面积计算练习 (含思路和答案)
- 格式:doc
- 大小:125.37 KB
- 文档页数:7
第37讲面积计算
一、知识要点:
我们已经学会了计算长方形、正方形的面积,知道长方形的面积=长×宽,正方形的面积=边长×边长。
利用这些知识我们能解决许多有关面积的问题。
在解答比较复杂的关于长方形、正方形的面积计算的问题时,生搬硬套公式往往不能奏效,可以添加辅助线或运用割补、转化等解题技巧。
因此,敏锐的观察力和灵活的思维在解题中十分重要。
二、精讲精练
例1把一张长为4米,宽为3米的长方形木板,剪成一个面积最大的正方形。
这个正方形木板的面积是多少平方米?
练习一
1、把一张长6厘米,宽4厘米的长方形纸剪成一个面积最大的正方形,这张正方形纸的面积是多少平方厘米?
2、把一块长2米、宽6分米的长方形铁板切割成一个面积最大的正方形,这个正方形铁板的面积是多少?
1。
图形面积巧计算专项练习 (附解题思路和参考答案)教学内容:巧算图形面积。
教学对象:三、四年级学生。
教学重点:正方形、长方形面积的计算。
教学难点:重叠图形面积的计算。
教学过程: 一 复习教学(一)点学生回答:1.什么叫面积?2.正方形、长方形的公式、3.遇到较复杂的组合图形后又该如何计算?(二)投影出示下列内容,引导学生熟读记牢。
1面积:面积指的是物体所占平面的大小。
2 长方形的面积=长×宽,长方形的面积÷长=宽,长方形的面积÷宽=长。
正方形的面积=边长×边长,正方形的面积÷边长=边长。
3 求复杂图形的面积,需要敏锐的观察力和灵活的思维,运用添加辅助线、割补、转化等方法解答。
二新课教学(一)例题1 在一张长9米,宽7米的长方形铁板上,切割出一个面积最大的正方形,这个正方形铁板的面积是多少平方米?三 巩固练习11. 明明把一张长12厘米,宽8厘米的长方形纸剪成一个面积最大的正方形,这张正方形纸的面积是多少平方厘米?请根据例题写出解题思路:请列式计算9米 7 米 解题思路:要使切割出的正方形铁板面积最大就要使它的边长最长(如图),那么只能选原来的长方形的宽为边长,即正方形的边长为7米。
解:7×7=49(平方米) 答:这个正方形铁板的面积是49平方米。
2 妈妈把一块长2米,宽6分米的长方形布料裁成一个面积最大的正方形,这个正方形的面积是多少?解题思路: 1. 统一单位:2米=20分米。
2. 再根据正方形的面积公式“边长×边长”可求出基面积。
解:3 将以张长10米,宽8米的长方形铁板切割成一个面积最大的正方形,这个正方形的面积是多少平方米?剩下的部分是什么形状?面积是多少?1.正方形的面积:答:这个正方形的面积是 平方米。
2.剩下的面积:答;剩下的部分是 ,面积是 平方米。
(二)例题2 求下面图形的面积。
(单位:厘米)解题思路:不是规则的长方形要把原图进行割补,使其变成规则的图形解答。
六年级数学面积公式试题答案及解析1.(3分)图形计算:已知三角形ABC的面积是22.4平方厘米,高是5.6厘米,求图中阴影部分的面积.(π取3.14)【答案】2.72平方厘米【解析】根据三角形的面积公式先求出BC的长度,即半圆的直径,再根据圆的面积公式求出半圆的面积,用半圆的面积减去三角形的面积即可.解:22.4×2÷5.6=8(厘米)3.14×(8÷2)2÷2﹣22.4=3.14×8﹣22.4=25.12﹣22.4=2.72(平方厘米)答:阴影部分的面积是2.72平方厘米.点评:此题主要考查求阴影部分的面积,可以按一般思路去解答,就是用半圆面积减去里面的空白面积.2.(2分)如图ABCD是直角梯形,AD=3厘米,BC=12厘米,S1=S2,那么线段EC=厘米.【答案】7.5.【解析】由题意可知:梯形ABED的面积=三角形DEC的面积,可以分别利用梯形和三角形的面积公式进行求解.解:(3+12﹣EC)×AB÷2=EC×AB÷215﹣EC=ECEC=7.5;答:线段EC等于7.5厘米.故答案为:7.5.点评:此题主要考查梯形和三角形的面积公式的灵活应用.3.(6分)如图,由以O1为圆心半圆和以O2为圆心的直角扇形重叠而成.线段AB=12厘米,三角形AO2B的面积是36平方厘米,求图中阴影部分的面积.(π取3.14)【答案】36平方厘米.【解析】先求出以O1为圆心半圆的面积,再减去弓形的面积,而弓形的面积等于以O2为圆心的直角扇形减去三角形的面积,据此解答.解:12÷2=6(厘米)3.14×62÷2=56.52(平方厘米)因为3.14×36×2×=56.52(平方厘米)56.52﹣36=20.52(平方厘米)56.52﹣20.52=36(平方厘米)答:图中阴影部分的面积是36平方厘米.点评:解答此题的关键是弄清楚阴影部分的面积是由哪部分图形的面积差或者是和;问题即可得解.4.(1分)在半径为4厘米圆内,剪一个最大的正方形,这个正方形的面积平方厘米.【答案】32【解析】由题意可知:这个最大正方形的对角线的长度应等于圆的直径,圆的半径已知,从而可以求出这个正方形的面积.解:如图所示,正方形的面积=4×2×4÷2×2=8×4÷2×2=32(平方厘米);答:正方形的面积是32平方厘米.故答案为:32.点评:解答此题的关键是明白:这个最大正方形的对角线应等于圆的直径,从而逐步求解.5.(6分)一个长方体的食品盒,长15厘米,宽12厘米,高20厘米.如果围着它贴一圈商标纸(上下面不贴),这张商标纸的面积至少要多少平方厘米?【答案】1080平方厘米.【解析】首先要明确贴商标纸的是4个面,即前面、后面、左面、右面,长方体的长、宽、高已知,从而利用长方体的侧面积公式即可求解.解:(15×20+12×20)×2,=(300+240)×2,=540×2,=1080(平方厘米);答这张商标纸的面积至少要1080平方厘米.点评:解答此题的关键是明白:贴商标纸的是4个面,即前面、后面、左面、右面,从而利用长方体的侧面积公式计算即可.6.如果一个圆的直径与一个正方形的对角线的长相等,那么圆的面积( )正方形的面积。
阴影部分面积例题(含答案)
题目一

计算以下图形中阴影部分的面积:
1. 正方形边长为 6 米,阴影是内切的四分之一圆。
解题思路:
首先需要计算四分之一圆的面积,然后将正方形的面积减去四分之一圆的面积。
计算四分之一圆的面积:
圆的面积公式为:圆的半径 r 乘以 pi(π)。
四分之一圆的半径为正方形边长的一半,即 6 / 2 = 3 米。
所以四分之一圆的面积为 3 × 3 × 3.14 = 28.26 平方米。
计算阴影部分的面积:
正方形的面积为边长的平方,即 6 × 6 = 36 平方米。
阴影部分的面积为正方形的面积减去四分之一圆的面积,即 36 - 28.26 = 7.74 平方米。
答案:阴影部分的面积为 7.74 平方米。
阴影部分的面积为7.74 平方米。
题目二

计算以下图形中阴影部分的面积:
2. 两个相同大小的正方形重叠在一起。
解题思路:
根据题目,两个正方形大小相同,因此可以将其视为一个正方形。
计算正方形的面积即可得到阴影部分的面积。
计算阴影部分的面积:
正方形的面积为边长的平方。
根据题目,正方形的边长为 8 米。
所以阴影部分的面积为 8 × 8 = 64 平方米。
答案:阴影部分的面积为 64 平方米。
阴影部分的面积为 64 平方米。
五年级数学必考题多边形的面积计算公式汇总+练习题(有答案解析)!面积计算公式1、长方形的面积=长×宽字母表示:S=ab长方形的长=面积÷宽 a=S÷b长方形的宽=面积÷长b=S÷a2、正方形的面积=边长×边长字母表示: S= a²3、平行四边形的面积=底×高字母表示:S=ah平行四边形的高=面积÷底 h=S÷a平行四边形的底=面积÷高 a=S÷h4、三角形的面积=底×高÷2字母表示:S=ah÷2三角形的高= 2×面积÷底h=2S÷a三角形的底= 2×面积÷高a=2S÷h5、梯形的面积=(上底+下底)×高÷2字母表示:S=(a+b)·h ÷2梯形的高=2×面积÷(上底+下底)h=2S÷(a+b)梯形的上底=2×面积÷高—下底a=2S÷h-b梯形的下底=2×面积÷高—上底b=2S÷h-a1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方米=10000平方厘米1米=10分米=100厘米多边形面积同步试题一、填空1.完成下表。
考查目的:平行四边形、三角形和梯形的面积计算及变式练习。
答案:解析:直接利用公式计算这三种图形的面积,对于学生来说完成的难度不大。
对于已知平行四边形的面积和高求底、已知三角形的面积和底求高这两个变式练习,可引导学生进行比较,理解并强化三角形和梯形的类似计算中需要先将“面积×2”这一知识点。
2.下图是一个平行四边形,它包含了三个三角形,其中两个空白三角形的面积分别是15 平方厘米和25 平方厘米。
中间涂色三角形的面积是()。
第4讲长方形、正方形的面积一、知识要点长方形的面积=长×宽,正方形的面积=边长×边长。
掌握并能运用这两个面积公式,就能计算它们的面积。
但是,在平时的学习过程中,我们常常会遇到一些已知条件比较隐蔽、图形比较复杂、不能简单地用公式直接求出面积的题目。
这就需要我们切实掌握有关概念,利用“割补”、“平移”、“旋转”等方法,使复杂的问题转化为普通的求长方形、正方形面积的问题,从而正确解答。
二、精讲精练【例题1】已知大正方形比小正方形边长多2厘米,大正方形比小正方形的面积大40平方厘米。
求大、小正方形的面积各是多少平方厘米?练习1:1.有一块长方形草地,长20米,宽15米。
在它的四周向外筑一条宽2米的小路,求小路的面积。
2.正方形的一组对边增加30厘米,另一组对边减少18厘米,结果得到一个与原正方形面积相等的长方形。
原正方形的面积是多少平方厘米?【例题2】一个大长方形被两条平行于它的两条边的线段分成四个较小的长方形,其中三个长方形的面积如下图所求,求第四个长方形的面积。
练习2:1.下图一个长方形被分成四个小长方形,其中三个长方形的面积分别是24平方厘米、30平方厘米和32平方厘米,求阴影部分的面积。
2.下面一个长方形被分成六个小长方形,其中四个长方形的面积如图所示(单位:平方厘米),求A和B的面积。
【例题3】把20分米长的线段分成两段,并且在每一段上作一正方形,已知两个正方形的面积相差40平方分米,大正方形的面积是多少平方分米?练习3:1.一块正方形,一边划出1.5米,另一边划出10米搞绿化,剩下的面积比原来减少了1350平方米。
这块地原来的面积是多少平方米?2.一个正方形,如果它的边长增加5厘米,那么,面积就比原来增加95平方厘米。
原来正方形的面积是多少平方厘米?【例题4】有一个正方形ABCD如下图,请把这个正方形的面积扩大1倍,并画出来。
练习4:1.四个完全一样的长方形和一个小正方形组成了一个大正方形,如果大、小正方形的面积分别是49平方米和4平方米,求其中一个长方形的宽.2.正图的每条边都垂直于与它相邻的边,并且28条边的长都相等。
小学数学求阴影面积练习题及答案一、题目描述假设有一根垂直立柱,顶端固定有一个半径为2米的浑球,球光线的角度为45度。
当太阳光直射到球面上时,球的投影与地面形成一个阴影。
现在,请你计算出这个阴影的面积。
二、解题思路为了求解阴影的面积,我们可以利用几何知识和一些数学公式进行计算。
首先,我们需要确定阴影的形状,然后根据形状选择相应的计算方法。
1. 圆形阴影的面积计算当浑球的投影形成一个圆形阴影时,我们可以利用圆的面积公式进行计算。
圆的面积公式为:A = π * r^2,其中π为圆周率,r为圆的半径。
2. 半圆形阴影的面积计算当浑球的投影形成一个半圆形阴影时,我们需要计算半圆的面积。
半圆的面积计算公式为:A = 1/2 * π * r^2,其中π为圆周率,r为圆的半径。
3. 扇形阴影的面积计算当浑球的投影形成一个扇形阴影时,我们需要计算扇形的面积。
扇形的面积计算公式为:A = θ/360° * π * r^2,其中θ为扇形的角度,π为圆周率,r为圆的半径。
三、练习题1. 请计算一个半径为4米的浑球投影形成的圆形阴影的面积。
2. 请计算一个半径为3米的浑球投影形成的半圆形阴影的面积。
3. 请计算一个半径为5米的浑球投影形成的扇形阴影,角度为60度,的面积。
4. 请计算一个半径为6米的浑球投影形成的扇形阴影,角度为120度,的面积。
四、答案1. 圆形阴影的面积计算:半径r = 4米面积A = π * r^2= 3.14 * 4^2= 3.14 * 16≈ 50.24平方米2. 半圆形阴影的面积计算:半径r = 3米面积A = 1/2 * π * r^2= 1/2 * 3.14 * 3^2≈ 14.13平方米3. 扇形阴影的面积计算:半径r = 5米角度θ = 60度面积A = θ/360° * π * r^2= 60/360 * 3.14 * 5^2≈ 13.09平方米4. 扇形阴影的面积计算:半径r = 6米角度θ = 120度面积A = θ/360° * π * r^2= 120/360 * 3.14 * 6^2≈ 37.68平方米五、总结通过以上的练习题及答案,我们可以掌握利用数学公式计算阴影的面积。
五年级不规则图形面积计算我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形.我们的面积及周长都有相应的公式直接计算.如下表:思路导航:思路导航:C求重合部分(阴影部分)的面积。
思路导航:B思路导航:求阴影部分的面积。
D而的面积与米,扇形CBF求阴影部分20厘米,可以求出圆面积半圆面积减去7可求出三角形ABC的面积,进而求出三角形的底的正方形的面积减AD分成两部分,设其中AD右侧的部分面积为是两个半圆的公共部分,去掉那么它的周长是那么它的周长是 厘米.厘米.一小方格的面积是1.那么7,2,1_________平方厘米,那么用粗线围成的图形面积是 _________ 平方厘米.平方厘米. 分的面积是分的面积是 _________ 平方厘米.平方厘米.5.(3分)在△ABC中,BD=2DC,AE=BE,已知△ABC的面积是18平方厘米,则四边形AEDC的面积等于平方厘米.的面积等于 _________平方厘米.6.(3分)如图是边长为4厘米的正方形,AE=5厘米、OB是_________厘米.厘米. 7.(3分)分) 如图正方形ABCD的边长是4厘米,CG是3厘米,长方形DEFG的长DG是5厘米,那么它的宽DE是_________厘米.厘米.8.(3分)如图,一个矩形被分成10个小矩形,其中有6个小矩形的面积如图所示,那么这个大矩形的面积是 _________.这个大矩形的面积是9.(3分)如图,正方形ABCD的边长为12,P是边AB上的任意一点,M、N、I、H分别上的四等分点,图中阴影部分的面积是 是边BC、AD上的三等分点,E、F、G是边CD上的四等分点,图中阴影部分的面积是_________.10.(3分)分) 图中的长方形的长和宽分别是6厘米和4厘米,阴影部分的总面积是10平方平方厘米.的面积是 _________平方厘米.厘米,四边形ABCD的面积是的面积是 _________.那么它的周长是那么它的周长是 170 厘米.厘米.考点: 巧算周长.分析: 要求该图形的周长,先求出每个小正方形的面积,根据正方形的面积公式,得出小正方形的边长,然后先算出该图形的外周的长,因为内、外的长相等,再乘2即可得出结论.结论.解答: 解:400÷16=25(平方厘米),因为5×5=25(平方厘米),所以每个小正方形的边长为5厘米,厘米,周长为:(5×4+5×4+5×3+5×2+5×3+5)×2,=85×2,=170(厘米); 答:它的周长是170厘米.厘米.点评: 此类题解答的关键是先求出每个小正方形的面积,类题解答的关键是先求出每个小正方形的面积,根据正方形的面积公式,根据正方形的面积公式,根据正方形的面积公式,得出小正得出小正方形的边长,进而算出该图形的外周的长,因为内、外的长相等,再乘2即可得出结论.论.考点: 组合图形的面积.分析: 此题需要进行图形分解:“7”分成一个长方形、一个等腰直角三角形、一个平行四边形;“2”分成一个梯形、一个平行四边形、一个长方形;“1”分成一个梯形和两个长方形.然后进行图形转换,依据题目条件即可求出结果.形.然后进行图形转换,依据题目条件即可求出结果.解答: 解:“7”所占的面积和=+3+4=,“2”所占的面积和=3+4+3=10,“1”所占的面积和=+7=,那么7,2,1三个数字所占的面积之和=++10=25. 故答案为:25.点评: 此题关键是进行图形分解和转换.题关键是进行图形分解和转换.3.(3分)分) 如图中每一小方格的面积都是1平方厘米,那么用粗线围成的图形面积是平方厘米,那么用粗线围成的图形面积是 6.5 平方厘米.平方厘米.考点: 组合图形的面积.分析: 由图可以观察出:大正方形的面积减粗线以外的图形面积即为粗线围成的图形面积. 解答: 解:大正方形的面积为4×4=16(平方厘米);粗线以外的图形面积为:整格有3个,左上,右上,右中,右下,左中,右中,共有3++5×=9.5(平方厘米);所以粗线围成的图形面积为16﹣9.5=6.5(平方厘米);答:粗线围成的图形面积是6.5平方厘米.平方厘米.故此题答案为:6.5. 点评: 此题关键是对图形进行合理地割补.题关键是对图形进行合理地割补.4.(3分)(2014•长沙模拟)如图的两个正方形,边长分别为8厘米和4厘米,那么阴影部分的面积是分的面积是 24 平方厘米.平方厘米.考点: 组合图形的面积.分析: 两个正方形的面积减去两个空白三角形的面积.个正方形的面积减去两个空白三角形的面积.解答: 解:4×4+8×8﹣×4×(4+8)﹣×8×8,=16+64﹣24﹣32,=24(cm 2); 答:阴影的面积是24cm 2.故答案为:24.点评:求组合图形面积的化为求常用图形面积的和与差求解.组合图形面积的化为求常用图形面积的和与差求解.5.(3分)在△ABC中,BD=2DC,AE=BE,已知△ABC的面积是18平方厘米,则四边形AEDC的面积等于的面积等于 12平方厘米.平方厘米.考点:相似三角形的性质(份数、比例);三角形的周长和面积.分析:根据题意,连接AD,即可知道△ABD和△ADC的关系,△ADE和△BDE的关系,的面积.由此即可求出四边形AEDC的面积.解答:解:连接AD,因为BD=2DC,所以,S△ABD=2S△ADC,即,S△ABD=18×=12(平方厘米),又因为,AE=BE,所以,S△ADE=S△BDE,即,S△BDE=12×=6(平方厘米),所以AEDC的面积是:18﹣6=12(平方厘米);故答案为:12.点评:解答此题的关键是,根据题意,添加辅助线,帮助我们找到三角形之间的关系,由此即可解答.即可解答.6.(3分)如图是边长为4厘米的正方形,AE=5厘米、OB是 3.2厘米.厘米.考点:组合图形的面积.分析:连接BE、AF可以看出,三角形ABE的面积是正方形面积的一半,再依据三角形面的长度.积公式就可以求出OB的长度.解答:解:如图连接BE、AF,则BE与AF相交于D点S△ADE=S△BDF 则S△ABE=S正方形=×(4×4)=8(平方厘米);OB=8×2÷5=3.2(厘米);答:OB是3.2厘米.厘米.故答案为:3.2.题主要考查三角形和正方形的面积公式,将数据代入公式即可.点评:此题主要考查三角形和正方形的面积公式,将数据代入公式即可.7.(3分)分) 如图正方形ABCD的边长是4厘米,CG是3厘米,长方形DEFG的长DG是5厘米.厘米,那么它的宽DE是 3.2厘米.考点:组合图形的面积.分析:连接AG,则可以依据题目条件求出三角形AGD的面积,因为DG已知,进而可以的高,也就是长方形的宽,问题得解.求三角形AGD的高,也就是长方形的宽,问题得解.解答:解:如图连接AG S△AGD=S正方形ABCD﹣S△CDG﹣S△ABG,=4×4﹣3×4÷2﹣1×4÷2 =16﹣6﹣2 =8(平方厘米);8×2÷5=3.2(厘米);厘米.答:长方形的宽是3.2厘米.故答案为:3.2.据题目条件做出合适的辅助线,问题得解.点评:依据题目条件做出合适的辅助线,问题得解.8.(3分)如图,一个矩形被分成10个小矩形,其中有6个小矩形的面积如图所示,那么这个大矩形的面积是 243.这个大矩形的面积是考点:组合图形的面积.分析:从图中可以看出每上、下两个小矩形的一个边是相邻的,也就是说长是相等的,那么根据矩形的面积公式知,如果长相同,面积之比也就是宽之比,反之宽之比也就是面积之比;由中间面积20和16的矩形,可以算出空着的小矩形面积,最后把所有小矩形面积加起来就是大矩形的面积.形面积加起来就是大矩形的面积.:由图和题意知,解答:解:由图和题意知,中间上、下小矩形的面积比是:20:16=5:4,所以宽之比是5:4,那么,A:36=5:4得A=45;25:B=5:4得B=20;30:C=5:4得C=24;D:12=5:4得D=15;所以大矩形的面积=45+36+25+20+20+16+30+24+15+12=243;故答案为:243.点评:此题考查了如果长方形的长相同,宽之比等于面积之比,还考查了比例的有关知识.9.(3分)如图,正方形ABCD的边长为12,P是边AB上的任意一点,M、N、I、H分别图中阴影部分的面积是 60.是边BC、AD上的三等分点,E、F、G是边CD上的四等分点,图中阴影部分的面积是考点:组合图形的面积.分析:根据题意:正方形ABCD的边长为12,P是边AB上的任意一点,M、N、I、H分别是边BC、AD上的三等分点,E、F、G是边CD上的四等分点,可连接DP,然后再利用三角形的面积公式进行计算即可得到答案.利用三角形的面积公式进行计算即可得到答案.解答:解:阴影部分的面积=×DH×AP+×DG×AD+×EF×AD+×MN×BP =×4×AP+×3×12+×3×12+×4×BP =2AP+18+18+2BP =36+2×(AP+BP)=36+2×12 =36+24 =60.答:这个图形阴影部分的面积是60.题主要考查的是三角形的面积公式.点评:此题主要考查的是三角形的面积公式.的面积是平方厘米.考点:重叠问题;三角形的周长和面积.分析:因为S△EFC+S△GHC=四边形EFGH面积÷2=12,S△AEF+S△AGH=四边形EFGH 面积÷2=12,所以S△ABE+S△ADH=S△BFC+S△DGC=四边形EFGH面积÷2﹣阴影部分的总面积平方厘米.是10平方厘米=2平方厘米.所以:四边形ABCD面积=S△ECH﹣(S△ABE+S△ADH)=四边形ABCD面积÷4平方厘米.﹣2=6﹣2=4平方厘米.解答:解:由题意推出:S△ABE+S△ADH=S△BFC+S△DGC=四边形EFGH面积÷2﹣阴影面积10平方厘米=2平方厘米.平方厘米.所以:四边形ABCD面积=S△ECH﹣(S△ABE+S△ADH)=四边形ABCD面积÷4平方厘米.﹣2=6﹣2=4平方厘米.故答案为:4.题在重叠问题中考查了三角形的周长和面积公式,此题设计的非常精彩.点评:此题在重叠问题中考查了三角形的周长和面积公式,此题设计的非常精彩.考点:等积变形(位移、割补).分析:如图,将正六边形ABCDEF等分为54个小正三角形,根据平行四边形对角线平分平行四边形面积,采用数小三角形的办法来计算面积.行四边形面积,采用数小三角形的办法来计算面积.:如图,解答:解:如图,S△PEF=3,S△CDE=9,S四边形ABQP=11.上述三块面积之和为3+9+11=23.因此,阴影四边形CEPQ面积为54﹣23=31.题主要利用面积分割,用数基本小三角形面积来解决问题.点评:此题主要利用面积分割,用数基本小三角形面积来解决问题.12.如图,涂阴影部分的小正六角星形面积是16平方厘米.问:大正六角星形面积是多少平方厘米.平方厘米.考点:等积变形(位移、割补).分析:由图及题意知,可把涂阴影部分小正六角星形等分成12个小三角形,且都与外围的6个空白小三角形面积相等,已知涂阴影部分的小正六角星形面积是16平方厘米,可求出大正六角星形中心正六边形的面积,而这个正六边形又可等分成6个小正三角形,且它们与外围六个大角的面积相等,进而可求出大正六角星形面积且它们与外围六个大角的面积相等,进而可求出大正六角星形面积:如下图所示,解答:解:如下图所示,涂阴影部分小正六角星形可等分成12个小三角形,且都与外围的6个空白小三角形面积相等,面积相等,所以正六边形ABCDEF的面积:16÷12×(12+6)=24(平方厘米);又由于正六边形ABCDEF又可等分成6个小正三角形,且它们与外围六个大角的面积相等,积相等,所以大正六角星形面积:24×2=48(平方厘米);平方厘米.答:大正六角星形面积是48平方厘米.点评:此题要借助求正六边形的面积来解答,它既可看作是18个小正三角形,又可看作是6个大点的正三角形组成.个大点的正三角形组成.13.一个周长是56厘米的大长方形,按图中(1)与(2)所示意那样,划分为四个小长方形.在(1)中小长方形面积的比是:A:B=1:2,B:C=1:2.而在(2)中相应的比例是A':B'=1:3,B':C'=1:3.又知,长方形D'的宽减去D的宽所得到的差,与D'的长减去.求大长方形的面积.在D的长所得到的差之比为1:3.求大长方形的面积.考点:比的应用;图形划分.分析:要求大长方形的面积,需求出它的长和宽,由条件“在(1)中小长方形面积的比是:A:B=1:2,B:C=1:2.而在(2)中相应的比例是A':B'=1:3,B':C'=1:3.又知,长方形D'的宽减去D的宽所得到的差,与D'的长减去在D的长所得到的差之比为1:3”可知:D的宽是大长方形宽的,Dʹ的宽是大长方形宽的,D的长是×(28,由此便可以列式计算. ﹣大长方形的宽),Dʹʹ的长是×(28﹣大长方形的宽),由此便可以列式计算.解答:解:设大长方形的宽为x,则长为28﹣x 因为D的宽=x,Dʹ的宽=x,所以,Dʹ的宽﹣D的宽=.D长=×(28﹣x),Dʹ长=×(28﹣x),Dʹ长﹣D长=×(28﹣x),由题设可知 :=由题设可知即=,于是=,x=8.平方厘米. 于是,大长方形的长=28﹣8=20,从而大长方形的面积为8×20=160平方厘米.答:大长方形的面积是160平方米.平方米.点评:此题比较复杂,主要考查比的关系,应利用比的意义,找清数量见的比,再利用题目条件,就可以进行计算求得结果.条件,就可以进行计算求得结果.14.(2012•武汉模拟)如图,已知CD=5,DE=7,EF=15,FG=6,直线AB将图形分成两的面积是 40.部分,左边部分面积是38,右边部分面积是65,那么三角形ADG的面积是考点:三角形的周长和面积.分析:可以把S△ADE看成是一个整体,根据各线段的关系和左右两部分面积的关系,可以列出一个方程,求出S△ADE的面积,然后再根据所求三角形与S△ADE的关系求出答案.案.解答:解:由题意知,S△AEG=3S△ADE,S△BFE=S△BEC,设S△ADE=X,则S△AEG=3X,S△BFE=(38﹣X),可列出方程:(38﹣X)+3X=65,解方程,得:x=10,所以S△ADG=10×(1+3)=40.故答案为:40.题考查了如何利用边的关系求三角形的面积.点评:此题考查了如何利用边的关系求三角形的面积.。
面积问题专项训练一、单选题(共9道,每道11分)1.如图1,在矩形ABCD中,AB=3cm,BC=4cm.沿对角线AC剪开,将△ABC向右平移至△A1B1C1的位置,如图2,若重叠部分的面积为3cm2,则平移的距离AA1=( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:面积处理思路(公式法)2.如图,点A1,A2,A3,A4在射线OA上,点B1,B2,B3在射线OB上,A1B1∥A2B2∥A3B3,A2B1∥A3B2∥A4B3.若△A2B1B2,△A3B2B3的面积分别为1,4,则图中三个阴影三角形的面积之和为( )A.10B.10.5C.15D.17.25答案:B解题思路:试题难度:三颗星知识点:转化法(等底或等高)求面积3.如图所示,AB为半圆O的直径,C,D,E,F是弧AB上的五等分点,P为直径AB上的任一点.若AB=4,则图中阴影部分的面积为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:扇形面积的计算4.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:扇形面积的计算5.如图,在边长为2的等边三角形中,将其内切圆和三个角切圆(与角两边及三角形内切圆都相切的圆)的内部挖去,则此三角形剩下部分(阴影部分)的面积为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:三角形的内切圆与内心6.如图1,正方形OCDE的边长为1,阴影部分的面积记作S1;如图2,最大的圆半径r=1,阴影部分的面积记作S2,则有( )A. B.C. D.S1,S2关系不确定答案:B解题思路:试题难度:三颗星知识点:扇形面积的计算7.如图,在Rt△ABC中,∠ACB=90°,∠CAB=30°,BC=2,O,H分别为边AB,AC的中点,将△ABC绕点B顺时针旋转120°到的位置,则整个旋转过程中线段OH所扫过部分的面积(即阴影部分面积)为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:扇形面积的计算8.如图,把抛物线平移得到抛物线m,抛物线m经过点A(-6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线交于点Q,则图中阴影部分的面积为( )A. B. C. D.答案:A解题思路:试题难度:三颗星知识点:二次函数与平移变换9.如图,抛物线与轴交于点A,其顶点是D,点的坐标是(2,2),将该抛物线沿AA′方向平移,使点A平移到点A′,则平移中该抛物线上A,D两点间的部分所扫过的面积是( )A. B.7 C.15 D.14答案:B解题思路:试题难度:三颗星知识点:二次函数与平移变换。
小学数学思维训练5-5.组合图形的面积(直线图形)一、知识要点(一)常用的面积公式及其联系图(二)几种常见的解题方法对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决。
常用的基本方法有:1. 直接求面积:这种方法是根据已知条件,从整体出发直接求出不规则图形面积。
例1:求下图阴影部分的面积(单位:厘米)。
解答:通过分析发现它就是一个底是2、高是4的三角形,其面积直接可求为:×2×4=4(平方厘米)2.相加、相减求面积:这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加或相减求出所求图形的面积。
例2:正方形甲的边长是5厘米,正方形乙的边长是4厘米,阴影部分的面积是多少?解答:两个正方形的面积:+=41(平方厘米)三个空白三角形的面积和:(5+4)×5÷2+4×4÷2+5×(5-4)÷2=33(平方厘米)阴影部分的面积:41-33=8(平方厘米)3.等量代换求面积:一个图形可以用与它相等的另一个图形替换,如果甲乙大小相等,那么求出乙的大小,就知道甲的大小;两个图形同时增加或减少相同的面积,它们的差不变。
例3:平行四边形ABCD的边BC长8厘米,直角三角形ECB的直角边EC长为6厘米。
已知阴影部分的总面积比三角形EFG的面积大8平方厘米,平行四边形ABCD的面积是多少?解答:阴影部分的总面积比三角形EFG的面积大8平方厘米,分别加上梯形FBCG,得出的平行四边形ABCD比三角形EBC的面积大8平方厘米。
平行四边形ABCD的面积:8×6÷2+8=32(平方厘米4.借助辅助线求面积:这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法求面积。
例4:下图中,CA=AB=4厘米,三角形ABE比三角形CDE的面积大2平方厘米,CD的长是多少?解答:结合已知条件看图,很难有思路,连接DA,就可以发现:三角形ABE比三角形CDE 的面积大2平方厘米,分别加上三角形DAE得到的三角形ABD比三角形CDA的面积大2平方厘米。
面积计算
附注:含简析;
例子; 解题思路; 练习; 答案;
专题简析:
在进行组合图形的面积计算时,要仔细观察,认真思考,看清组合图形是由几个基本单位组成的,还要找出图中的隐蔽条件与已知条件和要求的问题间的关系。
例题1。
【思路导航】如图19-1所示的特点,阴影部分的面积可以拼成1
4 圆的面积。
62×3.14×1
4
=28.26(平方厘米)
答:阴影部分的面积是28.26平方厘米。
6 6
6 6 6 6
19-1
求下面各个图形中阴影部分的面积(单位:厘米)。
例题2。
求图19-5中阴影部分的面积(单位:厘米)。
【思路导航】阴影部分通过翻折移动位置后,构成了一个新的图形(如图19-6所示),从图中可以看出阴影部分的面积等于大扇形的面积减去大三角形面积的一半。
3.14×42×1
4-4×4÷2÷2=8.56(平方厘米)答:阴影部分的面积是8.56平方厘米。
19-2
19-
3 19-4
19-5
4
19-6
计算下面图形中阴影部分的面积(单位:厘米)。
例题3。
如图19-10所示,两圆半径都是1厘米,且图中两个阴影部分的面积相等。
求长方形ABO 1O 的面积。
【思路导航】因为两圆的半径相等,所以两个扇形中的空白部分相等。
又因为图中两个阴影
部分的面积相等,所以扇形的面积等于长方形面积的一半(如图19-10右图所示)。
所以 3.14×12×1
4
×2=1.57(平方厘米)
答:长方形长方形ABO 1O 的面积是1.57平方厘米。
练习3
1、 如图19-11所示,圆的周长为12.56厘米,AC 两点把圆分成相等的两段弧,阴影部
分(1)的面积与阴影部分(2)的面积相等,求平行四边形
19-7
19-8 19-9 19-10
19-11
19-12
C
B C
19-13
2、 如图19-12所示,直径BC =8厘米,AB =AC ,D 为AC 的重点,求阴影部分的面积。
3、 如图19-13所示,AB =BC =8厘米,求阴影部分的面积。
例题4。
如图19-14所示,求阴影部分的面积(单位:厘米)。
【思路导航】我们可以把三角形ABC 看成是长方形的一部分,把它还原成长方形后(如右
图所示),因为原大三角形的面积与后加上的三角形面积相等,并且空白部分的两组三角形面积分别相等,所以I 和II 的面积相等。
6×4=24(平方厘米)
答:阴影部分的面积是24平方厘米。
练习4
1、 如图19-15所示,求四边形ABCD 的面积。
2、 如图19-16所示,BE 长5厘米,长方形AEFD 面积是38平方厘米。
求CD 的长度。
3、 图19-17是两个完全一样的直角三角形重叠在一起,按照图中的已知条件求阴影部
分的面积(单位:厘米)。
19-14
B
4
619-15
7 A
B
19-17
D 19-16
例题5。
如图19-18所示,图中圆的直径AB是4厘米,平行四边形ABCD的面积是7平方厘米,∠ABC=30度,求阴影部分的面积(得数保留两位小数)。
【思路导航】阴影部分的面积等于平行四边形的面积减去扇形AOC的面积,再减去三角形BOC的面积。
半径:4÷2=2(厘米)
扇形的圆心角:180-(180-30×2)=60(度)
扇形的面积:2×2×3.14×
60
360
≈2.09(平方厘米)
三角形BOC的面积:7÷2÷2=1.75(平方厘米)
7-(2.09+1.75)=3.16(平方厘米)
答:阴影部分的面积是3.16平方厘米。
练习5
1、如图19-19所示,∠1=15度,圆的周长位62.8厘米,平行四边形的面积为100
平方厘米。
求阴影部分的面积(得数保留两位小数)。
2、如图19-20所示,三角形ABC的面积是31.2平方厘米,圆的直径AC=6厘米,
BD:DC=3:1。
求阴影部分的面积。
3、如图19-21所示,求阴影部分的面积(单位:厘米。
得数保留两位小数)。
19-18
B B
19-19 19-20 19-21
12
60
答案: 练1
1、 图答19-1阴影部分的面积为:6×6×1
2 =18平方厘米
2、 图答19-2阴影部分的面积为:6×6=36平方厘米
3、 图答19-3阴影部分的面积为:10×(10÷2)×1
2 ×2=50平方厘米
练2
1、 图答19-4中阴影部分的面积为:(2+2)×2=8平方厘米
2、 图答-5阴影部分的面积为:4×4×1
2
=8平方厘米
3、 图答19-6阴影部分的面积为:42×3.14×14 -4×4×1
2
=4.56平方厘米
练3
1、 图答19-7中,阴影部分(1)的面积与阴影部分(2)的面积相等。
所以,平行四边
形的面积和圆的面积相等。
因此,平行四边形ABCD 的面积是:
(12.56÷3.14÷2)2×3.14=12.56平方厘米 2、 (8÷2)2×3.14×1
4
=12.56平方厘米
3、 (8÷2)2×3.14×14 +(8÷2)×1
2
=20.56平方厘米
第二题和第三题,阴影部分的面积通过等积变形后可知。
如图答19-7和图答19
-8所示。
练4
1、 如图答19-9所示:延长BC 和AD 相距与E ,四边形ABCD 的面积是:
7×7×12 -3×3×1
2
=20平方厘米
2、 如图答19-10所示,因为S1=S2,所以CD =38÷5=7.6厘米
3、 如图答19-11所示:阴影部分面积等于梯形的面积,其面积为:(120+120-40)×
30÷2=3000平方厘米 练5
1、 如图答19-12所示
圆心角AOB 的度数为180-(180-15×2)=30度 平行四边形内一个小弓形的面积为
(62.8÷3.14÷2)2×3.14×30
360
-100÷4=1.17平方厘米
阴影部分的面积为100÷2-1.17=48.83平方厘米
2、 如图答19-13所示:圆心角AOD 的度数为180-(180-60×2)=120度
扇形AOD 的面积为(6÷2)2×3.14×120
360 =9.42平方厘米
阴影部分的面积为9.42-31.2×13+1 ×1
2 =5.52平方厘米
3、 如图答19-14(1)所示:
圆心角AOC 的度数为180-30×2=120度
扇形AOC 的面积(12÷2)2×3.14×120
360 =37.68平方厘米
三角形AOC 的面积为(12÷2)×5.2×1
2 =15.6平方厘米
阴影部分的面积37.68-15.6=22.08平方厘米 如图答19-14(2)所示
圆心角BOC 的读书180-(180-30×2)=60度 扇形ABD 的面积602×3.14×30
360 =942平方厘米
三角形AOC 的面积(60÷2)×26×1
2 =390平方厘米
扇形BOC 的面积(60÷2)×3.14×60
360 =471平方厘米
阴影部分的面积942-390-471=81平方厘米。