人工智能自动推理(第3部分 归结原理及其应用)剖析
- 格式:ppt
- 大小:1.08 MB
- 文档页数:60
第三章演绎推理自动定理证明是人工智能一个重要的研究领域,是早期取得较大成果的研究课题之一,在发展人工智能方法上起过重大作用。
1956,美国,Newell, Simon, Shaw编制逻辑理论机:The Logic Theory Machine 简称LT. 证明了《数学原理》(罗素)第二章中38个定理, 改进后证明了全部52个定理。
是对人的思维活动进行研究的重大成果,是人工智能研究的真正开端。
在此之后,发展了一些机械化推理算法,很成功地用到人工智能系统中。
第一节鲁滨逊归结原理一、命题逻辑中归结推理1.归结:消去子句中互补对的过程:子句:任何文字的析取式C称为子句,C=P∨Q∨7R={P,Q,7R}如:C1=LVC1`={L,C1`}C2=7LVC2`={7L,C2`}可以证明C12=C1`VC2`={C1`,C2`}是C1,C2的逻辑结论:即:C1∧C2⇒C12证明:C1=LVC1`=77C1`VL=7C1`→LC2=7LVC2`=L→C2`所以7C1`→C2`=77C1`VC2`=C1`VC2`实际上是P→Q, Q →R⇒P→R的应用即前提成立⇒结论成立,也即结论不成立⇒前提不成立S子句集:其中有C1,C2归结式S`子句集:C12代替C1,C2则:S`不可满足⇒S不可满足2.归结推理步骤要证A⇒B成立(或证A→B重言、永真),只要证A∧7B不可满足(永假)①化A∧7B为合取范式C1∧C2∧……∧Cm②子句集S={C1,C2,…, Cm}③归结规则用于S,归结式入S中.④重复③,直到S中出现空子句。
证明:SVR是P∨Q , P→R,Q→S的逻辑结论。
(P∨Q) ∧(P →R) ∧(Q→S) ∧7(S∨R)=(P∨Q)∧(7P∨R) ∧(7Q∨S) ∧7S∧7R所以S={P∨Q,7P∨R,7Q∨S,7S,7R}(1)P∨Q(2)7P∨R(3)7Q∨S(4)7S(5)7R(6)Q∨R (1)(2) 归结(7)7Q (3)(4) 归结(8)Q (5)(6) 归结(9)F (7)(8) 归结命题逻辑中不可满足的子句集S,使用归结原理,总能在有限步内得到一个空子句⇒归结原理是完备的。
第3章确定性推理部分参考答案判断下列公式是否为可合一,若可合一,则求出其最一般合一。
(1) P(a, b), P(x, y)(2) P(f(x), b), P(y, z)(3) P(f(x), y), P(y, f(b))(4) P(f(y), y, x), P(x, f(a), f(b))(5) P(x, y), P(y, x)解:(1) 可合一,其最一般和一为:σ={a/x, b/y}。
(2) 可合一,其最一般和一为:σ={y/f(x), b/z}。
(3) 可合一,其最一般和一为:σ={ f(b)/y, b/x}。
(4) 不可合一。
(5) 可合一,其最一般和一为:σ={ y/x}。
把下列谓词公式化成子句集:(1)(∀x)(∀y)(P(x, y)∧Q(x, y))(2)(∀x)(∀y)(P(x, y)→Q(x, y))(3)(∀x)(∃y)(P(x, y)∨(Q(x, y)→R(x, y)))(4)(∀x) (∀y) (∃z)(P(x, y)→Q(x, y)∨R(x, z))解:(1) 由于(∀x)(∀y)(P(x, y)∧Q(x, y))已经是Skolem标准型,且P(x, y)∧Q(x, y)已经是合取范式,所以可直接消去全称量词、合取词,得{ P(x, y), Q(x, y)}再进行变元换名得子句集:S={ P(x, y), Q(u, v)}(2) 对谓词公式(∀x)(∀y)(P(x, y)→Q(x, y)),先消去连接词“→”得:(∀x)(∀y)(¬P(x, y)∨Q(x, y))此公式已为Skolem标准型。
再消去全称量词得子句集:S={¬P(x, y)∨Q(x, y)}(3) 对谓词公式(∀x)(∃y)(P(x, y)∨(Q(x, y)→R(x, y))),先消去连接词“→”得:(∀x)(∃y)(P(x, y)∨(¬Q(x, y)∨R(x, y)))此公式已为前束范式。
人工智能第三章归结推理方法
第三章主要讨论归结推理方法,归结推理方法是人工智能领域中的一种重要技术。
归结推理是一种推理过程,它从一个给定的知识库出发,将给定的输入推断,得出想要的结果。
归结推理是一种推断过程,它把已有的规则和数据应用到新的数据中,来解决新问题。
归结推理可以从三个层面来分析:
1.处理模型
在归结推理中,首先要建立一个处理模型,这个模型是一种结构,它描述了归结推理的步骤,以及归结推理过程中用到的数据和知识。
2.知识表示
归结推理过程是基于知识库,而知识的表示是归结推理中最重要的环节。
知识的表示是一种在计算机中存储、表示和管理数据的方法,它决定了归结推理过程中的正确性和性能。
3.推理机制
推理机制是归结推理过程中,根据已有的输入,对知识进行推理以及解决问题的一种机制。
它可以把归结推理分为计算环节和决策环节,从而实现和可靠的知识表示,实现更精确的推理过程。
基于上述三个层面,归结推理方法可以有效的解决知识表示、理解和存储问题,实现可靠的推理过程,从而解决复杂的问题。