∑ n∈( z, f n ) f n= ∑ n∈( x, e n ) e n + ∑ n∈( x, f n ) f n.因此{e n}⋂{ f n}是X的正交规基.1.6.11证明:首先,令ϕk (z) = (( k +1 )/π)1/2 z k ( k≥ 0 ),则{ ϕk }k≥ 0是H2(D)中的正交规基.那么,∀u(z)∈H2(D),设u(z) = ∑k≥ 0 a k z k,则∀k∈,有(u, ϕk) = ⎰D u(z) ·ϕk(z)*dxdy= ⎰D (∑j≥ 0 a j z j) ·ϕk(z)*dxdy= ∑j≥ 0 a j(π/( j +1 ))1/2⎰D (( j +1 )/π)1/2 z j ·ϕk(z)*dxdy= ∑j≥ 0 a j(π/( j +1 ))1/2⎰Dϕj(z) ·ϕk(z)*dxdy= ∑j≥ 0 a j(π/( j +1 ))1/2 (ϕj, ϕk)= a k(π/( k +1 ))1/2.即u(z)的关于正交规基{ ϕk }k≥ 0的Fourier系数为a k(π/( k +1 ))1/2( k≥ 0 ).(1) 如果u(z)的Taylor展开式是u(z) = ∑k≥ 0 b k z k,则u(z)的Fourier系数为b k(π/( k +1 ))1/2( k≥ 0 ).由Bessel不等式,∑k≥ 0| b k(π/( k +1 ))1/2|2≤ || u || < +∞,于是有∑k≥ 0| b k|2/( k +1 ) < +∞.(2) 设u(z), v(z)∈H2(D),并且u(z) = ∑k≥ 0 a k z k,v(z) = ∑k≥ 0 b k z k.则u(z) = ∑k≥ 0 a k(π/( k +1 ))1/2ϕk (z),v(z) = ∑j≥ 0 b j(π/( j +1 ))1/2ϕj (z),(u, v) = ( ∑k≥ 0 a k(π/( k +1 ))1/2ϕk (z), ∑j≥ 0 b j(π/( j +1 ))1/2ϕj (z) )= ∑k≥ 0∑j≥ 0 (a k(π/( k +1 ))1/2ϕk (z), b j(π/( j +1 ))1/2ϕj (z))= ∑k≥ 0∑j≥ 0 (a k(π/( k +1 ))1/2 ·b j*(π/( j +1 ))1/2) (ϕk (z), ϕj (z))= ∑k≥ 0 (a k(π/( k +1 ))1/2 ·b k* (π/( k +1 ))1/2) = π∑k≥ 0 (a k·b k* )/( k +1 ).(3) 设u(z)∈H2(D),且u(z) = ∑k≥ 0 a k z k.因1/(1 -z) = ∑k≥ 0z k,1/(1 -z)2 = ∑k≥ 0 (k +1) z k,其中| z | < 1.故当| z | < 1时,有1/(1 - | z | )2 = ∑k≥ 0 (k +1) | z | k.根据(2),|| u(z) ||2 = π∑k≥ 0 (a k·a k* )/( k +1 ) = π∑k≥ 0 | a k|2/( k +1 ).|| u ||2/(1 - | z |)2 = (π∑k≥ 0 | a k|2/( k +1 )) · ( ∑k≥ 0 (k +1) | z | k )≥ (π∑k≥ 0 | a k|2/( k +1 ) | z | k) · ( ∑k≥ 0 (k +1) | z | k )≥π ( ∑k≥ 0 ( | a k|/( k +1 )1/2 | z | k/2) · ((k +1)1/2 | z | k/2))2 (Cauchy-Schwarz不等式)= π ( ∑k≥ 0 | a k| · | z | k )2≥π | ∑k≥ 0a k z k |2 = π | u(z)|2,故| u(z) | ≤ || u ||/(π1/2 ( 1 - | z | )).(4) 先介绍复分析中的Weierstrass定理:若{ f n }是区域U ⊆上的解析函数列,且{ f n }在U上闭一致收敛到f,则f在U上解析.(见龚升《简明复分析》)回到本题.设{ u n }是H2(D)中的基本列.则∀z∈D,由(3)知{ u n(z) }是中的基本列,因此是收敛列.设u n(z) →u(z).对中任意闭集F⊆D,存在0 < r < 1使得F⊆B(0, r) ⊆D.∀ε > 0,存在N∈+,使得∀m, n > N,都有|| u n-u m|| < επ1/2 ( 1 -r ).再由(3),∀z∈F,| u n(z) -u m(z) | ≤ || u n-u m||/(π1/2 ( 1 - | z | )) ≤ || u n-u m||/(π1/2 ( 1 -r )) < ε.令m→∞,则| u n(z) -u(z) | ≤ε.这说明{ u n }在D上闭一致收敛到u.由前面所说的Weierstrass定理,u在D上解析.把{ u n }看成是L2(D)中的基本列,因L2(D),故{ u n }是L2(D)中的收敛列.设{ u n }在L2(D)中的收敛于v.则v必然与u几乎处处相等.即{ u n }在L2(D)中的收敛于u.因此{ u n }在H2(D)中也是收敛的,且收敛于u.所以,H2(D)完备.1.6.12证明:由Cauchy-Schwarz不等式以及Bessel不等式,∀x, y∈X,有| ∑n≥ 1 (x, e n) · (y, e n)* |2≤ (∑n≥ 1 | (x, e n) |· | (y, e n)* | )2= (∑n≥ 1 | (x, e n) |· | (y, e n) | )2≤ (∑n≥ 1 |(x, e n) |2) · (∑n≥ 1 | (y, e n)|2)≤ || x ||2 · || y ||2.因此,| ∑n≥ 1 (x, e n) · (y, e n)* | ≤ || x || · || y ||.1.6.13证明:(1) 因数是连续函数,故C = { x ∈X | || x - x0 || ≤r }是闭集.∀x, y∈C,因|| x - x0 || ≤r,|| x - x0 || ≤r },故∀λ∈[0, 1],|| (λ x + (1-λ) y ) - x0 || = || λ( x-x0 ) + (1-λ) (y - x0)||≤ || λ( x-x0 ) + (1-λ) (y - x0)|| ≤λ|| x-x0 || + (1-λ) || y - x0 || ≤λ r + (1-λ) r = r.所以,C是X中的闭凸集.(2) 当x ∈C时,y = x.显然y是x在C中的最佳逼近元.当x ∈C时,y = x0 + r (x - x0)/|| x - x0 ||.∀z∈C,|| x-y || = || ( x-x0 -r (x - x0)/|| x - x0 ||) ||= || (1 -r/|| x - x0 ||) (x - x0) || = || x - x0 || -r.≤ || x - x0 || - || z - x0 || ≤ || x - z||.因此,y是x在C中的最佳逼近元.1.6.14解:即是求e t在span{1, t, t2}中的最佳逼近元(按L2[0, 1]数).将{1, t, t2}正交化为{1, t- 1/2, (t- 1/2)2 - 1/12 } (按L2[0, 1]积)再标准化为{ϕ0(t), ϕ1(t), ϕ2(t)},则所求的a k= (e t, ϕ k(t)) = ⎰[0, 1]e tϕ k(t) dt,k = 0, 1, 2.1.6.15证明:设g(x) = (x-a) (x-b)2,则g(a) = g (b) = 0,g’(a) = (b-a)2,g’(b) = 0.由Cauchy- Schwarz不等式,我们有(⎰[a, b] | f’’(x) |2 dx)· (⎰[a, b] | g’’(x) |2 dx)≥ (⎰[a, b]f’’(x) ·g’’(x) dx )2.因g’’(x) = 3x- (a + 2b),故⎰[a, b] | g’’(x) |2 dx = ⎰[a, b] (3x- (a + 2b))2 dx = (b-a)3;又⎰[a, b]f’’(x) ·g’’(x) dx = ⎰[a, b] (3x- (a + 2b)) ·f’’(x) dx = ⎰[a, b] (3x- (a + 2b))d f’(x)= (3x- (a + 2b)) ·f’(x)| [a, b] - 3⎰[a, b]f’(x) dx = 2(b-a);故(b-a)3 ·⎰[a, b] | f’’(x) |2 dx ≥ (2(b-a))2 = 4(b-a)2.所以⎰[a, b] | f’’(x)|2 dx≥ 4/(b-a).1.6.16 (变分不等式)证明:设f(x)= a(x, x) - Re(u0, x).则f(x) = a(x, x) - Re(u0, x) ≥δ || x ||2 - | (u0, x) |≥δ || x ||2 - || u0 || · || x || ≥- || u0 ||2/(4δ) > -∞.即f在X上有下界,因而f在C有下确界μ = inf x∈C f(x).注意到a(x, y)实际上是X上的一个积,记它所诱导的数为|| x ||a = a(x, x)1/2,则|| · ||a与|| · ||是等价数.因此f(x) = a(x, x) - Re(u0, x) = || x ||a2- Re(u0, x).设C中的点列{ x n }是一个极小化序列,满足μ≤f(x n ) < μ + 1/n ( ∀n∈+ ).则由平行四边形等式,|| x n-x m ||a2 = 2(|| x n ||a2 + || x m ||a2 ) - 4|| (x n + x m)/2||a2= 2( f(x n) + Re(u0, x n) + f(x m) + Re(u0, x m) ) - 4( f((x n + x m)/2) + Re(u0, (x n + x m)/2))= 2( f(x n) + f(x m)) - 4 f((x n + x m)/2) + 2 Re( (u0, x n) + (u0, x m) - (u0, x n + x m) )= 2( f(x n) + f(x m)) - 4 f((x n + x m)/2)≤ 2( μ + 1/n + μ + 1/m ) - 4 μ= 2(1/n + 1/m) → 0 ( m, n→∞ ).因此|| x n-x m ||2≤ (1/δ) || x n-x m ||a2→ 0 ( m, n→∞ ).即{ x n }为X中的基本列.由于X完备,故{ x n }收敛.设x n→x0 ( n→∞ ).则|| x n-x0 ||a2≤M || x n-x0 ||2→ 0 ( m, n→∞ ).而由积a( · , ·),( · , ·)的连续性,有a( x n , x n) →a( x0 , x0 ),且(u0, x n) → (u0, x0),( n→∞ ).因此f(x n) = a(x n, x n) - Re(u0, x n) →a(x0, x0) - Re(u0, x0) = f(x0),( n→∞ ).由极限的唯一性,f(x0) = μ = inf x∈C f(x).至此,我们证明了f在C上有最小值.下面说明最小值点是唯一的.若x0, y0都是最小值点,则交错的点列{ x0, y0, x0, y0, x0, ... }是极小化序列.根据前面的证明,这个极小化序列必须是基本列,因此,必然有x0 = y0.所以最小值点是唯一的.最后我们要证明最小点x0∈C满足给出的不等式.∀x∈C,∀t∈[0, 1],有x0 + t ( x - x0)∈C,因此有f(x0 + t ( x - x0)) ≥f(x0).即|| x0 + t ( x - x0) ||a2- Re(u0, x0 + t ( x - x0)) ≥ || x0 ||a2- Re(u0, x0).展开并整理得到t Re ( 2a(x0, x - x0) - (u0, x - x0) ) ≥-t2 || x - x0 ||a2.故当∀t∈(0, 1],有Re ( 2a(x0, x - x0) - (u0, x - x0) ) ≥-t|| x - x0 ||a2.令t→ 0就得到Re ( 2a(x0, x - x0) - (u0, x - x0) ) ≥ 0.2.1.22.1.32.1.42.1.52.1.62.1.72.1.82.1.92.2.22.2.52.3.12.3.3-22.3.42.3.52.3.72.3.82.3.92.3.112.3.122.3.132.3.142.4.42.4.52.4.62.4.72.4.82.4.92.4.102.4.112.4.122.4.132.4.142.5.42.5.52.5.72.5.82.5.102.5.12。
泛函分析讲义张恭庆答案【篇一:《泛函分析》课程标准】>英文名称:functional analysis课程编号:407012010 适用专业:数学与应用数学学分数:4一、课程性质泛函分析属于数学一级科下的基础数学二级学科,在数学与应用数学专业培养方案中学科专业教育平台中专业方向课程系列的一门限选课程。
二、课程理念1、培育理性精神,提高数学文化素养基础数学研究数学本身的内在规律,是整个数学学科的基础,它在数学学科其他领域、物理学、工程及社会科学中都有着广泛的应用。
《泛函分析》课程是数学与应用数学本科学生的专业课程之一,是数学分析、高等代数、实变函数等基础课程的后继课程,是研究生学习的基础,。
它不仅在数学学科占有十分重要的地位,而且在其他学科领域也有广泛的应用,掌握泛函分析的方法对学生更好地理解基础课程的理论将有很大的益处。
该课程培养学生的抽象思维能力、逻辑推理能力,体现知识、能力和素质的统一,符合应用型人才培养的目标要求。
2、良好的学习状态,提高综合解题能力本课程面对的是数学与应用数学专业四年级的学生。
学生刚刚结束教育实习,准备考研的学生进入紧张复习阶段,另一部分学生开始准备找工作。
《泛函分析》这门课内容比较抽象,课时又少,所以,如何让学生安保持良好的学习状态,是本门课要面对的一个重要问题,也是学生要面对的一个具体问题。
需要师生共同努力去正确面对才能顺利完成本门课的教学任务。
为学习研究生课程和现代数学打下必要的基础;进一步提高学生的数学素养。
3、内容由浅入深本课程的框架结构是根据教学对象和教学任务来安排的:“度量空间”泛函分析的基本概念之一,十分重要。
首先,引入度量空间的概念,并在引入度量的基础上定义了度量空间中的极限、稠密集、可分空间、连续映照、柯西点列、完备度量空间,对于一般的度量空间,给出了度量空间的完备化定理,并证明了压缩映照原理。
然后,在度量空间上定义线性运算并引入范数,就得到线性赋范空间以及巴拿赫空间。
在赋范空间上定义线性算子及线性泛函,并讨论相关性质。
第三步,在线性赋范空间上定义内积,可以得到内积空间和希尔伯特空间的定义,在内积空间上引入正交以及投影的概念,并建立起相应的几何学,还要讨论希尔伯特空间上的算子,特别是自伴算子、酉算子、正常算子的一些初步性质。
最后,介绍巴拿赫空间中的四个著名定理:hahn-banach泛函延拓定理,一致有界性定理,逆算子定理和闭图像定理,这些定理充分显示了泛函分析的威力及其广泛应用。
4、理论联系实际,拓展学生知识面在教学过程中,主要把握以下几点:将先进的教学思想和教学理念贯穿到课程的内容和体系;强化数学思想方法、加强学生分析解决问题能力和数学素养的培养,让学生接受现代的、新的观念,以启迪学生的创新思维;准确把握课程定位,培养学生掌握扎实的数学基础知识、严密的逻辑思维能力以及应用数学知识解决实际问题的能力,同时为学生向科研型理论型人才发展留下充足的空间。
课堂教学提倡启发式,采用各种现代化的教学手段,有些内容举一些数学分析中的例子使学生容易理解泛函分析的抽象理论等。
教师通过应用信息技术手段,可以使得授课内容信息量大,学生更能深入泛函分析的内容。
要求学生做到:将书上的基本知识点吃透,注意咬文嚼字;注意抽象思维能力和逻辑思维能力,要求会做一些理论证明;要求在上课时认真听讲,完成课上训练和课堂作业.课下能够查阅1相关文献,了解相关结论。
5、深化考核方式的改进,确保教学质量本课程主要采用课内外结合的学习方式,即课堂上以教师讲授为主,课下以学生实践为主,通过学习使学生掌握泛函分析基本思想,加深对数学知识的理解,达到学生能力培养的目标,同时为今后学习提供必要的理论基础。
通过本课程的考核,使学生比较系统地了解与掌握度量空间和线性赋范空间、有界线性算子和线性连续泛函、内积空间和巴拿赫空间、巴拿赫空间中的基本定理的基本概念、基本性质,提高抽象思维能力,为今后学习打下必要的基础,并能在较高的理论水平的基础上处理数学分析等课程的有关内容。
在教学过程中应要求学注意联系数学与应用数学专业的基础课程;要充分利用泛函分析的方法进行证明;注意培养学生应用泛函分析能力,提高证明的能力。
三、课程目标本课程既要注重讲授基本的理论和知识,更要重视对学生的逻辑思维能力的培养和提高。
1、总目标通过介绍本课程,使学生了解本课程的性质、地位及研究的主要范围、研究方法与该学科的进展;引导学生自觉、主动学习,改变被动式学校的方式,使学生掌握泛函分析的基本知识和基本理论;通过训练学生对一些结论的证明,使学生具备较强的抽象思维能力、逻辑推理能力,从而形成严格而精确的数学素养。
2、分目标2四、课程内容根据课程特点,本课程内容划分为四个教学单元,每一单元的内容进一步划分为基础性内容、提高性内容、拓展性内容三部分。
第一单元度量空间和线性赋范空间 1、基础性内容度量空间的概念和常见例子、度量空间中的极限、稠密集、可分空间、连续映照、柯西点列、完备度量空间、度量空间的完备化定理、压缩映照原理、线性空间、线性赋范空间和巴拿赫空间的基本概念。
2、提高性内容在具体空间上定义度量,应用压缩映照原理解决具体问题。
3、拓展性内容文化素质拓展:泛函分析发展简史。
知识拓展:把具体度量空间完备化。
第二单元有界线性算子和线性连续泛函 1、基础性内容有界线性算子、线性连续泛函、线性算子空间、共轭空间。
2、提高性内容广义函数大意。
3、拓展性内容文化素质拓展:巴拿赫代数简单知识。
知识拓展:简单度量空间的共轭空间。
第三单元内积空间和巴拿赫空间 1、基础性内容内积空间的基本概念、投影定理、bessel不等式及相关定理、riesz 定理、自伴算子、酉算子、正常算子。
2、提高性内容重要定理的证明方法。
3、拓展性内容文化素质拓展:泛函分析中著名数学家简介。
知识拓展:应用本章定理证明一些相关结论。
第四单元巴拿赫空间中的基本定理 1、基础性内容hahn-banach泛函延拓定理、c[a,b]的共轭空间、共轭算子、纲定理、一致有界性定理、强收敛、弱收敛、一致收敛、逆算子定理和闭图像定理 2、提高性内容四个著名定理的证明方法。
3、拓展性内容文化素质拓展:专业方向最新动态介绍。
知识拓展:四个著名定理的具体应用。
五、课程实施 1、学时安排泛函分析是数学与应用数学专业课。
每周安排4课时,共11周44课时,一个学期完成,根据教学要求,安排4-6节课时的讨论教学及习题课,其他以集中讲授为主。
为使教学效果达到比3较理想的水平,让学生进行有目的的课外学习。
教师的实践性内容安排有作业、小论文、课外阅读资料等。
具体安排如下:2、教学建议 (1)教学组织与形式教学班是主要教学组织,班级授课是教学的主要组织形式。
根据泛函分析课程的特点,尽可能多讲些习题的证明;另外充分利用习题课课时,灵活组织学生进行有利于培养学生发现问题、分析问题与解决问题的能力的各种教学活动。
(2)教学方法和手段○1本课程的教学要贯彻理论联系实际的原则。
通过对本课程内容的系统分析、讲解及训练,使学生掌握本课程的基本概念,基本理论,基本技能与方法。
并通过综合训练,进一步使学生掌握运用基础知识综合处理数学理论问题,建立数学模型,解决实际问题的能力。
○2本课程采用讲授法与讨论法相结合的教学方式,鼓励学生积极参与教学活动,充分发挥学生的主观能动性,调动学生的学习兴趣,变被动学习为主动获取。
○3运用网络,将教学内容中那些比较前沿的内容,通过网络,让学生了解最新相关知识。
○4借评讲作业、课堂提问及每次课后辅导的机会,对学生进行学习方法的指导。
(3)能力培养方案为了培养学生分析问题解决问题的能力,在教学中要注重学生对于理论的兴趣和自我学习的能力,提高学生的理论思维能力。
首先,以教师讲授为主,讲授基本的知识与概念,但同时也要尽可能启发学生的思维,调动学生的积极性。
其次,注重讨论、研究、问题式教学。
要求教师根据教学中的重点、难点设计问题或讨论的话题,组织学生课堂讨论,或课后研究,提交书面总结,然后教师再进行归纳总结。
再次,除布置的课后作业以外,结合重点内容布置若干小论文题目,让学生自己查阅文献分析问题,培养论文写作能力。
最后,鼓励学生自学。
自学不等于放任,自学要与检查、督促、辅导结合起来。
3、学业考核与评定《泛函分析》为考查课程。
本课程每学期结束安排闭卷考试。
本课程在命题上应充分体现开放性、灵活性。
采用百分制评分,平时成绩:20分(包括考勤、作业等),期末成绩:80分(试卷成绩的80%),即期末总成绩=试卷成绩*80%+平时成绩。
4考核类型分三类:识记、理解、综合运用。
试题类型为选择、填空、判断、计算、证明等。
填空题与选择题或判断题约占40%,计算题和证明题约占60%。
试卷满分为100分,考试时间为120分钟。
六、教材选用与参考书目 1、建议教材本课程近些年来使用的教材是程其襄等编写,高等教育出版社2006年5月出版的教材《实变函数与泛函分析基础》。
2、教学参考书[1] 张恭庆,林源渠.泛函分析讲义[m].北京:北京大学出版社[2] 王声望,郑维行.实变函数与泛函分析概要(第二册) [m]. 北京:高等教育出版社 [3] 刘炳初.泛函分析[m].北京:科技出版社公司[4] john b.conway.a course of functional analysis[m]. 北京:世界图书出版公司北京5【篇二:泛函分析教学大纲】xt>一课程说明1.课程基本情况课程名称:泛函分析英文名称:functional analysis课程编号:2411215开课专业:数学与应用数学开课学期:第6学期学分/周学时:3/3课程类型:专业方向选修课2.课程性质(本课程在该专业的地位作用)泛函分析是研究拓扑线性空间到拓扑线性空间之间满足各种拓扑和代数条件的映射的分支学科,是现代数学的一个重要分支。
它综合地运用分析、代数和几何的观点、方法研究分析数学中的许多问题,是将具体的分析问题抽象到一种更加纯粹的代数拓扑结构的形式中进行的研究。
随着科学技术的迅速发展,泛函分析的概念、方法已经渗透到数学的各个分支而且日益广泛地被应用于自然科学、工科技术理论和社会科学的各个领域。
通过该课程的学习,学生不仅能学到泛函分析的基本理论和方法,而且对学习其它数学分支以及将其应用到数理经济,现代控制论,量子场论,统计物理、工程技术等领域有很大帮助。
3.本课程的教学目的和任务本课程基本要求学生能理解该学科的思想及应用性,掌握基本理论方法,了解定理证明过程。
通过本课程的学习, 学生应熟练掌握度量,范数,线性算子,内积,直交投影,谱等概念, 熟练掌握纲理论及有界线性算子的基本原理和线性泛函的延拓理论, 为今后学习打下坚实基础。