基于热电阻数字测温
- 格式:doc
- 大小:368.00 KB
- 文档页数:18
数字温度计原理数字温度计是一种利用数字信号来表示温度值的温度测量仪器,它是现代工业和生活中常用的一种温度测量设备。
数字温度计的原理是基于热敏元件的电阻值随温度变化而变化的特性,通过测量电阻值的变化来确定温度值。
下面我们将详细介绍数字温度计的工作原理。
数字温度计的核心部件是热敏元件,常用的热敏元件有热敏电阻、热电偶和半导体温度传感器等。
其中,热敏电阻是一种电阻值随温度变化而变化的元件,它的电阻值随温度的升高而减小。
数字温度计利用热敏电阻的这一特性来实现温度测量。
当热敏电阻与电路连接后,其电阻值会随温度的变化而发生变化,通过测量电阻值的变化,就可以确定所测温度的数值。
数字温度计通常还包括一个模拟-数字转换器(ADC)和微处理器。
热敏电阻的电阻值的变化会转化为模拟信号,ADC负责将这个模拟信号转换为数字信号,然后微处理器对这个数字信号进行处理,最终将其显示为温度数值。
通过这样的一系列过程,数字温度计实现了对温度的精确测量和显示。
除了热敏电阻,数字温度计还可能采用其他类型的热敏元件,比如热电偶和半导体温度传感器。
热电偶是利用两种不同金属导体在不同温度下产生的热电势来测量温度的元件,而半导体温度传感器是利用半导体材料的电阻随温度变化而变化的特性来测量温度的元件。
不同类型的热敏元件在数字温度计中的应用原理略有不同,但基本的测温原理是相似的,都是利用热敏元件的特性来实现温度测量。
总的来说,数字温度计的原理是利用热敏元件的电阻值随温度变化而变化的特性,通过测量电阻值的变化来确定温度值,然后将其转化为数字信号进行显示。
不同类型的热敏元件在数字温度计中的应用原理略有不同,但基本的测温原理是相似的。
数字温度计在工业生产、医疗卫生、环境监测等领域有着广泛的应用,其原理的了解对于正确选择和使用数字温度计具有重要意义。
热敏电阻数字温度计的设计实验报告
本次实验旨在设计一种基于热敏电阻的数字温度计,通过实验验证其可行性和精确性。
实验过程中,我们首先购买了一些热敏电阻和其他所需的元器件,包括电容、电阻、运放等。
然后按照电路图设计,进行了实际的电路连接和调试。
在调试过程中,我们需要注意电路的稳定性和输入电压的范围,以免影响实验结果。
在完成电路搭建和调试后,我们通过连接计算机和显示器,测试了温度计的输出精确度和稳定性。
实验结果表明,该数字温度计具有较高的精确度和稳定性,可满足实际应用的需求。
综上所述,基于热敏电阻的数字温度计设计实验成功完成,并且具有较高的精确度和稳定性,为实际应用提供了可靠的参考数据。
- 1 -。
基于热敏电阻的数字温度计专业班级:机械1108组内成员:罗良李登宇李海先指导老师:**日期: 2014年6月12日1概述随着以知识经济为特征的信息化时代的到来人们对仪器仪表的认识更加深入,温度作为一个重要的物理量,是工业生产过程中最普遍,最重要的工艺参数之一。
随着工业的不断发展,对温度的测量的要求也越来越高,而且测量的范围也越来越广,对温度的检测技术的要求也越来越高,因此,温度测量及其测量技术的研究也是一个很重要的课题。
目前温度计种类繁多,应用范围也比较广泛,大致可以包括以下几种方法:1)利用物体热胀冷缩原理制成的温度计2)利用热电效应技术制成的温度检测元件3)利用热阻效应技术制成的温度计4)利用热辐射原理制成的高温计5)利用声学原理进行温度测量本系统的温度测量采用的就是热阻效应。
温度测量模块主要为温度测量电桥,当温度发生变化时,电桥失去平衡,从而在电桥输出端有电压输出,但该电压很小。
将输出的微弱电压信号放大,将放大后的信号输入AD转换芯片,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来。
2设计方案2.1设计目的利用51单片机及热敏电阻设计一个温度采集系统,通过学过的单片机和数字电路及面向对象编程等课程的知识设计。
要求的功能是能通过串口将采集的数据在显示窗口显示,采集的温度达一定的精度2.2设计要求使用热敏电阻类的温度传感器件利用其温感效应,将随被测温度变化的电压或电流用单片机采集下来,将被测温度在显示器上显示出来。
3系统的设计及实现3.1系统模块3.1.1 AT89C51AT89C51是一种带4K字节闪烁可编程可擦除只读存储器(FPEROM—Falsh Programmable and Erasable Read Only Memory)的低电压,高性能CMOS8位微处理器,俗称单片机。
该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。
数字温度传感器工作原理
数字温度传感器是一种用于测量温度的装置,它能够将温度转化为数字信号输出。
这类传感器通常使用特定的敏感元件,如热敏电阻(PTC或NTC)、热电偶或热电阻(如铂电阻)等。
对于热敏电阻传感器,它的阻值会随温度的变化而变化。
通常情况下,热敏电阻是一个负温度系数(NTC)电阻元件,即其阻值随温度的升高而下降。
数字温度传感器通过测量热敏电阻的阻值,并将其转化为数字信号输出,从而得到温度值。
热电偶则是利用两个不同材料的导电性质差异以及温度变化引起的电动势变化来测量温度的传感器。
当两个导电材料的接触点处于不同的温度下时,会产生一定的电势差。
通过测量这个电势差,可以计算出温度值。
而热电阻则是利用材料在不同温度下的电阻值变化来测量温度的传感器。
最常用的热电阻材料是铂电阻(Pt100或Pt1000),其电阻值与温度之间具有良好的线性关系。
将热电阻放置在待测温度环境中,通过测量电阻值的变化,可以通过查表或计算得出温度值。
通过将热敏电阻、热电偶或热电阻连接到一定的电路中,数字温度传感器可以将温度转换为数字信号输出。
这些数字信号可以通过一定的标准协议传输,如I2C、SPI或UART等,从而
将温度值传送给其他的设备或系统进行处理和分析。
热电阻温度测量原理
热电阻温度测量原理是基于热电效应的原理进行的。
热电效应是指当两种不同金属连接形成闭合回路时,如果两个连接点的温度不同,会产生电势差。
热电阻温度测量利用了这个原理,将热敏电阻(PT100)作为测温元件。
热电阻的工作原理是通过测量电阻随温度变化的关系来确定温度。
PT100是一种白金电阻,其电阻值随温度的变化服从国际标准的“Pt100”温度-电阻转换关系。
该关系表明,当温度升高时,PT100的电阻值也会增加。
这种关系是稳定和可重复的,使得PT100成为常用的热敏电阻元件。
具体的测量方法是将PT100连接到电路中,形成一个闭合电路。
当电路中有电流通过时,根据热电效应,PT100的两个端点会产生一个电势差。
这个电势差可以通过测量电路中的电压来确定。
由于PT100的电阻值与温度成正比关系,根据测得的电势差和PT100的温度-电阻转换关系,就可以准确地确定温度。
为了提高测量的精确度,常常采用一些校准方法,例如使用冰点温度或沸点温度来进行校准。
这样可以确保测量结果的准确性。
总的来说,热电阻温度测量原理是基于热电效应的原理,通过测量电势差和温度-电阻转换关系来确定温度。
热敏电阻
PT100作为测温元件,可以提供稳定和可靠的温度测量结果。
摘要本课题本系统采用PT100热电阻温度传感器和单片机组成可靠性高、功耗低的温度检测系统。
以AT89C51单片机系统为核心,对单点的温度进行实时检测。
采用模拟温度传感器PT100对温度进行检测;采用串型模数转换器ADC0809进行A/D转换把温度信号调解转换为电压信号与AT89C51单片机接口设置LED八段数码管实时显示温度值。
本设计包括温度传感器、A/D转换模块、数据传输模块、温度显示模块四个部分。
关键词:单片机,PT100热电阻,ADC0809,温度检测The design of Single Chip MicrocomputerTemperature Detection SystemBased on the Resistive Thermal Detector of PT100AbstractThis article AT89C51 monolithic integrated circuit which produces by ATMEL Corporation is the core, can inspect a single point of the temperature in real time. The adoption of the serial A/D for temperature signals into voltage signal mediation AT89C51 Single-Ship Compute interfaces with the eighth LED digital display of real-time temperature. The design includes four parts of the temperature sensor and the A / D converter module and the data transmission modules and the temperature display module. Each part functions and the process was described in the Paper in detail.Key words:Single-Ship Computer; Resistive Thermal Detector of PT100; ADC0809; Measure-temperature目录摘要 (I)Abstract (II)1 绪论 (1)1.1 课题背景 (1)1.2 方案论证 (2)1.2.1 单片机选型 (2)1.2.2 模数转换器选型 (3)1.2.3 显示方案确定 (3)2 硬件设计 (4)2.1 温度信号的获取与放大 (4)2.1.1 元件介绍 (4)2.1.2 放大电路设计 (4)2.2 模数转换单元 (5)2.2.1 8位串行A/D转换器ADC0809 (5)2.2.2 模数转换单元电路的设计 (7)2.3 键盘电路的设计 (8)2.4 LED显示电路的设计 (8)2.4.1 LED数码管原理 (9)2.4.2 LED数码管编码方式 (9)2.4.3 LED数码管显示方式和典型应用 (10)2.4.4 LED数码管的原理图 (11)2.5 声光报警电路 (12)2.6 单片机接口电路 (13)2.6.1单片机的时钟电路 (13)2.6.2复位电路和复位状态 (13)3 软件设计 (16)3.1 程序设计语言的选用 (16)3.2 软件程序的设计 (16)3.2.1 程序流程 (16)3.2.2 键盘管理 (17)3.2.3 LED显示 (18)3.2.4 模拟量的采集与处理 (18)3.3源程序 (22)4 抗干扰设计 (29)4.1 用于单片机系统的干扰抑制元件 (29)4.2 提高单片机系统抗干扰能力的主要手段 (29)5 结论 (31)致谢 (32)参考文献 (33)论文原创性声明 ...................................................................................... 错误!未定义书签。
热电阻测温原理热电阻是由金属或半导体材料制成的一种温度传感器,利用材料温度变化引起的电阻变化原理来测量温度的一种装置。
通常热电阻利用金属导体在温度变化下电阻变化的特性来测量温度。
热电阻传感器是一种被广泛使用的温度传感器,具有高精度、长寿命、易于使用等优点。
热电阻的测温原理主要是基于材料在温度变化下电阻发生变化的特性。
通常热电阻采用一种金属或合金作为材料,将其制成一条长短不等的导线,两端用导线绕成的电极连接电路中。
当导线受到外界温度的影响时,导线的电阻会随之发生变化,从而影响电路的电阻值和电压值。
热电阻的电阻值与温度之间的关系一般可以用公式来描述:R = R0[1 + A(T – T0)],式中,R表示热电阻的电阻值,R0表示热电阻在参考温度T0下的电阻值,A表示热电阻的温度系数,T表示被测温度。
从公式中可以看出,热电阻的电阻值与温度之间呈线性关系,随着温度的变化而变化。
在实际应用中,热电阻的温度测量一般采用电桥来实现。
将两个引线连接其中两个电桥臂,另外两个电桥臂装上与热电阻相同的电阻器,以便于测量。
当被测温度发生变化时,热电阻的电阻值也会变化,从而导致电桥的平衡状态发生改变,输出电压也会发生变化。
通过比较两个电桥输出的电压,可以得到温度变化的大小。
通常使用差动电压测量方法来扫描电平并将其输入到比较器中,以确定热电阻测量出的温度值。
在使用热电阻进行测温时,还需要使用滤波电路和放大电路将输出信号转换为标准电压信号,以便于使用。
在工业生产和科学实验中,热电阻可以广泛应用于各种温度测量场合,如熔炉温度测量、反应釜温度测量、实验室实验温度监测等。
他们在空气氧气中都有卓越的电学稳定性与化学稳定性,并且使用寿命长,抗干扰性高,便于使用和维护维护,并且可在广泛的工作温度范围内工作。
总之,热电阻是目前应用十分广泛的一种温度传感器,并且在未来会有更加广泛的应用。
热电阻测温仪工作原理引言热电阻测温仪是一种常见的温度测量设备,利用热电阻材料的特性来测量温度。
本文将详细介绍热电阻测温仪的工作原理,包括热电阻的基本原理、工作机制以及应用领域等。
一、热电阻的基本原理热电阻是一种利用材料电阻随温度变化的特性来测量温度的装置。
它的工作原理基于电阻与温度之间的线性关系。
通常使用的热电阻材料是铂金(Pt100)或镍铬合金(Ni100),它们的电阻值都随温度的升高而增加。
二、热电阻测温仪的工作机制热电阻测温仪的工作机制包括温度传感器、测量电路和显示装置三部分。
2.1 温度传感器温度传感器是热电阻测温仪中最关键的组件,它采用热电阻材料作为温度敏感元件。
当温度发生变化时,热电阻材料的电阻值也会随之变化。
温度传感器将温度变化转换为电阻变化,并传递给测量电路。
2.2 测量电路测量电路是热电阻测温仪中处理电阻值并将其转换为温度读数的部分。
它通过测量温度传感器两端的电位差来计算温度值。
测量电路中通常包括一个电桥电路,用于测量热电阻材料的电阻值。
电桥电路由几个电阻和一个电源组成,其中一个电阻是待测热电阻材料,其他电阻是已知值的参考电阻。
当热电阻材料的电阻值发生变化时,电桥电路中的电位差也会发生变化。
测量电路还包括一个放大器和一个模数转换器(ADC),用于将电阻变化信号放大并转换为数字形式。
放大器的作用是增加电桥电路输出信号的幅度,确保信号的准确性和稳定性。
模数转换器将放大后的信号转换为数字形式,以便后续的处理和显示。
2.3 显示装置显示装置是热电阻测温仪中用于显示温度值的部分,通常为液晶显示屏或数码显示器。
显示装置接收到来自测量电路的数字信号,将其转换为温度读数并显示在屏幕上。
三、热电阻测温仪的应用领域热电阻测温仪具有广泛的应用领域,主要用于以下领域:3.1 工业自动化热电阻测温仪广泛应用于工业自动化领域,用于测量和控制各种工业设备的温度。
例如,在化工厂中,热电阻测温仪可用于监测反应器的温度变化,以确保反应过程的安全和稳定。
基于PT100热电阻的简易温度测量仪摘要:本文首先简要介绍了铂电阻PT100的特性以及测温的方法,在此基础上阐述了基于PT100的温度测量系统设计。
在本设计中,是以铂电阻PT100作为温度传感器,采用恒流测温的方法,通过单片机进行控制,用放大器、A/D转换器进行温度信号的采集。
通过对电路的设计,减小了测量电路及PT100自身的误差,使温控精度在0℃~100℃范围内达到±0.1℃。
本文采用STC89C52RC单片机,TLC2543 A/D转换器,AD620放大器,铂电阻PT100及液晶系统,编写了相应的软件程序,使其实现温度及温度曲线的实时显示。
该系统的特点是:使用简便;测量精确、稳定、可靠;测量范围大;使用对象广。
关键词:PT100 单片机温度测量 AD620 TL431AbstractThis article briefly describes the characteristics of PT100 platinum resistance and temperature measurement method, on the basis it describes the design of temperature measurement system based on PT100. In this design, it is use a PT100 platinum resistance as temperature sensor, in order to acquisition the temperature signal, it use of constant-current temperature measurement method and use single-chip control, Amplifier, A / D converter. It can still improve the perform used two-wire temperature circuit and reduce the measurement eror. The temperature precision is reached ±0.1℃ between 0℃~100℃.The system contains SCM(STC89C52), analog to digital convert department (TLC2543), AD620 amplifier, PT100 platinum, LCD12864, write the corresponding software program to achieve real-time temperature display. The system is simple , accurate , stable and wide range. Keywords:PT100 MCU Temperature Measures AD620 TL431目录前言 (4)第一章方案设计与论证 (6)1.1 传感器的选择 (6)1.2 方案论证 (7)1.3 系统的工作原理 (8)1.4 系统框图 (9)第二章硬件设计 (9)2.1 PT100传感器特性和测温原理 (9)2.2 硬件框图以及简要原理概述 (11)2.3 恒流源模块测温模块设计方案 (11)2.4 信号放大模块 (12)2.5 A/D转换模块 (15)2.6 单片机控制电路 (18)2.7 显示模块 (19)第三章软件设计 (19)3.1系统总流程的设计 (19)3.2 主函数的设计 (20)3.3 温度转换流程图的设计 (21)3.4 显示流程图 (21)3.5 按键流程的设计 (22)第四章数据处理与性能分析 (23)4.1采集的数据及数据处理 (23)4.2 性能测试分析 (23)第五章结论与心得 (24)1 结论 (24)2 心得 (24)附录1 原理图 (25)附录2 元器件清单 (26)附录3 程序清单 (27)前言随着科技的发展和“信息时代”的到来,作为获取信息的手段——传感器技术得到了显著的进步,其应用领域越来越广泛,对其要求越来越高,需求越来越迫切。
热电阻温度计测温原理
热电阻温度计是一种常用的温度测量装置,其工作原理基于金属导线在温度变化下产生电阻变化的特性。
热电阻温度计采用的是铂电阻材料,主要是因为铂具有良好的稳定性和线性度。
当温度发生变化时,热电阻温度计中的铂电阻线圈也会发生相应的电阻变化。
这是因为温度的改变会导致铂电阻线圈中的电阻值发生改变,进而引起电阻值的变化。
更具体地说,温度升高时,电子的热运动加剧,电阻值会增加;而温度降低时,电阻值会减小。
这是因为温度升高会导致导线内铂原子振动加剧,电子与原子碰撞频率增加,电阻值增加。
热电阻温度计通过测量铂电阻线圈的电阻值变化来获取温度信息。
通常情况下,热电阻温度计会与测温仪表相连接,仪表通过供电电流并测量电阻值的变化来计算出温度。
为了提高测量精度,热电阻温度计通常会采用三线制或四线制连接方式。
其中,三线制连接方式通过消除引线电阻的影响,提高测量精度;而四线制连接方式则可进一步减小引线电阻的影响,提高测量的稳定性和精度。
总的来说,热电阻温度计利用铂电阻线圈的电阻随温度变化的特性,通过测量电阻值变化来获得温度信息。
这种测温原理广泛应用于工业自动化控制和科学实验等领域,具有较高的精度和稳定性。
1.设计要求使用热敏电阻类的温度传感器件利用其感温效应,将随被测温度变化的电压或电流用单片机采集下来,将被测温度在显示器上显示出来:测量温度范围−50℃~110℃。
精度误差小于0.5℃。
LED数码直读显示。
本系统的温度测量采用的就是热阻效应。
温度测量模块主要为温度测量电桥,当温度发生变化时,电桥失去平衡,从而在电桥输出端有电压输出,但该电压很小。
将输出的微弱电压信号通过OP07放大,将放大后的信号输入AD转换芯片,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来。
2 设计方案与论证2.1 设计方案通过本次CDIO利用51单片机及热敏电阻设计一个温度采集系统,通过学过的单片机和数字电路及面向对象编程等课程的知识设计。
要求的功能是能通过串口将采集的数据在显示窗口显示,采集的温度达一定的精度。
2.2 设计任务1、根据技术要求和现有开发环境,分析设计题目2、设计系统实现方案3、设计并绘制电路原理图4、画出功能模块的程序流程图5、使用汇编语言(或C语言)编写实现程序6、结合硬件调试、修改并完善程序;3 系统的硬件设计及实现3.1 系统各模块介绍3.1.1 AT89C51芯片介绍(1)主要性能:与MCS-51单片机产品兼容、8K字节的在系统可编程Flash存储器、一千次的擦写周期、全静态操作:0Hz~24MHz、三级加密程序存储器、三十二个可编程I/O口线、三个16位定时器/计数器以及八个中断源、全双工UART 串行通道、低功耗空闲和掉电模式、掉电后中断可唤醒、看门狗定时器、双数据指针、掉电标识符。
(2)功能特性:AT89C51是一种低功率消耗、性能较高CMOS8位微控制器。
Flash能够允许程序存储器在系统可编程执行,亦适合于常规编程器。
在单芯片上,拥有灵巧的8位CPU和在系统可编程Flash,使得AT89C52为众多嵌入式控制应用系统提供高灵活、超有效的解决方案。
AT89C52具有以下标准功能:8k字节Flash,256字节RAM,32 位I/O口线,看门狗定时器,2个数据指针,三个16位定时器/计数器,一个6向量2级中断结构,全双工串行口,片内晶振及时钟电路。
此外,AT89C52 可降低到0Hz静态逻辑操作,支持2种软件可抉择节电模式。
空闲模式时,CPU 不再工作,却允许RAM、定时器/计数器、串口、中断继续工作。
掉电保护方式下,RAM内容被保留下来,振荡器被冻结,单片机所有工作都停止,直到下一个中断开始或者有硬件复位为止。
图1 AT89C51管脚分布(3)管脚说明:VCC:供电电压,GND:接地。
P0口:P0口作为一个8位漏级开路双向的I/O口,每脚可以吸纳8TTL门电流。
当P1口的管脚第一次写1时,被视为输入高阻。
P0可以用于外部程序或者数据存储器,它可以被定义为数据或者地址的第八位。
在FIASH编程时,P0 口被视为为原码输入口,当FIASH开始校验时,P0输出原码,此时P0外部一定被拉高。
P1口:P1口是内部提供的8位上拉电阻的双向I/O口,P1口缓冲器能收到输出4TTL门电流。
P1口管脚写入1后,可作为输入,其管脚被内部上拉为高电平, P1口被外部下拉为低电平的时候,将输出电流,这是由于内部上拉的原因。
在FLASH编程和校验时,P1口被认为是第八位地址接收。
P2口:P2口是一个8位内部上拉电阻的双向I/O口,P1口缓冲器可收到或者输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉为高电平,且作为输入。
作为输入,P2口的管脚将被外部拉低的时侯,将输出电流。
这是由于内部上拉的原因。
P2口在用于外部程序存储器或者是16位地址外部数据存储器进行操作时,P2口输出地址作为高八位。
在给出地址“1”时,它有内部上拉的优点,当对外部八位地址数据存储器进行读写操作时,P2口输出它的特殊功能寄存器上的内容。
P2口在FLASH编程和校验的时候,接收信号作为高八位地址信号和控制信号。
P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,P3口缓冲器可接收输出4个TTL门电流。
当P3口写入“1”后,被内部上拉为高电平,并且作用于输入。
作为输入,因为外部下拉为低电平,P3口将输出电流(ILL),这是由于上拉的原因。
P3口也可作为AT89C51的一些特殊功能口。
P3口管脚备选功能:P3.0 RXD(串行输入口)P3.1 TXD(串行输出口)P3.2 /INT0(外部中断0)P3.3 /INT1(外部中断1)P3.4 T0(记时器0外部输入)P3.5 T1(记时器1外部输入)P3.6 /WR(外部数据存储器写选通)P3.7 /RD(外部数据存储器读选通)P3口同时为闪烁编程和编程校验接收一些控制信号。
RST:复位输入。
当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。
ALE/PROG:当访问外部存储空间时,地址锁存允许的输出电平用于锁存地址的低位字节。
在FLASH编程期之中,此引脚作用于输入编程脉冲。
在平时,ALE端以一定的频率周期输出正脉冲函数,此频率为振荡器频率的六分之一。
因此它可用于对外部输出的脉冲或用于定时作用的目的。
然而值得注意的是:每当用作外部数据存储的时候,它将跳过一个ALE脉冲。
如想禁止ALE的输出可在SFR8EH地址上复位。
此时, ALE只是在执行MOVX,MOVC指令是ALE时才能够起作用。
此外,该引脚被略微拉高。
若是微处理器在外部执行状态ALE为禁止,那么置位无效。
PSEN:外部程序存储器的选通信号。
在由外部程序存储空间取指期间,每个机器周期是两次PSEN才有效。
但在访问外部数据存储器时,这两次有效的PSEN 信号都将不能够实现。
EA/VPP:当EA保持低电平时,不管是否有内部的程序存储空间,那么在此期间外部程序存储空间(0000H-FFFFH)。
注意当加密方式是1时,EA将内部定为RESET;当EA端保持高电平时,此间内部程序存储空间。
在FLASH编程期间,此引脚也可以用作施加12V编程电源。
XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。
XTAL2:来自反向振荡器的输出。
(4)复位电路:MCS-52 单片机复位电路是指单片机的初始化操作。
单片机启运开始工作时,都需要先经过复位,其作用是使CPU和系统中其他配置器件处于一个确定的初始状态,并从这个状态开始执行命令。
因而,复位是一个非常重要的操作方式。
但单片机自己是不能自动执行复位的,必须配合恰当的外部电路才可以实现。
复位功能:复位电路的基本功能:系统上电时提供复位功能,一直到系统电源稳定后,去除复位信号。
为保险起见,电源稳定后必须经一定的延时才可以撤销复位的信号,以防电源开关或电源插头分-合过程中导致的抖动而对复位功能产生影响。
单片机的复位是由外部的复位电路来控制的。
片内复位电路是通过复位引脚RST复位电路与一个斯密特触发器相连,斯密特触发器用来达到抑制噪声的目的,在每个机器周期它的输出由复位电路采样一次。
复位电路通常运用上电自动复位以及按钮复位两种方式。
系统复位是任何微机系统执行的初始化步骤,使控制芯片整体回到默认的硬件状态下。
由RESET引脚来控制的52单片机复位,此引脚与高电平相连超过24个振荡周期后,52单片机便可以进入芯片内部复位状态,并且可以在此状态下一直等待,一直至RESET引脚转为低电平以后,才校验EA引脚是高电平还是低电平,如果为高电平则运行芯片内部程序的代码,若为低电平则会执行外部程序的代码。
(5)晶振电路:晶振是晶体振荡器的简称,在电路方面它可以等效成一个电容和一个电阻并联再串联一个电容的二端口网络,电学上这个电路有两个谐振点,以频率图2 ADC0809管脚图的高低分把其中较高的频率称为并联谐振,较低的频率称为串联谐振。
AT89C52单片机内部有一个高增益反相放大器,用于构成振荡器。
引脚XTAL2和XTAL1分别是此放大器的输出端和输入端。
作为反馈器件的片外晶体谐振器与该放大器一起构成一个自激振荡器。
3.1.2 ADC0809 芯片ADC0809是用CMOS集成工艺制成的逐次比较型模数转换芯片。
分辨率8位,转换时间100μs,输入电压范围为0~5V,增加某些外部电路后,输入模拟电压可为 5V。
该芯片内有输出数据锁存器,当与计算机连接时,转换电路的输出可以直接连接在CPU数据总线上,无需附加逻辑接口电路。
ADC0809芯片管脚如图二所示引脚名称及意义如下:VIN+、VIN-:ADC0809的两模拟信号输出端,用以接收单极性、双极性和差模输入信号。
DB7~DB0:A/D转换器数据输出端,该输出端具有三态特性,能与微机总线相接。
AGND:模拟信号地。
DGND:数字信号地。
CLKIN:外电路提供时钟脉冲输入端。
CLKR:内部时钟发生器外接电阻端,与CLKIN端配合可由芯片自身产生时钟脉冲,其频率为1.1/RC。
CS:片选信号输入端,低电平有效,一旦CS有效,表明A/D转换器被选中,可启动工作。
WR:写信号输入,接收微机系统或其它数字系统控制芯片的启动输入端,低电平有效,当CS、WR同时为低电平时,启动转换。
RD:读信号输入,低电平有效,当CS、RD同时为低电平时,可读取转换输出数据。
INTR:转换结束输出信号,低电平有效。
输出低电平表示本次转换已完成。
该信号常作为向微机系统发出的中断请求信号。
在使用时应注意以下几点:1.转换时序ADC0809控制信号的时序图如图所示,由图可见,各控制信号时序关系为:当CS与WR同为低电平时,A/D转换被启动而在WR上升沿后100μs模数完成转换,转换结果存入数据锁存器,同时INTR自动变为低电平,表示本次转换已结束。
如CS、RD同时来低电平,则数据锁存器三态门打开,数字信号送出,而在RD高电平到来后三态门处于高阻状态。
2.零点和满刻度调节ADC0809的零点无需调整。
其中Vmax是输入电压的最大值,Vmin是输入电压的最小值。
当输入电压与VIN+值相当时,调整VREF/2端电压值是输出码为FEH 或FFH。
3.参考电压的调节在使用A/D转换器时,为保证其转换精度,要求输入电压满量程使用,如输入电压动态范围较小,则可调节参考电压VREF,以保证小信号输入时ADC0809芯片8位的转换精度。
3.1.3 PT100热敏电阻pt100是铂热电阻,它的阻值跟温度的变化成正比。
PT100的阻值与温度变化关系为:当PT100温度为0℃时它的阻值为100欧姆,在100℃时它的阻值约为138.5欧姆。
它的工业原理:当PT100在0摄氏度的时候他的阻值为100欧姆,它的阻值会随着温度上升而成匀速增长的。
金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即Rt=Rt0[1+α(t-t0)]式中,Rt为温度t时的阻值;Rt0为温度t0(通常t0=0℃)时对应电阻值;α为温度系数。