实验六 高阻计法测定高分子材料的体积电阻率和表面电阻率共18页
- 格式:ppt
- 大小:2.96 MB
- 文档页数:18
实验6 聚合物电阻的测定一、实验目的1. 了解聚合物体积电阻和表面电阻的物理意义;2. 掌握ZC36型超高电阻计的使用方法。
二、实验原理聚合物的导电性,通常用与尺寸无关的体积电阻率(ρv)和表面电阻率(ρs)来表示。
体积电阻率ρv表示聚合物截面积为1cm2和厚1cm的单位体积对电流的阻抗。
ρv=R v S/h (1)式中,R v为体积电阻;S为测量电极的面积;h为试样的厚度。
表面电阻率ρs表示聚合物长1cm和宽1cm的单位表面对电流的阻抗。
ρs=R s L/b (2)式中,R s为表面电阻;L为平行电极的长;b为平行电极间距。
电导率是电阻率的倒数。
电导是表征物体导电能力的物理量。
它是在电场作用下,物体中的载流子移动的现象。
高分子是由许多原子以共价键连接起来的,分子中没有自由电子,也没有可流动的自由离子(除高分子电解质含有离子外),所以它是优良的绝缘材料,其导电能力极低。
一般认为,聚合物的主要导电因素是由杂质所引起,称为杂质电导。
但也有某些具有特殊结构的聚合物呈现半导体的性质,如聚乙炔、聚乙烯基咔唑等。
当聚合物被加于直流电压时,流经聚合物的电流最初随时间而衰减,最后趋于平稳。
其中包括了3种电流,即瞬时充电电流、吸收电流和漏导电流(见图1)。
充电电流时间图1 流经聚合物的电流(1)瞬时充电电流是聚合物在加上电场的瞬间,电子、原子被极化而产生的位移电流,以及试样的纯电容性充电电流。
其特点是瞬时性,开始很大,很快就下降到可以忽略的地步。
(2)吸收电流是经聚合物的内部,且随时间而减小的电流。
它存在的时间大约几秒到几十分钟。
吸收电流产生的原因较复杂,可能是偶极子的极化、空间电荷效应和界面极化等作用的结果。
(3)漏导电流是通过聚合物的恒稳电流,其特点是不随时间变化。
通常是由杂质作为载流子而引起。
由于吸收电流的存在,在测定电阻(电流)时,要统一规定读取数值的时间(1min)。
另外,在测定中,通过改变电场方向反复测量,取平均值,以尽量消除电场方向对吸收电流的影响所引起的误差。
实验十五聚合物的体积电阻系数和表面电阻系数的测定一、实验目的1.掌握聚合物体积电阻系数和表面电阻系数的测试方法;2.比较极性与非极性聚合物的电阻系数数值范围。
二、实验原理材料的导电性是由于其内部存在传递电流的自由电荷,即载流子,在外加电场作用下,这些载流子作定向移动,形成电流。
导电性优劣与材料所含载流子的数量、运动速度有关。
常用电阻系数(电阻率)ρ或电导系数(电导率)σ表征材料的导电性,它们是一些宏观物理量,而载流子浓度和迁移率则是表征材料导电性的微观物理量。
大量高聚物是作为绝缘材料使用的,但具有特殊结构的高聚物可能成为半导体、导体,甚至人们提出了超导体的模型。
决定高聚物导电性的因素有化学结构、分子量、凝聚态结构、杂质以及环境(温度、湿度等)等。
饱和的非极性高聚物具有很好的电绝缘性能,理论上计算它们的电阻系数可达到1023欧姆·米,而实测值要小几个数量级,说明高聚物中除自身结构以外的因素(如残留的催化剂、各种添加剂等)对导电性能产生了不小的影响。
极性高聚物的电绝缘性次之,微量的本征解离产生导电离子,此外,残留的催化剂、各种添加剂等都可以提供导电离子。
而一些共轭高聚物如聚乙炔则可制成半导体材料,这是由于主链上π轨道相互交叠,π电子有较高的迁移率。
但是它们的导电性实际并不高,原因是受到电子成对的影响,电子成对后,只占有一个轨道,空出另一个轨道,两个轨道能量不同,电子迁移时必须越过轨道间的能级差,这样就限制了电子的迁移,材料导电率下降。
采用掺杂方法可以减小能级差,电子迁移速率提高。
Heeger(黑格,美国)、 MacDiarmid(麦克迪尔米德,美国)以及白川英树(日本)就成功地完成了用溴、碘掺杂聚乙炔,没有掺杂时聚乙炔的电导率为3.2X10-6Ω-1•cm-1,掺杂后竟达到了38Ω-1•cm-1,提高了1000万倍,接近金属铝和铜的电导率。
并且在发现聚乙炔的导电性后,黑格发现聚乙炔的磁性、电学、光学性质都异常。
高分子性能测试第六章其他性能6.3电性能试验高分子材料由于其优异的电学性能,在电子和电工技术上得到极为广泛的应用高分子材料的电学性能是指它术上得到极为广泛的应用。
高分子材料的电学性能是指它们在外加电压或电场的作用下的行为以及表现出来的各种物理现象,包括在交变电场中的介电性质,在弱电场中的导电性能,在强电场中的击穿现象以及发生在高聚物表面的静电现象等。
高分子材料电学性质往往非常灵敏地反映材料内部结构的变化和分子运动状况,因而能作为力学性变能测量的补充。
电性能试验方法种类:电阻率测定、介电强度测定、介电常数和介质损耗角正切测定、耐电弧测定强度测定介电常数和介质损耗角正切测定耐电弧测定等。
6.3电性能试验电阻率电阻率是用来表示物质电阻特性的物理量电阻率是用来表示物质电阻特性的物理量。
某种材料制成米横截面积是平方米在常某种材料制成的长1米、横截面积是1平方毫米的在常温下(20℃时)导线的电阻,叫做这种材料的电阻率导体体积电阻率低于106Ω•cm,半导体在106-109Ω•cm,缘体则高于绝缘体则高于109Ω•cm塑料材料决大多数为绝缘体。
6.3电性能试验6.3.1电阻率测定体积1体积电阻Rν和表面电阻Rs:通过试样的总漏电流I是体积漏电流Iv与表面漏电流Is之和:I Iv+Is >R U/(Iv+Is)I=Iv+Is=>R=U/(Iv+Is)加于绝缘材料电极上的直流电压U与施加电压一定时间后的稳态体积漏电流定时间后的稳态体积漏电流Iv之比称为体积电阻Rv:Rv=U/IvR U/I同样表面电阻Rs=U/IsRv和Rs是并联在一起,所以1/R=1/Rv+1/Rs.6.3电性能试验6.3.1电阻率测定2定义体积电阻:在试样的相对两表面上放置的两电极间所加直流电压与流过两个电极之间的稳态电流之商;该电流不包括沿材料表面的电流。
在两电极间可能形成的极化忽略不计。
体积电阻率:在绝缘材料里面的直流电场强度与稳态电流密度之商,即单位体积内的体积电阻。
实验报告:高分子材料的表面电阻与体积电阻的测定一、实验目的加深理解表面电阻率PS与体积电阻率p v的物理意义,掌握超高电阻测试仪的使用。
二、实验原理大多数高分子材料的固有电绝缘性质已长期被利用来约束和保护电流,使它沿着选定的途径在导体中流动,或用来支持很高的电场,以免发生电击穿。
高分子材料的电阻率范围超过20个数量级,耐压高达100万伏以上。
加上其他优良的化学、物理和加工性能,为满足所需要的综合性能指标提供了广泛的选择余地。
可以说,今天的电子电工技术离不开高分子材料。
高分子的电学性质是指高分子在外加电压或电场作用下的行为及其所表现出来的各种物理现象,包括在交变电场中的界电性质,在弱电场中的导电性质,在强电场中的击穿现象以及发生在高分子表面的静电现象。
随着科学技术的发展,特别是在尖端科学领域里,对高分子材料的电学性能指标,提出了越来越高的要求。
高分子半导体、光导体、超导体和永磁体的探索,已取得了不同程度的进展。
高分子材料的电性能往往相当灵敏地反映出材料内部结构的变化和分子运动状况,电性能测试是研究高分子的结构和分子运动的一种有力手段。
材料的导电性是用电阻率p (单位:欧•米)或电导率(7 (单位:欧-1•米)来表示的。
两者互为倒数,并且都与试样的尺寸无关,而只决定于材料的性质。
工程上习惯将材料根据导电性质粗略地分为超导体、导体、半导体和绝缘体四类。
表1材料导电性质及电阻率范围在一般高分子中,特别是那些主要由杂质解离提供载流子的高分子中,载流子的浓度很低,对其他性质的影响可以忽略,但对高绝缘材料电导率的影响是不可忽视的。
在高分子的导电性表征中,需要分别表示高分子表面与体内的不同导电性,常常采用表面电阻率p s与体积电阻p v率来表示。
在提到电阻率而又没有特别指明的地方通常就是指体积电阻率。
将平板试样放在两电极之间,施于两电极上的直流电压和流过电极间试样表面上的电流之比,为表面电阻;施于两电极上的直流电压和流过电极间试样的体积内的电流之比为体积电阻。
高分子物理实验李丽陈国文袭建人编写山东大学〔南校区〕材料工程学院、材料科学系2006、03、01目录实验一偏光显微镜法观察聚合物的结晶形态 (2)实验二激光小角散射法测聚合物的球晶 (4)实验三相差显微镜法观察共混物的构造形态 (7)实验四粘度法测定高聚物的分子量 (9)实验五高聚物熔融指数的测定 (13)试验六高分子材料的电阻值的测定 (15)实验七应力——应变曲线实验 (17)附:塑料冲击试验 (23)附录一:电位记录仪Y轴负荷值标定的操作 (36)附录二:电位记录仪X轴形变值标定的操作 (37)实验一偏光显微镜观察聚合物的结晶形态用偏光显微镜研究聚合物的结晶形态是一种简便而实用的方法。
众所周知,随着结晶条件的不同,聚合物的结晶,可以具有不同的形态,如:单晶、球晶、纤维晶及伸直链晶体等,熔体冷却结晶或浓溶液中析出结晶体时,聚合物倾向于生成球状多晶聚集物,称为球晶,球晶可以长得很大,直径甚至可达厘米数量级,对于几微米以上的球晶,用普通的偏光显微镜可以进展观察。
结晶高聚物的使用性能,如:光学透明性、冲击强度等,与材料内部的结晶形态、晶粒大小及完善程度有亲密的联络,因此,对于聚合物的结晶形态的研究具有重要的理论和实际意义。
一、目的要求1、理解偏光显微镜的构造及使用方法;2、学惯用熔融法制备高聚合物球晶;3、观察聚丙烯的结晶形态,估算聚丙烯球晶大小;二、原理球晶的根本构造单元是具有折叠构造的片厚度在100A 左右。
许多这样的晶片从一个中心〔晶核〕向四面八方生长,开展成为一个球状聚集体。
图1-1 球晶内晶片的排列与分子链取向图1-2 球晶中双折射示意图图1-1示意地说明球晶中分子链是垂直球晶半径的方向排列的。
分子链的取向排列使球晶在光学性质上是各向异性的,即在平行于分子链和垂直于分子链的方向上有不同的折光率。
在正交偏光显微晶下观察时,在分子链平行于起偏镜或检偏镜或检偏镜的方向上将产生消光现象。
呈现出球晶特有的黑十字消光图案〔称为Maltase 十字〕。
高阻计法测定高分子材料体积电阻率和表面电阻率高分子材料的电学性能是指在外加电场作用下材料所表现出来的介电性能、导电性能、电击穿性质以及与其他材料接触、摩擦时所引起的表面静电性质等。
最基本的是电导性能和介电性能,前者包括电导(电导率γ,电阻率ρ=1/γ)和电气强度(击穿强度Eb);后者包括极化(介电常数εr)和介质损耗(损耗因数tg δ)。
共四个基本参数。
种类繁多的高分子材料的电学性能是丰富多彩的。
就导电性而言,高分子材料可以是绝缘体、半导体和导体,如表1所示。
多数聚合物材料具有卓越的电绝缘性能,其电阻率高、介电损耗小,电击穿强度高,加之又具有良好的力学性能、耐化学腐蚀性及易成型加工性能,使它比其他绝缘材料具有更大实用价值,已成为电气工业不可或缺的材料。
高分子绝缘材料必须具有足够的绝缘电阻。
绝缘电阻决定于体积电阻与表面电阻。
由于温度、湿度对体积电阻率和表面电阻率有很大影响,为满足工作条件下对绝缘电阻的要求,必须知道体积电阻率与表面电阻率随温度、湿度的变化。
表1 各种材料的电阻率范围材料电阻率(Ω·m) 材料电阻率(Ω·m)超导体导体≤10-810-8~10-5 半导体绝缘体10-5~107 107~1018除了控制材料的质量外,测量材料的体积电阻率还可用来考核材料的均匀性、检测影响材料电性能的微量杂质的存在。
当有可以利用的相关数据时,绝缘电阻或电阻率的测量可以用来指示绝缘材料在其他方面的性能,例如介质击穿、损耗因数、含湿量、固化程度、老化等。
表2为高分子材料的电学性能及其研究的意义。
表2 高分子材料的电学性能及测量的意义电学性能电导性能①电导(电导率γ,电阻率ρ=1/γ)②电气强度(击穿强度Eb)介电性能③极化(介电常数εr)④介电损耗(损耗因数tanδ)测量的意义实际意义①电容器要求材料介电损耗小,介电常数大,电气强度高。
②仪表的绝缘要求材料电阻率和电气强度高,介电损耗低。
③高频电子材料要求高频、超高频绝缘。
实验5 比体积电阻、比表面电阻的测定一、 实验目的1、加深理解比体积电阻、比表面电阻的物理意义。
2、掌握绝缘电阻测试仪(高阻计)的使用方法。
二、实验原理将平板状试样放在两电极之间,施于两电极上的直流电压和流过电极间试样表面层上的电流之比,称为表面电阻Rs 。
若试样长度为1厘米,两电极间的试样宽度为1厘米,则这时的Rs 就是该试样的比表面电阻ρs ,单位为欧姆。
同理,施于两电圾上的直流电压和流过电极间试样体积内的电流之比,称为体积电阻Rv 。
若试样厚度为1厘米,测量电极面积为1平方厘米,则这时的Rv 值即为该试洋的比体积电阻ρv ,单位为欧姆·厘米。
通常,在提到“比电阻”而又没有特别注明的时候就是指ρv 。
ρs 和ρv 一般用绝缘电阻测试仪(超高阻仪)法和检流计法测定。
绝缘电阻测试仪的主要原理如图所示。
测试时,被测试样Rx 与高阻抗直流放大器的输入电阻R 0串联,并跨接于直流高压测试电源上。
放大器将其输入电阻R 0上的分压信号经放大后输出给指示仪表CB ,由指示仪表可直接读出Rx 值。
本实验计算公式如下:1、 Rv = 0U U R 0 2、ρv = Rvt Ae 3、Ae =4π(d1+g)2 = 21.237(cm 2) 式中: Rv — 体积电阻t — 被测试样厚度(cm )d1 — 测量电极直径(5cm )g — 测量电极与保护电极间隙(0.2cm )4、ρs = Rs ϕπ25、φ = ln12d d 式中: d1 —— 测量电极直径(5cm)d2 —— 保护电极(环电极)内径(5.4cm)三、实验设备、用具及试样1、 绝缘电阻测试仪2、 酚醛树脂标准试样2块,规格:100×100×2mm四、实验步骤1、照仪器面板,熟悉各开关、旋钮。
2、将体积电阻-表面电阻转换开关指在所需位置:当指在Rv 时,高压电圾加上测试电压,保护电极接地;当指在Rs 时,保护电极加上测试电压,高压电极接地,如图:3、校正高阻仪的灵敏度.4、将被测试祥用导线(屏蔽线)接至Rx 测试端钮。
超高电阻、电阻率和绝缘材料的精确测量橡胶、塑料、电木等,作为绝缘材料,在我们的电子和电力产品设计时必不可少。
但不知您想过没有,您选择的材料的电阻性能到底怎么样,在各种工作场景或温度情况下,其电阻或电阻率有多大,是否能满足产品的设计要求?如下表所示,金属和合金的电阻率都很小;而电木、橡胶的电阻率都很大。
在供电、输电线路中,为了减小损耗,要选用铜、铝等低电阻率的材料制作导线;外层绝缘部分又要选用橡胶等高电阻率的材料。
几种常用材料20℃时的电阻率☟材料ρ(Ω·m)材料ρ(Ω·m)银 1.65x10⁻8镍铬合金 1.0x10-6铜 1.75x10⁻8碳 3.5x10-5铝 2.83x10-8硅 2.3x103铁9.78x10-8电木1010~1014锰铜合金 4.4x10-7橡胶1013~1016很多工程师,在验证材料的电阻特性时,可能首先会想到用数字万用表。
但即便是我们最高性能的六位半数字万用表,其测量电阻的最高量程,只有1GΩ。
但我们设计中采样的绝缘材料,随随便便都超高1GΩ!测量大电阻,为啥如此之难呢?如何测量TΩ甚至PΩ的电阻呢?肯定是利用欧姆定律电阻测量时,通常是用施加电流激励,测量电阻端的电压,按照欧姆定律就可以获得电阻值,如测量100KΩ的电阻,10uA电流激励下,测量1V电压。
但是,如果0.1TΩ的被测电阻,依然施加10uA电流,请问电压是多少伏呢?10 uA x 0.1TΩ = 1MV这个电压值是否会让工程师感到恐怖!因此,高阻测量时,采用电压激励,测量电流值的方法。
传统的万用表,已经无法胜任,需要动用皮安计和高阻计,例如是德科技的B2985B。
在测量0.1TΩ的电阻时,它可以施加最高1000V的电压,而电流测量分辨率是0.01fA!其电阻测量能力可以达到10PΩ级,即1016级别!2985B 皮安计和高阻计B2985B 实测100GΩ电阻对于绝缘体或高阻来说,材料的电阻率往往比电阻值本身更受关注。
工程物探实验报告实验一:高密度电阻率法勘探班级:姓名:学号:贵州理工学院资源与环境工程学院2017年11月1 实验目的了解电阻率法(高密度电阻率法)的方法原理、野外工作布置及装置形式;掌握高密度电阻率法数据的采集、处理和解释,熟练操作高密度电阻率法软件。
2 高密度电阻率法原理高密度电阻率法属于直流电阻率法的范畴,它是在常规电法勘探基础上发展起来的一种勘探方法,仍然是以岩土体的电性差异为基础,研究在施加电场的作用下,地下传导电流的变化分布规律。
相对于传统电法而言,高密度电阻率法其特点是信息量大。
利用程控电极转换器,由微机控制选择供电电极和测量电极,实现了高效率的数据采集,可以快速采集到大量原始数据。
具有观测精度高、数据采集量大、地质信息丰富、生产效率高等特点。
一次布极可以完成纵、横向二维勘探过程,既能反映地下某一深度沿水平方向岩土体的电性变化,同时又能提供地层岩性沿纵向的电性变化情况,具备电剖面法和电测深法两种方法的综合探测能力。
该观测系统包括数据的采集和资料处理两部分,现场测量时,只需将全部电极设置在一定间隔的测点上,测点密度远较常规电阻率法大,一般从1m~10m。
然后用多芯电缆将其连接到程控式多路电极转换开关上,电极转换开关是一种由单片机控制的电极自动换接装置,它可以根据需要自动进行电极装置形式、极距及测点的转换。
测量信号由电极转换开关送入微机工程电测仪,并将测量结果依次存入随机存储器。
将数据回放送入微机,便可按给定程序对数据进行处理。
高密度电阻率法现场工作时是在预先选定的测线和测点上,同时布置几十乃至上百个电极,然后用多芯电缆将它们连接到特制的电极转换装置,电极转换装置将这些电极组合成指定的电极装置和电极距,进而用自动电测仪,快速完成多种电极装置和多电极距在观测剖面的多个测点上的电阻率法观测。
再配上相应的数据处理、成图和解释软件,便可及时完成给定的地质勘查任务。
高密度电阻率法的探测深度随着供电电极距的增大而增大,当隔离系数 n 逐次增大时电极距也逐次增大,对地下深部介质的反映能力亦逐步增加。