精选三年高考(2016-2018)高考数学试题分项版解析 专题27 概率与统计 理(含解析)
- 格式:doc
- 大小:973.00 KB
- 文档页数:23
专题25概率与统计文
考纲解读明方向
分析解读本节内容是高考的重点考查内容之一,最近几年的高考有以下特点:1.古典概型主要考查等可能性事件发生的概率,也常与对立事件、互斥事件的概率及统计知识综合起来考查;2.几何概型试题也有所体现,以选择题、填空题为主.本节内容在高考中分值为5分左右,属容易题.
可能考查会有所增加,
分析解读从近几年的高考试题来看,本部分在高考中的考查点如下:1.主要考查分层抽样的定义,频率分布直方图,平均数、方差的计算,识图能力及借助概率知识分析、解决问题的能力;2.在频率分布直方图中,注意小矩形的高=频率/组距,小矩形的面积为频率,所有小矩形的面积之和为1;3.分析两个变量间的相关关系,通过独立性检验判断两个变量是否相关.本节内容在高考中分值为17分左右,属中档题.
1.【2018年浙江卷】设0<p<1,随机变量ξ的分布列是
则当p在(0,1)内增大时,
A. D(ξ)减小
B. D(ξ)增大
C. D(ξ)先减小后增大
D. D(ξ)先增大后减小
【答案】D
【解析】分析:先求数学期望,再求方差,最后根据方差函数确定单调性.
点睛:
2.【2018年全国卷Ⅲ文】若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的
概率为0.15,则不用现金支付的概率为。
专题26 算法文考纲解读明方向考纲解读分析解读 1.文解算法的概念与特点,会用自然语言描述算法,能熟练运用程序框图表示算法.2.文解基本算法语句,掌握算法的基本思想,能编写程序解决简单问题.3.程序框图.高考对本章主要考查三种基本逻辑结构,有时与函数、数列、概率结合进行综合考查.根据题目条件补充判断框中的条件,读出程序框图的功能,执行程序框图并输出结果是高考的热点.一般以选择题形式出现,分值约为5分,属中低档题.2018年高考全景展示1.【2018年文数全国卷II】为计算,设计了下面的程序框图,则在空白框中应填入A.B.C.D.【答案】B点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.2. 【2018年文数北京】执行如图所示的程序框图,输出的s值为(A )12 (B )56 (C )76 (D )712【命题立意】本题考查循环结构的程序框图,为容易题.【答案】B【举一反三】高考对循环结构的程序框图的考查注意有以下三种方式: ①已知程序框图,求输出的结果,可按程序框图的流程依次执行,最后得出结果.②完善程序框图问题,结合初始条件和输出结果,分析控制循环的变量应满足的条件或累加、累乘的变量的表达式.③对于辨析程序框图功能问题,可将程序执行几次,即可根据结果作出判断.3. 【2018年文数天津】阅读右边的程序框图,运行相应的程序,若输入N 的值为20,则输出T 的值为A. 1B. 2C. 3D. 4【答案】B【解析】分析:由题意结合流程图运行程序即可求得输出的数值.点睛:识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,文解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.2017年高考全景展示1.【2017课标3,文7】执行右图的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为A.5 B.4 C.3 D.2【答案】D【解析】【考点】 流程图【名师点睛】利用循环结构表示算法,一定要先确定是用当型循环结构,还是用直到型循环结构;当型循环结构的特点是先判断再循环,直到型循环结构的特点是先执行一次循环体,再判断;注意输入框、处文框、判断框的功能,不可混用;赋值语句赋值号左边只能是变量,不能是表达式,右边的表达式可以是一个常量、变量或含变量的运算式.2.【2017课标II ,文8】执行右面的程序框图,如果输入的1a =-,则输出的S =( ) A .2 B .3 C .4 D .5【答案】B 【解析】试题分析:阅读流程图,初始化数值1,1,0a k S =-== 循环结果执行如下:第一次:011,1,2S a k =-=-== ;【考点】 流程图【名师点睛】识别、运行程序框图和完善程序框图的思路 (1)要明确程序框图的顺序结构、条件结构和循环结构。
专题26 算法文考纲解读明方向考纲解读分析解读 1.文解算法的概念与特点,会用自然语言描述算法,能熟练运用程序框图表示算法.2.文解基本算法语句,掌握算法的基本思想,能编写程序解决简单问题.3.程序框图.高考对本章主要考查三种基本逻辑结构,有时与函数、数列、概率结合进行综合考查.根据题目条件补充判断框中的条件,读出程序框图的功能,执行程序框图并输出结果是高考的热点.一般以选择题形式出现,分值约为5分,属中低档题.2018年高考全景展示1.【2018年文数全国卷II】为计算,设计了下面的程序框图,则在空白框中应填入A.B.C.D.【答案】B点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.2. 【2018年文数北京】执行如图所示的程序框图,输出的s值为(A )12 (B )56 (C )76 (D )712【命题立意】本题考查循环结构的程序框图,为容易题.【答案】B【举一反三】高考对循环结构的程序框图的考查注意有以下三种方式: ①已知程序框图,求输出的结果,可按程序框图的流程依次执行,最后得出结果.②完善程序框图问题,结合初始条件和输出结果,分析控制循环的变量应满足的条件或累加、累乘的变量的表达式.③对于辨析程序框图功能问题,可将程序执行几次,即可根据结果作出判断.3. 【2018年文数天津】阅读右边的程序框图,运行相应的程序,若输入N 的值为20,则输出T 的值为A. 1B. 2C. 3D. 4【答案】B【解析】分析:由题意结合流程图运行程序即可求得输出的数值.点睛:识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,文解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.2017年高考全景展示1.【2017课标3,文7】执行右图的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为A.5 B.4 C.3 D.2【答案】D【解析】【考点】 流程图【名师点睛】利用循环结构表示算法,一定要先确定是用当型循环结构,还是用直到型循环结构;当型循环结构的特点是先判断再循环,直到型循环结构的特点是先执行一次循环体,再判断;注意输入框、处文框、判断框的功能,不可混用;赋值语句赋值号左边只能是变量,不能是表达式,右边的表达式可以是一个常量、变量或含变量的运算式.2.【2017课标II ,文8】执行右面的程序框图,如果输入的1a =-,则输出的S =( ) A .2 B .3 C .4 D .5【答案】B 【解析】试题分析:阅读流程图,初始化数值1,1,0a k S =-== 循环结果执行如下:第一次:011,1,2S a k =-=-== ;。
专题25 概率与统计文考纲解读明方向分析解读本节内容是高考的重点考查内容之一,最近几年的高考有以下特点:1.古典概型主要考查等可能性事件发生的概率,也常与对立事件、互斥事件的概率及统计知识综合起来考查;2.几何概型试题也有所体现,可能考查会有所增加,以选择题、填空题为主.本节内容在高考中分值为5分左右,属容易题.2015分析解读 从近几年的高考试题来看,本部分在高考中的考查点如下:1.主要考查分层抽样的定义,频率分布直方图,平均数、方差的计算,识图能力及借助概率知识分析、解决问题的能力;2.在频率分布直方图中,注意小矩形的高=频率/组距,小矩形的面积为频率,所有小矩形的面积之和为1;3.分析两个变量间的相关关系,通过独立性检验判断两个变量是否相关.本节内容在高考中分值为17分左右,属中档题.2018年高考全景展示1.【2018年浙江卷】设0<p <1,随机变量ξ的分布列是则当p在(0,1)内增大时,A. D(ξ)减小B. D(ξ)增大C. D(ξ)先减小后增大D. D(ξ)先增大后减小【答案】D【解析】分析:先求数学期望,再求方差,最后根据方差函数确定单调性.点睛:2.【2018年全国卷Ⅲ文】若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A. 0.3B. 0.4C. 0.6D. 0.7【答案】B【解析】分析:由公式计算可得详解:设设事件A为只用现金支付,事件B为只用非现金支付,则,因为,所以,故选B. 点睛:本题主要考查事件的基本关系和概率的计算,属于基础题。
3.【2018年全国卷II文】从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A. B. C. D.【答案】D【解析】分析:分别求出事件“2名男同学和3名女同学中任选2人参加社区服务”的总可能及事件“选中的2人都是女同学”的总可能,代入概率公式可求得概率.点睛:应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件;第二步,分别求出基本事件的总数与所求事件中所包含的基本事件个数;第三步,利用公式求出事件的概率.4.【2018年江苏卷】某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________.【答案】【解析】分析:先确定总基本事件数,再从中确定满足条件的基本事件数,最后根据古典概型概率公式求概率.详解:从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法(理科):适用于限制条件较多且元素数目较多的题目.5.【2018年江苏卷】已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.【答案】90【解析】分析:先由茎叶图得数据,再根据平均数公式求平均数.点睛:的平均数为.6.【2018年全国卷Ⅲ文】某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.【答案】分层抽样【解析】分析:由题可知满足分层抽样特点详解:由于从不同龄段客户中抽取,故采用分层抽样,故答案为:分层抽样。
专题01 集合考纲解读明方向分析解读1.掌握集合的表示方法,能判断元素与集合的“属于”关系、集合与集合之间的包含关系.2.深刻理解、掌握集合的元素,子、交、并、补集的概念.熟练掌握集合的交、并、补的运算和性质.能用韦恩(Venn)图表示集合的关系及运算.3.本部分内容在高考试题中多以选择题或填空题的形式出现,以函数、不等式等知识为载体,以集合语言和符号语言表示为表现形式,考查数学思想方法.4.本节内容在高考中分值约为5分,属中低档题.命题探究练扩展2018年高考全景展示1.【2018年理北京卷】已知集合A={x||x|<2},B={–2,0,1,2},则A B=A. {0,1}B. {–1,0,1}C. {–2,0,1,2}D. {–1,0,1,2}【答案】A【解析】因此A B=,选A.点睛:认清元素的属性,解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.2.【2018年理新课标I卷】已知集合,则A. B.C. D.【答案】B程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.3.【2018年全国卷Ⅲ理】已知集合,,则A. B. C. D.【答案】C【解析】由集合A得,所以,故答案选C.点睛:本题主要考查交集的运算,属于基础题。
4.【2018年理数全国卷II】已知集合,则中元素的个数为A. 9B. 8C. 5D. 4【答案】A【解析】.,当时,;当时,;当时,;所以共有9个,选A.点睛:本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别. 5.【2018年理数天津卷】设全集为R,集合,,则A. B. C. D.【答案】B【解析】由题意可得:,结合交集的定义可得:.本题选择B 选项.点睛:本题主要考查交集的运算法则,补集的运算法则等知识,意在考查学生的转化能力和计算求解能力.6.【2018年江苏卷】已知集合,,那么________.【答案】{1,8}【解析】由题设和交集的定义可知:.点睛:本题考查交集及其运算,考查基础知识,难度较小.2017年高考全景展示1.【2017课标1,理1】已知集合A={x|x<1},B={x|},则()A.B.C.D.【答案】A【解析】由可得,则,即,所以,,故选A.【考点】集合的运算,指数运算性质.【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.2.【2017课标II,理】设集合,.若,则()A. B. C. D.【答案】C【考点】交集运算,元素与集合的关系【名师点睛】集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.两个防范:一是不要忽视元素的互异性;二是保证运算的准确性.3.【2017课标3,理1】已知集合A=,B=,则A B 中元素的个数为()A.3 B.2 C.1 D.0【答案】B【考点】交集运算;集合中的表示方法.【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.4.【2017北京,理1】若集合A={x|–2<x<1},B={x|x<–1或x>3},则A B=()(A){x|–2<x<–1} (B){x|–2<x<3}(C){x|–1<x<1} (D){x|1<x<3}【答案】A【解析】利用数轴可知,故选A.【考点】集合的运算【名师点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示,若集合是无限集合就用描述法表示,注意代表元素是什么,集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.5.【2017浙江,1】已知,,则()A.B.C.D.【答案】A【解析】利用数轴,取所有元素,得.【考点】集合运算【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.6.【2017天津,理1】设集合,则()(A)(B)(C)(D)【答案】【解析】 ,选B【考点】集合的运算【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.7.【2017江苏,1】已知集合,,若则实数的值为 .【答案】1【解析】由题意,显然,所以,此时,满足题意,故答案为1.【考点】元素的互异性【名师点睛】(1)认清元素的属性,解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.(3)防范空集.在解决有关等集合问题时,往往忽略空集的情况,一定先考虑是否成立,以防漏解.2016年高考全景展示1.【2016课标1,理1】设集合 ,,则()(A)(B)(C)(D)【答案】D考点:集合的交集运算【名师点睛】集合是每年中的必考题,一般以基础题形式出现,属得分题.解决此类问题一般要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数集之间的运算,常借助数轴进行运算.2.【2016新课标3理数】设集合,则()(A) [2,3] (B)(-,2] [3,+) (C) [3,+) (D)(0,2] [3,+)【答案】D【技巧点拨】研究集合的关系,处理集合的交、并、补的运算问题,常用韦恩图、数轴等几何工具辅助解题.一般地,对离散的数集、抽象的集合间的关系及运算,可借助韦恩图,而对连续的集合间的运算及关系,可借助数轴的直观性,进行合理转化.3.【2016新课标2理数】已知集合,,则()(A)(B)(C)(D)【答案】C【解析】试题分析:集合,而,所以,故选C.考点:集合的运算.【名师点睛】集合的交、并、补运算问题,应先把集合化简在计算,常常借助数轴或韦恩图处理.4. 【2016山东理数】设集合则=()(A)(B)(C)(D)【答案】C【解析】试题分析:,,则,选C.考点:1.指数函数的性质;2.解不等式;3.及集合的运算.【名师点睛】本题主要考查集合的并集、补集,是一道基础题目.从历年题目看,集合的基本运算,是必考考点,也是考生必定得分的题目之一.本题与求函数值域、解不等式等相结合,增大了考查的覆盖面.5.【2016浙江理数】已知集合则()A.[2,3] B.( -2,3 ] C.[1,2) D.【答案】B【解析】试题分析:根据补集的运算得.故选B.考点:1、一元二次不等式;2、集合的并集、补集.【易错点睛】解一元二次不等式时,的系数一定要保证为正数,若的系数是负数,一定要化为正数,否则很容易出错.6.【2016年北京理数】已知集合,,则()A. B. C. D.【答案】C【解析】由,得,故选C.考点:集合交集.【名师点睛】1.首先要弄清构成集合的元素是什么(即元素的意义),是数集还是点集,如集合,,三者是不同的.2.集合中的元素具有三性——确定性、互异性、无序性,特别是互异性,在判断集合中元素的个数时,以及在含参的集合运算中,常因忽视互异性,疏于检验而出错.3.数形结合常使集合间的运算更简捷、直观.对离散的数集间的运算或抽象集合间的运算,可借助Venn图实施,对连续的数集间的运算,常利用数轴进行,对点集间的运算,则通过坐标平面内的图形求解,这在本质上是数形结合思想的体现和运用.4.空集是不含任何元素的集合,在未明确说明一个集合非空的情况下,要考虑集合为空集的可能.另外,不可忽视空集是任何元素的子集.7.【2016年四川理数】设集合,Z为整数集,则中元素的个数是()(A)3 (B)4 (C)5 (D)6【答案】C【解析】由题意,,故其中的元素个数为5,选C.考点:集合中交集的运算.【名师点睛】集合的概念及运算一直是的热点,几乎是每年必考内容,属于容易题.一般是结合不等式,函数的定义域值域考查,解题的关键是结合韦恩图或数轴解答.8.【2016天津理数】已知集合则=()(A)(B)(C)(D)【答案】D【解析】试题分析:选D.考点:集合运算【名师点睛】本题重点考查集合的运算,容易出错的地方是审错题意,误求并集,属于基本题,难点系数较小.一要注意培养良好的答题习惯,避免出现粗心错误,二是明确集合交集的考查立足于元素互异性,做到不重不漏.9.【2016江苏卷】已知集合则____________. 【答案】【解析】试题分析:考点:集合运算【名师点睛】本题重点考查集合的运算,容易出错的地方是审错题意,属于基本题,难点系数较小.一要注意培养良好的答题习惯,避免出现粗心错误,二是明确江苏对于集合题的考查立足于列举法,强调对集合运算有关概念及法则的理解。
十、概率与统计1.(2016 新课标2理数10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π 的近似值为(A )4n m (B )2n m (C )4m n (D )2m n【答案】C2.(2017 新课标2理数13)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则DX =____________.【答案】1.96【解析】:由题意可得,抽到二等品的件数符合二项分布,即()~100,0.02X B ,由二项分布的期望公式可得()11000.020.98 1.96DX np p =-=⨯⨯=.【考点】 二项分布的期望与方差3. (2018 新课标2理数8)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A. B. C. D.【答案】C【解析】分析:先确定不超过30的素数,再确定两个不同的数的和等于30的取法,最后根据古典概型概率公式求概率.详解:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有种方法,因为,所以随机选取两个不同的数,其和等于30的有3种方法,故概率为,选C. 4.(2016 新课标2理数18)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:(II)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(III)求续保人本年度的平均保费与基本保费的比值.解:(I)解法1:设“一续保人本年度的保费高于基本保费”为事件为A则P(A)=1-P(A)=1-(0.3+0.15)=0.55所以该续保人本年度的保费高于基本保费的概率为0.55解法2:由题知:续保人本年度的保费高于基本保费的概率为0.200.200.100.050.55P=+++=(II)由统计表可知:其保费比基本保费高出60%的概率:0.100.050.15P=+=所以在一续保人本年度的保费高于基本保费的条件下; 续保人本年度的保费高于基本保费的概率为:0.1530.5511 P==(III)该续保人的本年平均保费为:0.850.300.15 1.250.20 1.50.20 1.750.10+20.05 1.23a a a a a a a????创=所以该续保人本年度的平均保费与基本保费的比值为:1.231.23aa=5.(2017 新课标2理数18)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg ).其频率分布直方图如下:(1)设两种养殖方法的箱产量相互独立,记A 表示事件:“旧养殖法的箱产量低于50kg ,新养殖法的箱产量不低于50kg”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:0.01).附:,22()()()()()n ad bc K a b c d a c b d -=++++【答案】(1)0.4092;(2)有99%的把握认为箱产量与养殖方法有关;(3)52.35kg .6. (2018 新课标2理数18)下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年的数据(时间变量的值依次为)建立模型①:;根据2010年至2016年的数据(时间变量的值依次为)建立模型②:.(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.【答案】(1)利用模型①预测值为226.1,利用模型②预测值为256.5,(2)利用模型②得到的预测值更可靠.【解析】分析:(1)两个回归直线方程中无参数,所以分别求自变量为2018时所对应的函数值,就得结果,(2)根据折线图知2000到2009,与2010到2016是两个有明显区别的直线,且2010到2016的增幅明显高于2000到2009,也高于模型1的增幅,因此所以用模型2更能较好得到2018的预测.详解:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为=–30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为=99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠.理由如下:(i)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=–30.4+13.5t上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型=99+17.5t可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠..【考点】独立事件概率公式、独立性检验原理、频率分布直方图估计中位数。
概率与统计 试题分类汇编(文科)分析解读 从近几年的高考试题来看,本部分在高考中的考查点如下:1.主要考查分层抽样的定义,频率分布直方图,平均数、方差的计算,识图能力及借助概率知识分析、解决问题的能力;2.在频率分布直方图中,注意小矩形的高=频率/组距,小矩形的面积为频率,所有小矩形的面积之和为1;3.分析两个变量间的相关关系,通过独立性检验判断两个变量是否相关.本节内容在高考中分值为17分左右,属中档题.1.【2018年全国卷Ⅲ文】若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为 A. 0.3 B. 0.4 C. 0.6 D. 0.7 【答案】B2.【2018年全国卷II 文】从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A.B.C.D.【答案】D点睛:应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件;第二步,分别求出基本事件的总数与所求事件中所包含的基本事件个数;第三步,利用公式求出事件的概率.3.【2017课标1,文4】如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π 4【答案】B【解析】【考点】几何概型【名师点睛】对于一个具体问题能否用几何概型的概率公式计算事件的概率,关键在于能否将问题几何化,也可根据实际问题的具体情况,选取合适的参数建立适当的坐标系,在此基础上,将实验的每一结果一一对应于该坐标系中的一点,使得全体结果构成一个可度量的区域;另外,从几何概型的定义可知,在几何概型中,“等可能”一词理解为对应于每个实验结果的点落入某区域内的可能性大小,仅与该区域的度量成正比,而与该区域的位置、形状无关.4. 【2017课标II,文11】从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为A.110B.15C.310D.25【答案】D【名师点睛】古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.5.【2017课标1,文2】为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数【答案】B【名师点睛】众数:一组数据出现次数最多的数叫众数,众数反应一组数据的多数水平;中位数:一组数据中间的数,(起到分水岭的作用)中位数反应一组数据的中间水平;平均数:反应一组数据的平均水平;方差:方差是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差.在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定. 标准差是方差的算术平方根,意义在于反映一个数据集的离散程度.6. 如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为A. 3,5B. 5,5C. 3,7D. 5,7【答案】A试题分析:由题意,甲组数据为56,62,65,70x +,74,乙组数据为59,61,67,60y +,78.要使两组数据数相等,有6560y =+,所以5y =,又平均数相同,则566265(70)74596167657855x +++++++++=,解得3x =.故选A. 【名师点睛】由茎叶图可以清晰地看到数据的分布情况,这一点同频率分布直方图类似.它优于频率分布直方图的第一点是从茎叶图中能看到原始数据,没有任何信息损失,第二点是茎叶图便于记录和表示.其缺点是当样本容量较大时,作图较繁琐. 利用茎叶图对样本进行估计是,要注意区分茎与叶,茎是指中间的一列数,叶是从茎的旁边生长出来的数.7.【2017课标3,文3】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( )A.月接待游客逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳【答案】A【考点】折线图【名师点睛】用样本估计总体时统计图表主要有频率分布直方图,(特点:频率分布直方图中各小长方形的面积等于对应区间概率,所有小长方形的面积之和为1); 2. 频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图. 3. 茎叶图.对于统计图表类题目,最重要的是认真观察图表,从中提炼有用的信息和数据.8. [2016高考新课标Ⅲ文数]某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为150C,B点表示四月的平均最低气温约为50C.下面叙述不正确的是()(A) 各月的平均最低气温都在00C以上 (B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200C的月份有5个【答案】D【解析】考点:1、平均数;2、统计图.【易错警示】解答本题时易错可能有两种:(1)对图形中的线条认识不明确,不知所措,只觉得是两把雨伞重叠在一起,找不到解决问题的方法;(2)估计平均温差时易出现错误,错选B .9.【2016高考新课标1文数】为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( ) (A )13 (B )12 (C )23 (D )56【答案】A 【解析】试题分析:将4中颜色的花种任选两种种在一个花坛中,余下2种种在另一个花坛,有6种种法,其中红色和紫色不在一个花坛的种数有4种,故概率为23,故选C. 考点:古典概型【名师点睛】作为客观题形式出现的古典概型试题,一般难度不大,解答常见错误是在用列举法计数时出现重复或遗漏,避免此类错误发生的有效方法是按照一定的标准进行列举. 10.甲、乙两人下棋,两人下成和棋的概率是21,甲获胜的概率是31,则甲不输的概率为( ) (A )65 (B )52 (C )61 (D )31【答案】A 【解析】11. 某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77则这组数据的中位数是_________(米). 【答案】1.76考点:中位数的概念.【名师点睛】本题主要考查中位数的概念,是一道基础题目.从历年高考题目看,涉及统计的题目,往往不难,主要考查考生的视图、用图能力,以及应用数学解决实际问题的能力.12.从2、3、8、9任取两个不同的数值,分别记为a 、b ,则log a b 为整数的概率= . 【答案】16【解析】试题分析:从2,3,8,9中任取两个数记为,a b ,作为作为对数的底数与真数,共有2412A =个不同的基本事件,其中为整数的只有23log 8,log 9两个基本事件,所以其概率21126P ==. 考点:古典概型.【名师点睛】本题考查古典概型,解题关键是求出基本事件的总数,本题中所给数都可以作为对数的底面,因此所有对数的个数就相当于4个数中任取两个的全排列,个数为44A ,而满足题意的只有2个,由概率公式可得概率.在求事件个数时,涉及到排列组合的应用,涉及到两个有理的应用,解题时要善于分析.13. 某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为______. 【答案】16考点:.古典概型【名师点睛】本题主要考查古典概型概率的计算.解答本题,关键在于能准确确定所研究对象的基本事件空间、基本事件个数,利用概率的计算公式求解.本题能较好的考查考生数学应用意识、基本运算求解能力等.14.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________.【答案】详解:从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法(理科):适用于限制条件较多且元素数目较多的题目.15.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.【答案】90点睛:的平均数为.16.【2018年全国卷Ⅲ文】某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.【答案】分层抽样17.【2018年新课标I卷文】某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表使用了节水龙头50天的日用水量频数分布表(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)【答案】(1)直方图见解析.(2) 0.48.(3).详解:(1)点睛:该题考查的是有关统计的问题,涉及到的知识点有频率分布直方图的绘制、利用频率分布直方图计算变量落在相应区间上的概率、利用频率分布直方图求平均数,在解题的过程中,需要认真审题,细心运算,仔细求解,就可以得出正确结果.18.【2018年全国卷Ⅲ文】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的工人数填入下面的列联表:超过不超过(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:,.【答案】(1)第二种生产方式的效率更高.理由见解析(2)超过不超过(3)有【解析】分析:(1)计算两种生产方式的平均时间即可。
专题26 算法文考纲解读明方向考纲解读考点内容解读要求高考示例常考题型预测热度(1)算法的含义、程序框图2017课标全国Ⅰ,8;①了解算法的含义,了解算法的思想;2017课标全国Ⅲ,7;②文解程序框图的三种基本逻辑结构:顺序结构、算法和程2016课标全国Ⅰ,9;条件结构、循环结构了解选择题★★★序框图2015课标Ⅰ,9;(2)基本算法语句2015课标Ⅱ,8;了解几种基本算法语句——输入语句、输出语2014课标Ⅰ,7句、赋值语句、条件语句、循环语句的含义分析解读 1.文解算法的概念与特点,会用自然语言描述算法,能熟练运用程序框图表示算法.2.文解基本算法语句,掌握算法的基本思想,能编写程序解决简单问题.3.程序框图.高考对本章主要考查三种基本逻辑结构,有时与函数、数列、概率结合进行综合考查.根据题目条件补充判断框中的条件,读出程序框图的功能,执行程序框图并输出结果是高考的热点.一般以选择题形式出现,分值约为5分,属中低档题.2018年高考全景展示1.【2018年文数全国卷II】为计算,设计了下面的程序框图,则在空白框中应填入A.B.C.D.【答案】B点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.2. 【2018年文数北京】执行如图所示的程序框图,输出的s值为(A)12(B)56(C)767(D)12【命题立意】本题考查循环结构的程序框图,为容易题.【答案】B【举一反三】高考对循环结构的程序框图的考查注意有以下三种方式:①已知程序框图,求输出的结果,可按程序框图的流程依次执行,最后得出结果.②完善程序框图问题,结合初始条件和输出结果,分析控制循环的变量应满足的条件或累加、累乘的变量的表达式.③对于辨析程序框图功能问题,可将程序执行几次,即可根据结果作出判断.3. 【2018年文数天津】阅读右边的程序框图,运行相应的程序,若输入N的值为20,则输出T的值为A. 1B. 2C. 3D. 4【答案】B【解析】分析:由题意结合流程图运行程序即可求得输出的数值.点睛:识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,文解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.2017年高考全景展示1.【2017课标3,文7】执行右图的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为A.5 B.4 C.3 D.2【答案】D【解析】【考点】流程图【名师点睛】利用循环结构表示算法,一定要先确定是用当型循环结构,还是用直到型循环结构;当型循环结构的特点是先判断再循环,直到型循环结构的特点是先执行一次循环体,再判断;注意输入框、处文框、判断框的功能,不可混用;赋值语句赋值号左边只能是变量,不能是表达式,右边的表达式可以是一个常量、变量或含变量的运算式.2.【2017课标II,文8】执行右面的程序框图,如果输入的a 1,则输出的S ()A.2 B.3 C.4 D.5【答案】B【解析】试题分析:阅读流程图,初始化数值a 1,k 1,S 0循环结果执行如下:第一次:S 0 1 1,a 1,k 2 ;【考点】流程图【名师点睛】识别、运行程序框图和完善程序框图的思路(1)要明确程序框图的顺序结构、条件结构和循环结构。
专题26 算法文考纲解读明方向考纲解读分析解读 1.文解算法的概念与特点,会用自然语言描述算法,能熟练运用程序框图表示算法.2.文解基本算法语句,掌握算法的基本思想,能编写程序解决简单问题.3.程序框图.高考对本章主要考查三种基本逻辑结构,有时与函数、数列、概率结合进行综合考查.根据题目条件补充判断框中的条件,读出程序框图的功能,执行程序框图并输出结果是高考的热点.一般以选择题形式出现,分值约为5分,属中低档题.2018年高考全景展示1.【2018年文数全国卷II】为计算,设计了下面的程序框图,则在空白框中应填入A.B.C.D.【答案】B点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.2. 【2018年文数北京】执行如图所示的程序框图,输出的s值为(A )12 (B )56 (C )76 (D )712【命题立意】本题考查循环结构的程序框图,为容易题.【答案】B【举一反三】高考对循环结构的程序框图的考查注意有以下三种方式: ①已知程序框图,求输出的结果,可按程序框图的流程依次执行,最后得出结果.②完善程序框图问题,结合初始条件和输出结果,分析控制循环的变量应满足的条件或累加、累乘的变量的表达式.③对于辨析程序框图功能问题,可将程序执行几次,即可根据结果作出判断.3. 【2018年文数天津】阅读右边的程序框图,运行相应的程序,若输入N 的值为20,则输出T 的值为A. 1B. 2C. 3D. 4【答案】B【解析】分析:由题意结合流程图运行程序即可求得输出的数值.点睛:识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,文解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.2017年高考全景展示1.【2017课标3,文7】执行右图的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为A.5 B.4 C.3 D.2【答案】D【解析】【考点】 流程图【名师点睛】利用循环结构表示算法,一定要先确定是用当型循环结构,还是用直到型循环结构;当型循环结构的特点是先判断再循环,直到型循环结构的特点是先执行一次循环体,再判断;注意输入框、处文框、判断框的功能,不可混用;赋值语句赋值号左边只能是变量,不能是表达式,右边的表达式可以是一个常量、变量或含变量的运算式.2.【2017课标II ,文8】执行右面的程序框图,如果输入的1a =-,则输出的S =( ) A .2 B .3 C .4 D .5【答案】B 【解析】试题分析:阅读流程图,初始化数值1,1,0a k S =-== 循环结果执行如下:第一次:011,1,2S a k =-=-== ;【考点】 流程图【名师点睛】识别、运行程序框图和完善程序框图的思路 (1)要明确程序框图的顺序结构、条件结构和循环结构。
专题27 概率与统计
考纲解读明方向
型及其概率计算公式,并会运用公式求解一些简单的有关概率的问题.本节在高考中单独命题时,通常以选择题、填空题形式出现,分值约为5分,属中低档题.随机事件,古典概型与随机变量的分布列,期望与方差等综合在一起考查时一般以解答题形式出现,分值约为12分,属中档题.
具体的操作步骤.2.会用样本的频率分布估计总体的分布,会用样本的数字特征估计总体的数字特征.3.样本数字特征及频率分布直方图为高考热点.有关统计内容及方法主要以选择题、填空题的形式呈现,分值约为5分,属容易题;抽样方法和各种统计图表与概率的有关内容相结合也会出现在解答题中,分值约为12分,属中档题.
想,认识统计方法在决策中的作用.3.了解回归的基本思想方法及其简单应用.4.回归分析与独立性检验在今后的高考中分值可能会提高.本节在高考中主要以选择题、解答题的形式呈现,分值约为5分或12分,小题为容易题,解答题属中档题
.
2018
年高考全景展示
1.【2018年理新课标
I 卷】下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为I ,黑色部分记为II ,其余部分记为III .在整个图形中随机取一点,此点取自I ,II ,III 的概率分别记为p 1,
p 2,p 3,则
A. p 1=p 2
B. p 1=p 3
C. p 2=p 3
D. p 1=p 2+p 3 【答案】A
【解析】分析:首先设出直角三角形三条边的长度,根据其为直角三角形,从而得到三边的关系,之后应用相应的面积公式求得各个区域的面积,根据其数值大小,确定其关系,再利用面积型几何概型的概率公式确定出p 1,p 2,p 3的关系,从而求得结果. 详解:设
,则有
,从而可以求得
的面积为
,黑色部分的面积为
,
其余部分的面积为,所以有,根据面积型几何概型的概率公式,可以得
到
,故选A.
点睛:该题考查的是面积型几何概型的有关问题,题中需要解决的是概率的大小,根据面积型几何概型的概率公式,将比较概率的大小问题转化为比较区域的面积的大小,利用相关图形的面积公式求得结果. 2.【2018年理新课标I卷】某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:
则下面结论中不正确的是
A. 新农村建设后,种植收入减少
B. 新农村建设后,其他收入增加了一倍以上
C. 新农村建设后,养殖收入增加了一倍
D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半
【答案】A
【解析】分析:首先设出新农村建设前的经济收入为M,根据题意,得到新农村建设后的经济收入为2M,之后从图中各项收入所占的比例,得到其对应的收入是多少,从而可以比较其大小,并且得到其相应的关系,从而得出正确的选项.
点睛:该题考查的是有关新农村建设前后的经济收入的构成比例的饼形图,要会从图中读出相应的信息即可得结果.
3.【2018年理数全国卷II】我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是。