开放性实验项目指导2:用MATLAB优化工具箱解线性规划
- 格式:doc
- 大小:102.00 KB
- 文档页数:4
用MATLAB优化工具箱解线性规划线性规划是运筹学中的一个研究对象,它通常是以线性方程组的形式来描述数学模型,极大(或极小)化线性函数,同时满足一定的线性限制条件。
而MATLAB是一种十分流行的数学计算软件,其优化工具箱提供了一些功能强大的优化算法,可以用来解决一些复杂的优化问题,包括线性规划问题。
一、线性规划问题的定义线性规划问题的一般形式可以描述为:$min/max$ $c^Tx$$subject$ $to$:$Ax \le b$$x \ge 0$其中,$c^Tx$是一个线性函数,称为线性目标函数,$A$是一个$m\times n$的系数矩阵,$b$是一个$m\times1$的列向量,$x$是一个$n\times1$的列向量,是待求解的变量,我们称之为决策变量。
$x_j$表示变量$x$的第$j$个分量,$m$和$n$分别是限制条件数目和变量数目。
$Ax \le b$是一个线性等式系统,约束了$x$的取值范围,$x \ge0$要求$x$的分量非负,这被称为非负约束条件。
二、使用MATLAB函数求解线性规划问题MATLAB中的优化工具箱提供了一些函数,可以用来求解线性规划问题,其中最常用的函数是“linprog”。
linprog函数是求解线性规划问题的标准函数,在使用之前需要做一些准备工作:(1)确定目标函数和约束条件:目标函数和约束条件应该以线性方程组的形式表达。
(2)将方程组转换为标准形式:标准形式是指将约束条件转换为$Ax \le b$的形式,且决策变量的非负约束被包含在这个矩阵中。
(3)定义参数:包括目标函数和约束条件中的系数矩阵和向量。
(4)运行函数:使用linprog函数求解。
下面是linprog函数的语法格式:[x,fval,exitflag,output,lambda]=linprog(f,A,b,Aeq,beq,lb,ub,x 0,options)linprog函数的参数解释如下:(1)f:目标函数的系数向量。
应用MATLAB 优化工具箱求解规划问题如今,规划类问题是常见的数学建模问题,离散系统的优化问题一般都可以通过规划模型来求解。
用MATLAB 求解规划问题,可以避免手工的烦琐计算,大大提高工作效率和结果的准确性。
MA TLAB 是一种应用于数学计算及计算结果可视化处理的面向对象的高性能计算机语言,它以矩阵和向量为基本数据单位,从而提高程序的向量化程度,提高计算效率,尤其适合于线性规划、整数规划、多元规划、二元规划类问题的算法编写,以及数据拟合、参数估计、插值等数据处理法。
利用MA TLAB 提供的强大的规划模型求解命令,可以简单快速地得到所要的结果。
本文主要对线性规划、非线性规划、整数规划、单目标约束规划以及多目标规划等规划问题在MATLAB 中的实现做比较详细的讲解.线性规划问题线性规划是一种优化方法,MA TLAB 优化工具箱中有现成函数linprog 对标准型LP 问题求解。
线性规划问题是目标函数和约束条件均为线性函数的问题,MATLAB 中线性规划的标准型为:Min f ’x..A x b s t Aeq x beq lb x ub ⋅≤⎧⎪⋅=⎨⎪≤≤⎩其中f 、x 、b 、beq 、lb 、ub 为向量,A 、Aeq 为矩阵。
其他形式的线性规划问题都可经过适当变化化为以上标准型。
线性规划是一种优化方法,MATLAB 优化工具箱中有现成函数linprog 对标准型LP 问题求解。
在MATLAB 指令窗口运行help linprog 可以看到所有的函数调用形式,如下:x = linprog(f,A,b) %求min f’x ;s.t. b x A ≤⋅线性规划的最优解x = linprog(f,A,b,Aeq,beq) %等式约束beq x Aeq =⋅,若没有不等式约束,则A=[],b=[]。
若没有等式约束,则Aeq=[],beq=[]x = linprog(f,A,b,Aeq,beq,lb,ub) %指定x 的范围ub x lb ≤≤x = linprog(f,A,b,Aeq,beq,lb,ub,x0) %设置初值x0x = linprog(f,A,b,Aeq,beq,lb,ub,x0,options) % options 为指定优化参数进行最小化[x,fval] = linprog(...) %返回目标函数最优值,即fval= f’x[x,lambda,exitflag] = linprog(...) % lambda 为解x 的Lagrange 乘子[x,lambda,exitflag,output] = linprog(...) % exitflag 为终止迭代的条件[x,fval,exitflag,output,lambda] = linprog(...) % output 为输出优化信息exitflag 描述函数计算的退出条件:若exitflag>0表示函数收敛于解x ,exitflag=0表示目标达到函数估值或迭代的最大次数,exitflag<0表示函数不收敛于解x ;lambda 返回x 处的拉个朗日乘子:lambda.lower 表示下界lb ,lambda.upper 表示上界ub ,lambda.ineqlin 表示线性不等式约束,lambda.eqlin 表示线性等式约束,lambda 中的非0元素表示对应的约束是有效约束;output 返回优化信息:output.iterations 表示迭代次数,output.algorithm 表示使用的运算规则,output.cgiterations 表示PCG 迭代次数。
Matlab求解线性规划和整数规划问题线性规划是一种数学优化问题,通过线性函数的最大化或者最小化来实现目标函数的优化。
整数规划是线性规划的一种特殊情况,其中变量被限制为整数值。
在Matlab中,我们可以使用优化工具箱中的函数来求解线性规划和整数规划问题。
下面将详细介绍如何使用Matlab来求解这些问题。
1. 线性规划问题的求解首先,我们需要定义线性规划问题的目标函数、约束条件和变量范围。
然后,我们可以使用linprog函数来求解线性规划问题。
例如,考虑以下线性规划问题:目标函数:最大化 2x1 + 3x2约束条件:x1 + x2 <= 10x1 - x2 >= 2x1, x2 >= 0在Matlab中,可以按照以下步骤求解该线性规划问题:1. 定义目标函数的系数向量c和约束矩阵A,以及约束条件的右侧向量b。
c = [2; 3];A = [1, 1; -1, 1];b = [10; -2];2. 定义变量的上下界向量lb和ub。
lb = [0; 0];ub = [];3. 使用linprog函数求解线性规划问题。
[x, fval] = linprog(-c, A, b, [], [], lb, ub);运行以上代码后,可以得到最优解x和目标函数的最优值fval。
2. 整数规划问题的求解对于整数规划问题,我们可以使用intlinprog函数来求解。
与线性规划问题类似,我们需要定义整数规划问题的目标函数、约束条件和变量范围。
然后,使用intlinprog函数求解整数规划问题。
例如,考虑以下整数规划问题:目标函数:最小化 3x1 + 4x2约束条件:2x1 + 5x2 >= 10x1, x2为非负整数在Matlab中,可以按照以下步骤求解该整数规划问题:1. 定义目标函数的系数向量f和约束矩阵A,以及约束条件的右侧向量b。
f = [3; 4];A = [-2, -5];b = [-10];2. 定义变量的整数约束向量intcon。
应用MATLAB 优化工具箱求解规划问题如今,规划类问题是常见的数学建模问题,离散系统的优化问题一般都可以通过规划模型来求解。
用MATLAB 求解规划问题,可以避免手工的烦琐计算,大大提高工作效率和结果的准确性.MATLAB 是一种应用于数学计算及计算结果可视化处理的面向对象的高性能计算机语言,它以矩阵和向量为基本数据单位,从而提高程序的向量化程度,提高计算效率,尤其适合于线性规划、整数规划、多元规划、二元规划类问题的算法编写,以及数据拟合、参数估计、插值等数据处理法。
利用MATLAB 提供的强大的规划模型求解命令,可以简单快速地得到所要的结果。
本文主要对线性规划、非线性规划、整数规划、单目标约束规划以及多目标规划等规划问题在MATLAB 中的实现做比较详细的讲解。
线性规划问题线性规划是一种优化方法,MATLAB 优化工具箱中有现成函数linprog 对标准型LP 问题求解。
线性规划问题是目标函数和约束条件均为线性函数的问题,MATLAB 中线性规划的标准型为:Min f ’x..A x b s t Aeq x beq lb x ub ⋅≤⎧⎪⋅=⎨⎪≤≤⎩其中f 、x 、b 、beq 、lb 、ub 为向量,A 、Aeq 为矩阵。
其他形式的线性规划问题都可经过适当变化化为以上标准型。
线性规划是一种优化方法,MATLAB 优化工具箱中有现成函数linprog 对标准型LP 问题求解。
在MATLAB 指令窗口运行help linprog 可以看到所有的函数调用形式,如下:x = linprog(f,A ,b ) %求min f’x ;s.t 。
b x A ≤⋅线性规划的最优解x = linprog(f,A ,b,Aeq ,beq) %等式约束beq x Aeq =⋅,若没有不等式约束,则A=[],b=[].若没有等式约束,则Aeq=[],beq=[]x = linprog(f,A ,b ,Aeq,beq,lb ,ub ) %指定x 的范围ub x lb ≤≤x = linprog (f ,A ,b,Aeq,beq,lb ,ub,x0) %设置初值x0x = linprog (f,A,b,Aeq ,beq,lb,ub,x0,options ) % options 为指定优化参数进行最小化[x,fval] = linprog(。
§ 15.利用Matlab求解线性规划问题线性规划是一种优化方法,Mat lab优化工具箱中有现成函数linprog对如下式描述的LP问题求解:% min f' x% s・t・(约束条件):Ax<=b% (等式约束条件):Aeqx=beq% lb<=x<=ub1 inprog函数的调用格式如下:x=l inprog (f, A, b)x=l inprog (f, A, b, Aeq, beq)x=l inprog (f, A, b, Aeq, beq, lb, ub)x=l inprog (f, A, b, Aeq, beq, lb, ub, xO)x=l inprog (f, A, b, Aeq, beq, lb, ub, xO, opt io ns)[x, fval]=linprog(--)[x, fval, exitflag]=linprog(…)[x, fval, exitf lag, out put ]=1 inprog (…)[x, fvalj exitflag, output, lambda] =1 inprog (…)其中:x=linprog (f, A, b)返回值x为最优解向量。
x=linprog (f, A, b, Aeq, beq)作有等式约束的问题。
若没有不等式约束,则A=[ ]、b=[ ] ox=linprog (f, A, b, Aeq, beq, lb, ub, xO, options)中]b , ub 为变量x 的下界和上界,xO为初值点,options为指定优化参数进行最小化。
Options的参数描述:Display显示水平。
选择'off'不显示输出;选择'Iter'显示每一步迭代过程的输出;选择'final'显示最终结果。
MaxFunEvals函数评价的最大允许次数Max it er最大允许迭代次数TolX x处的终止容限[x, fval]=linprog(•••)左端fval返回解x处的目标函数值。
用m a t l a b求解线性规划问题Company number:【0089WT-8898YT-W8CCB-BUUT-202108】实验四 用M A T L A B 求解线性规划问题一、实验目的: 了解Matlab 的优化工具箱,能利用Matlab 求解线性规划问题。
二、实验内容:线性规划的数学模型有各种不同的形式,其一般形式可以写为:目标函数: n n x f x f x f z +++= 2211m in约束条件: s n sn s s n n b x a x a x a b x a x a x a ≤+++≤+++221111212111这里nn x f x f x f z +++= 2211称为目标函数,j f 称为价值系数,T n f f f f ),,,(21 =称为价值向量,j x 为求解的变量,由系数ij a 组成的矩阵 称为不等式约束矩阵,由系数ij c 组成的矩阵 称为等式约束矩阵,列向量T n b b b b ),,,(21 =和T n d d d d ),,,(21 =为右端向量,条件0≥j x 称为非负约束。
一个向量Tn x x x x ),,,(21 =,满足约束条件,称为可行解或可行点,所有可行点的集合称为可行区域,达到目标函数值最大的可行解称为该线性规划的最优解,相应的目标函数值称为最优目标函数值,简称最优值。
我们这里介绍利用Matlab 来求解线性规划问题的求解。
在Matlab 中有一个专门的函数linprog()来解决这类问题,我们知道,极值有最大和最小两种,但求z 的极大就是求z -的极小,因此在Matlab 中以求极小为标准形式,函数linprog()的具体格式如下:X=linprog(f,A,b)[X,fval,exitflag,ouyput,lamnda]=linprog(f,A,b,Aeq,Beq,LB,UB,X0,options)这里X 是问题的解向量,f 是由目标函数的系数构成的向量,A 是一个矩阵,b 是一个向量,A ,b 和变量x={x1,x2,…,xn}一起,表示了线性规划中不等式约束条件,A ,b 是系数矩阵和右端向量。
实验四 用MATLAB 求解线性规划问题一、实验目的:了解Matlab 的优化工具箱,能利用Matlab 求解线性规划问题。
二、实验内容:线性规划的数学模型有各种不同的形式,其一般形式可以写为:目标函数: n n x f x f x f z +++=Λ2211m in约束条件: s n sn s s n n b x a x a x a b x a x a x a ≤+++≤+++ΛΛΛΛΛ221111212111 s n tn t t n n d x c x c x c d x c x c x c =+++=+++ΛΛΛΛΛ2211112121110,,,21≥n x x x Λ 这里n n x f x f x f z +++=Λ2211称为目标函数,j f 称为价值系数,T n f f f f ),,,(21Λ=称为价值向量,j x 为求解的变量,由系数ij a 组成的矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=mn m n a a a a A ΛΛOΛΛ1111称为不等式约束矩阵,由系数ij c 组成的矩阵 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=sn s n c c c c C ΛΛOΛΛ1111称为等式约束矩阵,列向量Tn b b b b ),,,(21Λ=和T n d d d d ),,,(21Λ=为右端向量,条件0≥j x 称为非负约束。
一个向量Tn x x x x ),,,(21Λ=,满足约束条件,称为可行解或可行点,所有可行点的集合称为可行区域,达到目标函数值最大的可行解称为该线性规划的最优解,相应的目标函数值称为最优目标函数值,简称最优值。
我们这里介绍利用Matlab 来求解线性规划问题的求解。
在Matlab 中有一个专门的函数linprog()来解决这类问题,我们知道,极值有最大和最小两种,但求z 的极大就是求z -的极小,因此在Matlab 中以求极小为标准形式,函数linprog()的具体格式如下: X=linprog(f,A,b)[X,fval,exitflag,ouyput,lamnda]=linprog(f,A,b,Aeq,Beq,LB,UB,X0,options)这里X 是问题的解向量,f 是由目标函数的系数构成的向量,A 是一个矩阵,b 是一个向量,A ,b 和变量x={x1,x2,…,xn}一起,表示了线性规划中不等式约束条件,A ,b 是系数矩阵和右端向量。
用MATLAB 优化工具箱解线性规划
(实验编号:开放性实验二;实验标题:用Matlab 优化工具箱解线性规划;实验时间:2014年5月10日;实验目的:掌握和熟悉Matlab 解线性规划的一些常用的命令和常见的模型) 1. 模型
min ..Z cX s t Ax b
=≤
命令:x=linprog (c ,A ,b ) 2. 模型
beq
AeqX b
AX ..min =≤=t s cX
z 命令:x=linprog (c ,A ,b ,Aeq,beq )
注意:若没有不等式:b AX ≤存在,则令A=[ ],b=[ ]. 若没有等式约束, 则令Aeq=[ ], beq=[ ].
3.模型
VUB
X VLB beq AeqX b
AX ..min ≤≤=≤=t s cX z
命令:(1) x=linprog (c ,A ,b ,Aeq,beq, VLB ,VUB ) (2) x=linprog (c ,A ,b ,Aeq,beq, VLB ,VUB, X0)
注意:(1) 若没有等式约束, 则令Aeq=[ ], beq=[ ]. (2)中X0表示初始点 4、命令:[x,fval]=linprog(…)返回最优解x及x处的目标函数值fval.
例1 max 6543216.064.072.032.028.04.0x x x x x x z +++++=
85003.003.003.001.001.001.0.
.654321≤+++++x x x x x x t s
70005.002.041≤+x x 10005.002.052≤+x x 90008.003.063≤+x x 6,2,10
=≥j x j
解 编写M 文件小xxgh1.m 如下:
c=[-0.4 -0.28 -0.32 -0.72 -0.64 -0.6];
A=[0.01 0.01 0.01 0.03 0.03 0.03;0.02 0 0 0.05 0 0;0 0.02 0 0 0.05 0;0 0 0.03 0 0 0.08]; b=[850;700;100;900]; Aeq=[]; beq=[];
vlb=[0;0;0;0;0;0]; vub=[]; [x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)
例2 321436min x x x z ++= 120.
.321=++x x x t s
301≥x 5002≤≤x 203≥x
解: 编写M 文件xxgh2.m 如下: c=[6 3 4]; A=[0 1 0]; b=[50]; Aeq=[1 1 1]; beq=[120]; vlb=[30,0,20]; vub=[];
[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub
例3 (任务分配问题)某车间有甲、乙两台机床,可用于加工三种工件。
假定这两台车床的可用台时数分别为800和900,三种工件的数量分别为400、 600和500,且已知用三种不同车床加工单位数量不同工件所需的台时数和加工 费用如下表。
问怎样分配车床的加工任务,才能既满足加工工件的要求,又使 加工费用最低?
解 设在甲车床上加工工件1、2、3的数量分别为x1、x2、x3,在乙车床上 加工工件1、2、3的数量分别为x4、x5、x6。
可建立以下线性规划模型
6543218121110913min x x x x x x z +++++= ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=≥≤++≤++=+=+=+6
,,2,1,09003.12.15.08001.14.0500
600
400x ..6543216352
41 i x x x x x x x x x x x x t s i
编写M 文件xxgh3.m 如下: f = [13 9 10 11 12 8]; A = [0.4 1.1 1 0 0 0 0 0 0 0.5 1.2 1.3]; b = [800; 900]; Aeq=[1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1]; beq=[400 600 500]; vlb = zeros(6,1); vub=[];
[x,fval] = linprog(f,A,b,Aeq,beq,vlb,vub)
开放性实验指导1:
1.某厂每日8小时的产量不低于1800件。
为了进行质量控制,计划聘请两种不同水平的检验员。
一级检验员的标准为:速度25件/小时,正确率98%,计时工资4元/小时;二级检验员的标准为:速度15小时/件,正确率95%,计时工资3元/小时。
检验员每错检一
次,工厂要损失2元。
为使总检验费用最省,该工厂应聘一级、二级检验员各几名?。