2010年试卷及答案
- 格式:doc
- 大小:744.41 KB
- 文档页数:7
2010年普通高等学校招生全国统一考试全国1卷语文试题答案详解本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至4页,第Ⅱ卷5至8页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、(12分,每小题3分)1.下列词语中加点的字,读音全都正确的一组是A.行伍(háng)名宿(sù)恶贯满盈(yíng)厉兵秣马(mù)B倾轧(zhá)不啻(chì)补苴罅漏(xià)荆钗布裙(chāi)C.巨擘(bò)河蚌(bàng)得不偿失(cháng)莘莘学子(shēn)D.解剖(pāo)羁绊(jī)火中取栗(lì)感慨系之(xì)2.下列各句中,加点的成语使用正确的一项是A.现在我们单位职工上下班或步行,或骑车,为的是倡导绿色、地毯生活。
尤为可喜的是,始作俑者是我们新来的局长。
B.几年前,学界几乎没有人不对他的学说大加挞伐,可现在当他被尊奉为大师之后,移樽就教的人简直要踏破他家的门槛。
C.他是当今少数几位声名卓著的电视剧编剧之一,这不光是因为他善于编故事,更重要的原因是他写的剧本声情并茂,情节曲折。
D.旁边一位中学生模样的青年诚恳地说:“叔叔,这些都是名人的字画,您就买一幅吧,挂在客厅里不仅没关打气,还可附庸风雅。
”3.下列各句中,没有语病的一句是A.大师的这段经历非常重要,但流传的说法不一,而所有的当事人、知情人都已去世,我们斟酌以后拟采用大师儿子所讲的为准。
B.我们说话写文章,在把零散的词语串成一个个可以用来传递信息、完成交际任务的句子的时候,是需要遵循一定的语法规律的。
C.这个法律职业培训基地由省司法厅和南海大学合作建立,是全国首家有效联合政府行政职能和高效教育资源而成立的培训机构。
D.近期发热患儿增多,我院已进入门诊超负荷状态,为使就诊更有序,决定采取分时段挂号,如果由此给您带来不便,敬请谅解。
2010年普通高等学校招生全国统一考试英语(北京卷)本试卷共15页,共150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分:听力理解(共三节,30分)第一节(共5小题;每小题1.5分,共7.5分)听下面5段对话。
每段对话后有一道小题,从每题所给的A、B、C三个选项中选出最佳选项。
听完每段对话后,你将有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话你将听一遍。
1. What does the man want to be in the future?A. A soldier.B. A lawyer.C. A teacher.2. What does the girl want?A. Sweets.B. Books.C. Pencils.3. When did the two speakers plan to meet Jane?A. At2:00.B. At2:15.C. At2:30.4. what will the woman do tonight?A. Go to the park.B. Play basketball.C. Work at a bookstore.5. what is the woman doing?A. Offering help.B. Asking for information.C. Making an introduction.第二节(共10小题;每小题1.5分,共15分)听下面4段对话或独白。
每段对话或独白后有几道小题,从每题所给的A、B、C三个选项中选出最佳选项。
听每段对话或独白前,你将有5秒钟的时间阅读每小题。
听完后,每小题将给出5秒钟的作答时间。
每段对话或独白你将听两遍。
听第6段材料,回答第6至7题。
6. Where do the two speakers work?A. At a store.B. At a hotel.C. At a sch ool.7. Where does the woman come from?A. Brazil.B. Australia.C. Singapore.听第7段材料,回答第8至9题。
2010年普通高等学校招生全国统一考试语文(新课标卷)详解第I卷阅读题甲必考题一、现代文阅读(9分,每小题3分)阅读下面文字,完成1~3题。
“书”本是指文字符号,现在提到的“书”不是从文字符号讲,也不是从文字学“六书”来讲,而是从书法艺术讲。
书法对中华民族有很深远的影响,“书”与“金”“石”“画”并称,在中国文化中占很重要的位置。
书法是一种艺术,而且是广大人民喜闻乐见的艺术。
中国的汉字刚一出现,写字的人就有“写得好看”的要求和欲望。
如甲骨文就是如此,虽然字形繁难复杂,但是不论单个的字还是全篇的字,结构章法都要好看。
可见,自从有写字的行动以来,就伴随着艺术的要求,美观的要求。
不论是秦隶还是汉隶,都是刚从篆书演变过来的,写起来单调而且费事。
所以到了晋朝后,真书(又叫楷书、正书)开始出现并逐渐定型。
真书虽然各家写法不同、风格不同,但字形的结构是一致的。
在历史上篆书、隶书等使用的时间都不如真书时间长久,真书至今仍在运用,就是因为它字形比较固定,笔画转折自然,并且可以连写,多写一笔少写一笔也容易被人发现。
真书写得萦连便是行书,再写得快一点就是草书。
草书另一个来源是汉朝的章草,就是用真书的笔法写草书,与用汉隶的笔法写章草不同,到东晋以后与真书变来的草书合流。
真书的书写很方便,所以千姿百态的作品不断涌现,艺术风格多样,出现了各种字体,比如颜体、柳体、欧体、褚体等。
在这以前没有人专门写字并靠书法出名的,就连王羲之也不是专门写字的人,古代也没有“书法家”这个称呼。
当时许多碑都是刻碑的工匠写的,到了唐朝开始文人写碑成风。
唐太宗爱写字,写了《晋词铭》《温泉铭》两个碑,还把这两个碑的拓本送外国使臣。
当时的文人和名臣如虞世南、欧阳询、褚遂良以及后来的颜真卿、柳公权等都写碑,这样书法的流派也逐渐增多,他们的碑帖一直流传至今。
其实,今天看见的敦煌、吐鲁番等地出土的文书、写经等,其水平真有超过传世碑版的。
唐朝一般人的文书里,也有书法比《晋词铭》《温泉铭》好的,但是那些皇帝、大官写出来的就被人重视,许多无名书法家的作品就不为人所知了。
绝密★启用前2010年普通高等学校招生全国统一考试(福建卷)语文本试卷共18题,共150分。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、古代诗文阅读(27分)(一)默写常见的名句名篇(6分)1.补写出下列名句名篇中的空缺部分。
(1)既见复关,___________。
(《诗经·氓》)(2)吾尝终日而思矣,__________。
(荀子《劝学》)(3)伏清白以死直兮,__________。
(屈原《离骚》)(4)人非生而知之者,___________? (韩愈《师说》)(5)挟飞仙以遨游,__________。
(苏轼《赤壁赋》)(6)满地黄花堆积,憔悴损,____________? (李清照《声声慢》)二、文言文阅读(15分)阅读下面的文言文,完成下列2—5题。
周维城传【清】张惠言嘉庆元年,余游富阳,知县恽侯请余修县志,未及属.稿,而恽侯奉调,余去富阳。
富阳高傅占,君子人也,为余言周维城事甚具.,故为之传,以遗后之修志者。
周丰,字维城,其先绍兴人,徙杭州,世为贾,有资。
父曰重章,火灾荡其家,流寓富阳。
重章富家子,骤贫,抑郁无聊,益跅弛①不问生产,遂大困,寻.死富阳。
丰为儿时,当天寒,父中夜自外归,又无所得食,辄引父足怀中以卧。
十余岁,父既卒,学贾。
晨有老人过肆②,与之语,奇之,立许字以女。
丰事母,起坐行步,尝先得其所欲,饮食必亲视,然后进。
事虽剧,必时时至母所,视问辄去,去少顷,即又至。
母脱③有不当意,或端坐不语。
丰大惧,皇皇然若无所容,绕膝盘旋,呼“阿母”不已,声悲慕如婴儿。
2010年全国统一高考数学试卷(文科)(全国新课标)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2010•全国新课标)已知集合A={x||x|≤2,x∈R},B={x|≤4,x∈Z},则A ∩B=()A.(0,2)B.[0,2]C.{0,2}D.{0,1,2} 2.(5分)(2010•全国新课标)平面向量,已知=(4,3),=(3,18),则夹角的余弦值等于()A.B.C.D.3.(5分)(2010•全国新课标)已知复数Z=,则|z|=()A.B.C.1D.24.(5分)(2010•全国新课标)曲线y=x3﹣2x+1在点(1,0)处的切线方程为()A.y=x﹣1B.y=﹣x+1C.y=2x﹣2D.y=﹣2x+2 5.(5分)(2010•全国新课标)中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为()A.B.C.D.6.(5分)(2010•全国新课标)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.7.(5分)(2010•全国新课标)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为()A.3πa2B.6πa2C.12πa2D.24πa28.(5分)(2010•全国新课标)如果执行如图的框图,输入N=5,则输出的数等于()A.B.C.D.9.(5分)(2010•全国新课标)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2或x>4}B.{x|x<0或x>4}C.{x|x<0或x>6}D.{x|x<﹣2或x>2}10.(5分)(2010•全国新课标)若cosα=﹣,α是第三象限的角,则sin(α+)=()A.B.C.D.11.(5分)(2010•全国新课标)已知▱ABCD的三个顶点为A(﹣1,2),B(3,4),C(4,﹣2),点(x,y)在▱ABCD的内部,则z=2x﹣5y的取值范围是()A.(﹣14,16)B.(﹣14,20)C.(﹣12,18)D.(﹣12,20)12.(5分)(2010•全国新课标)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)二、填空题:本大题共4小题,每小题5分.13.(5分)(2010•全国新课标)圆心在原点上与直线x+y﹣2=0相切的圆的方程为.14.(5分)(2010•全国新课标)设函数y=f(x)为区间(0,1]上的图象是连续不断的一条曲线,且恒有0≤f(x)≤1,可以用随机模拟方法计算由曲线y=f(x)及直线x=0,x =1,y=0所围成部分的面积S,先产生两组(每组N个),区间(0,1]上的均匀随机数x1,x2,…,x n和y1,y2,…,y n,由此得到N个点(x,y)(i﹣1,2…,N).再数出其中满足y1≤f(x)(i=1,2…,N)的点数N1,那么由随机模拟方法可得S的近似值为.15.(5分)(2010•全国新课标)一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的(填入所有可能的几何体前的编号)①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱.16.(5分)(2010•全国新课标)在△ABC中,D为BC边上一点,BC=3BD,AD=,∠ADB=135°.若AC=AB,则BD=.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(10分)(2010•全国新课标)设等差数列{a n}满足a3=5,a10=﹣9.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{a n}的前n项和S n及使得S n最大的序号n的值.18.(10分)(2010•全国新课标)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.(Ⅰ)证明:平面PAC⊥平面PBD;(Ⅱ)若AB=,∠APB=∠ADB=60°,求四棱锥P﹣ABCD的体积.19.(10分)(2010•全国新课标)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:男女性别是否需要志愿者需要4030不需要160270(1)估计该地区老年人中,需要志愿者提供帮助的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由.P(K2≥k)0.0500.0100.001 k 3.841 6.63510.828附:K2=.20.(10分)(2010•全国新课标)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过F1的直线l与E相交于A、B两点,且|AF2|,|AB|,|BF2|成等差数列.(Ⅰ)求|AB|;(Ⅱ)若直线l的斜率为1,求b 的值.21.(2010•全国新课标)设函数f(x)=x(e x﹣1)﹣ax2(Ⅰ)若a=,求f(x )的单调区间;(Ⅱ)若当x≥0时f(x)≥0,求a的取值范围.22.(10分)(2010•全国新课标)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.23.(10分)(2010•全国新课标)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线.24.(10分)(2010•全国新课标)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.2010年全国统一高考数学试卷(文科)(全国新课标)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2010•全国新课标)已知集合A={x||x|≤2,x∈R},B={x|≤4,x∈Z},则A ∩B=()A.(0,2)B.[0,2]C.{0,2}D.{0,1,2}【分析】由题意可得A={x|﹣2≤x≤2},B={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},从而可求【解答】解:∵A={x||x|≤2}={x|﹣2≤x≤2}B={x|≤4,x∈Z}={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}则A∩B={0,1,2}故选:D.【点评】本题主要考查了集合的交集的求解,解题的关键是准确求解A,B,属于基础试题2.(5分)(2010•全国新课标)平面向量,已知=(4,3),=(3,18),则夹角的余弦值等于()A.B.C.D.【分析】先设出的坐标,根据a=(4,3),2a+b=(3,18),求出坐标,根据数量积的坐标公式的变形公式,求出两个向量的夹角的余弦【解答】解:设=(x,y),∵a=(4,3),2a+b=(3,18),∴∴cosθ==,故选:C.【点评】本题是用数量积的变形公式求向量夹角的余弦值,数量积的主要应用:①求模长;②求夹角;③判垂直,实际上在数量积公式中可以做到知三求一.3.(5分)(2010•全国新课标)已知复数Z=,则|z|=()A.B.C.1D.2【分析】由复数的代数形式的乘除运算化简可得Z=,由复数的模长公式可得答案.【解答】解:化简得Z===•=•=•=,故|z|==,故选:B.【点评】本题考查复数的代数形式的乘除运算,涉及复数的模长,属基础题.4.(5分)(2010•全国新课标)曲线y=x3﹣2x+1在点(1,0)处的切线方程为()A.y=x﹣1B.y=﹣x+1C.y=2x﹣2D.y=﹣2x+2【分析】欲求在点(1,0)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:验证知,点(1,0)在曲线上∵y=x3﹣2x+1,y′=3x2﹣2,所以k=y′|x﹣1=1,得切线的斜率为1,所以k=1;所以曲线y=f(x)在点(1,0)处的切线方程为:y﹣0=1×(x﹣1),即y=x﹣1.故选:A.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.5.(5分)(2010•全国新课标)中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为()A.B.C.D.【分析】先求渐近线斜率,再用c2=a2+b2求离心率.【解答】解:∵渐近线的方程是y=±x,∴2=•4,=,a=2b,c==a,e==,即它的离心率为.故选:D.【点评】本题考查双曲线的几何性质.6.(5分)(2010•全国新课标)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.【分析】本题的求解可以利用排除法,根据某具体时刻点P的位置到到x轴距离来确定答案.【解答】解:通过分析可知当t=0时,点P到x轴距离d为,于是可以排除答案A,D,再根据当时,可知点P在x轴上此时点P到x轴距离d为0,排除答案B,故选:C.【点评】本题主要考查了函数的图象,以及排除法的应用和数形结合的思想,属于基础题.7.(5分)(2010•全国新课标)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为()A.3πa2B.6πa2C.12πa2D.24πa2【分析】本题考查的知识点是球的体积和表面积公式,由长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则长方体的对角线即为球的直径,即球的半径R满足(2R)2=6a2,代入球的表面积公式,S=4πR2,即可得到答案.球【解答】解:根据题意球的半径R满足(2R)2=6a2,所以S=4πR2=6πa2.球故选:B.【点评】长方体的外接球直径等于长方体的对角线长.8.(5分)(2010•全国新课标)如果执行如图的框图,输入N=5,则输出的数等于()A.B.C.D.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.∵S==1﹣=故选:D.【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.9.(5分)(2010•全国新课标)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2或x>4}B.{x|x<0或x>4}C.{x|x<0或x>6}D.{x|x<﹣2或x>2}【分析】由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,根据偶函数的性质将函数转化为绝对值函数,再求解不等式,可得答案.【解答】解:由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,则f(x﹣2)=f(|x﹣2|)=2|x﹣2|﹣4,要使f(|x﹣2|)>0,只需2|x﹣2|﹣4>0,|x﹣2|>2解得x>4,或x<0.应选:B.【点评】本题主要考查偶函数性质、不等式的解法以及相应的运算能力,解答本题的关键是利用偶函数的性质将函数转化为绝对值函数,从而简化计算.10.(5分)(2010•全国新课标)若cosα=﹣,α是第三象限的角,则sin(α+)=()A.B.C.D.【分析】根据α的所在的象限以及同角三角函数的基本关系求得sinα的值,进而利用两角和与差的正弦函数求得答案.【解答】解:∵α是第三象限的角∴sinα=﹣=﹣,所以sin(α+)=sinαcos+cosαsin=﹣=﹣.故选:A.【点评】本题主要考查了两角和与差的正弦函数,以及同角三角函数的基本关系的应用.根据角所在的象限判断三角函数值的正负是做题过程中需要注意的.11.(5分)(2010•全国新课标)已知▱ABCD的三个顶点为A(﹣1,2),B(3,4),C(4,﹣2),点(x,y)在▱ABCD的内部,则z=2x﹣5y的取值范围是()A.(﹣14,16)B.(﹣14,20)C.(﹣12,18)D.(﹣12,20)【分析】根据点坐标与向量坐标之间的关系,利用向量相等求出顶点D的坐标是解决问题的关键.结合线性规划的知识平移直线求出目标函数的取值范围.【解答】解:由已知条件得⇒D(0,﹣4),由z=2x﹣5y得y=,平移直线当直线经过点B(3,4)时,﹣最大,即z取最小为﹣14;当直线经过点D(0,﹣4)时,﹣最小,即z取最大为20,又由于点(x,y)在四边形的内部,故z∈(﹣14,20).如图:故选B.【点评】本题考查平行四边形的顶点之间的关系,用到向量坐标与点坐标之间的关系,体现了向量的工具作用,考查学生线性规划的理解和认识,考查学生的数形结合思想.属于基本题型.12.(5分)(2010•全国新课标)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)【分析】画出函数的图象,根据f(a)=f(b)=f(c),不妨a<b<c,求出abc的范围即可.【解答】解:作出函数f(x)的图象如图,不妨设a<b<c,则ab=1,则abc=c∈(10,12).故选:C.【点评】本题主要考查分段函数、对数的运算性质以及利用数形结合解决问题的能力.二、填空题:本大题共4小题,每小题5分.13.(5分)(2010•全国新课标)圆心在原点上与直线x+y﹣2=0相切的圆的方程为x2+y2=2.【分析】可求圆的圆心到直线的距离,就是半径,写出圆的方程.【解答】解:圆心到直线的距离:r=,所求圆的方程为x2+y2=2.故答案为:x2+y2=2【点评】本题考查圆的标准方程,直线与圆的位置关系,是基础题.14.(5分)(2010•全国新课标)设函数y=f(x)为区间(0,1]上的图象是连续不断的一条曲线,且恒有0≤f(x)≤1,可以用随机模拟方法计算由曲线y=f(x)及直线x=0,x =1,y=0所围成部分的面积S,先产生两组(每组N个),区间(0,1]上的均匀随机数x1,x2,…,x n和y1,y2,…,y n,由此得到N个点(x,y)(i﹣1,2…,N).再数出其中满足y1≤f(x)(i=1,2…,N)的点数N1,那么由随机模拟方法可得S的近似值为.【分析】由题意知本题是求∫01f(x)dx,而它的几何意义是函数f(x)(其中0≤f(x)≤1)的图象与x轴、直线x=0和直线x=1所围成图形的面积,积分得到结果.【解答】解:方法一:∵∫01f(x)dx的几何意义是函数f(x)(其中0≤f(x)≤1)的图象与x轴、直线x=0和直线x=1所围成图形的面积,∴根据几何概型易知∫01f(x)dx≈.方法二:这种随机模拟的方法是在[0,1]内生成了N个点,而满足几条曲线围成的区域内的点是N1个,所以根据比例关系=,而正方形的面积为1,所以随机模拟方法得到的面积为.故答案为:.【点评】古典概型和几何概型是我们学习的两大概型,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的就是几何概型,几何概型的概率的值是通过长度、面积和体积的比值得到.15.(5分)(2010•全国新课标)一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的①②③⑤(填入所有可能的几何体前的编号)①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱.【分析】一个几何体的正视图为一个三角形,由三视图的正视图的作法判断选项.【解答】解:一个几何体的正视图为一个三角形,显然①②⑤正确;③是三棱柱放倒时也正确;④⑥不论怎样放置正视图都不会是三角形;故答案为:①②③⑤【点评】本题考查简单几何体的三视图,考查空间想象能力,是基础题.16.(5分)(2010•全国新课标)在△ABC中,D为BC边上一点,BC=3BD,AD=,∠ADB=135°.若AC=AB,则BD=2+.【分析】先利用余弦定理可分别表示出AB,AC,把已知条件代入整理,根据BC=3BD 推断出CD=2BD,进而整理AC2=CD2+2﹣2CD得AC2=4BD2+2﹣4BD把AC=AB,代入整理,最后联立方程消去AB求得BD的方程求得BD.【解答】用余弦定理求得AB2=BD2+AD2﹣2AD•BD cos135°AC2=CD2+AD2﹣2AD•CD cos45°即AB2=BD2+2+2BD①AC2=CD2+2﹣2CD②又BC=3BD所以CD=2BD所以由(2)得AC2=4BD2+2﹣4BD(3)因为AC=AB所以由(3)得2AB2=4BD2+2﹣4BD(4)(4)﹣2(1)BD2﹣4BD﹣1=0求得BD=2+故答案为:2+【点评】本题主要考查了余弦定理的应用.考查了学生创造性思维能力和基本的推理能力.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(10分)(2010•全国新课标)设等差数列{a n}满足a3=5,a10=﹣9.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{a n}的前n项和S n及使得S n最大的序号n的值.【分析】(1)设出首项和公差,根据a3=5,a10=﹣9,列出关于首项和公差的二元一次方程组,解方程组得到首项和公差,写出通项.(2)由上面得到的首项和公差,写出数列{a n}的前n项和,整理成关于n的一元二次函数,二次项为负数求出最值.【解答】解:(1)由a n=a1+(n﹣1)d及a3=5,a10=﹣9得a1+9d=﹣9,a1+2d=5解得d=﹣2,a1=9,数列{a n}的通项公式为a n=11﹣2n(2)由(1)知S n=na1+d=10n﹣n2.因为S n=﹣(n﹣5)2+25.所以n=5时,S n取得最大值.【点评】数列可看作一个定义域是正整数集或它的有限子集的函数,当自变量从小到大依次取值对应的一列函数值,因此它具备函数的特性.18.(10分)(2010•全国新课标)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.(Ⅰ)证明:平面PAC⊥平面PBD;(Ⅱ)若AB=,∠APB=∠ADB=60°,求四棱锥P﹣ABCD的体积.【分析】(Ⅰ)要证平面PAC⊥平面PBD,只需证明平面PAC内的直线AC,垂直平面PBD内的两条相交直线PH,BD即可.(Ⅱ),∠APB=∠ADB=60°,计算等腰梯形ABCD的面积,PH是棱锥的高,然后求四棱锥P﹣ABCD的体积.【解答】解:(1)因为PH是四棱锥P﹣ABCD的高.所以AC⊥PH,又AC⊥BD,PH,BD都在平PHD内,且PH∩BD=H.所以AC⊥平面PBD.故平面PAC⊥平面PBD(6分)(2)因为ABCD为等腰梯形,AB∥CD,AC⊥BD,AB=.所以HA=HB=.因为∠APB=∠ADB=60°所以PA=PB=,HD=HC=1.可得PH=.等腰梯形ABCD的面积为S=ACxBD=2+(9分)所以四棱锥的体积为V=×(2+)×=.(12分)【点评】本题考查平面与平面垂直的判定,棱柱、棱锥、棱台的体积,考查空间想象能力,计算能力,推理能力,是中档题.19.(10分)(2010•全国新课标)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:性别是否需要志愿者男女需要4030不需要160270(1)估计该地区老年人中,需要志愿者提供帮助的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由.P (K 2≥k )0.0500.0100.001k3.8416.63510.828附:K 2=.【分析】(1)由样本的频率率估计总体的概率,(2)求K 2的观测值查表,下结论;(3)由99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关,则可按性别分层抽样.【解答】解:(1)调查的500位老年人中有70位需要志愿者提供帮助,因此在该地区老年人中,需要帮助的老年人的比例的估计值为(2)K 2的观测值因为9.967>6.635,且P (K 2≥6.635)=0.01,所以有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关.(3)根据(2)的结论可知,该地区的老年人是否需要志愿者提供帮助与性别有关,并且从样本数据能够看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男女两层,并采取分层抽样方法比简单随机抽样方法更好.【点评】本题考查了抽样的目的,独立性检验的方法及抽样的方法选取,属于基础题.20.(10分)(2010•全国新课标)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过F1的直线l与E相交于A、B两点,且|AF2|,|AB|,|BF2|成等差数列.(Ⅰ)求|AB|;(Ⅱ)若直线l的斜率为1,求b的值.【分析】(1)由椭圆定义知|AF2|+|AB|+|BF2|=4,再由|AF2|,|AB|,|BF2|成等差数列,能够求出|AB|的值.(2)L的方程式为y=x+c,其中,设A(x1,y1),B(x1,y1),则A,B两点坐标满足方程组,化简得(1+b2)x2+2cx+1﹣2b2=0.然后结合题设条件和根与系数的关系能够求出b的大小.【解答】解:(1)由椭圆定义知|AF2|+|AB|+|BF2|=4又2|AB|=|AF2|+|BF2|,得(2)L的方程式为y=x+c,其中设A(x1,y1),B(x2,y2),则A,B两点坐标满足方程组.,化简得(1+b2)x2+2cx+1﹣2b2=0.则.因为直线AB的斜率为1,所以即.则.解得.【点评】本题综合考查椭圆的性质及其运用和直线与椭圆的位置关系,解题时要注意公式的灵活运用.21.(2010•全国新课标)设函数f(x)=x(e x﹣1)﹣ax2(Ⅰ)若a=,求f(x)的单调区间;(Ⅱ)若当x≥0时f(x)≥0,求a的取值范围.【分析】(I)求导函数,由导数的正负可得函数的单调区间;(II)f(x)=x(e x﹣1﹣ax),令g(x)=e x﹣1﹣ax,分类讨论,确定g(x)的正负,即可求得a的取值范围.【解答】解:(I)a=时,f(x)=x(e x﹣1)﹣x2,=(e x ﹣1)(x+1)令f′(x)>0,可得x<﹣1或x>0;令f′(x)<0,可得﹣1<x<0;∴函数的单调增区间是(﹣∞,﹣1),(0,+∞);单调减区间为(﹣1,0);(II)f(x)=x(e x﹣1﹣ax).令g(x)=e x﹣1﹣ax,则g'(x)=e x﹣a.若a≤1,则当x∈(0,+∞)时,g'(x)>0,g(x)为增函数,而g(0)=0,从而当x≥0时g(x)≥0,即f(x)≥0.若a>1,则当x∈(0,lna)时,g'(x)<0,g(x)为减函数,而g(0)=0,从而当x∈(0,lna)时,g(x)<0,即f(x)<0.综合得a的取值范围为(﹣∞,1].另解:当x=0时,f(x)=0成立;当x>0,可得e x﹣1﹣ax≥0,即有a≤的最小值,由y=e x﹣x﹣1的导数为y′=e x﹣1,当x>0时,函数y递增;x<0时,函数递减,可得函数y取得最小值0,即e x﹣x﹣1≥0,x>0时,可得≥1,则a≤1.【点评】本题考查导数知识的运用,考查函数的单调性,考查分类讨论的数学思想,属于中档题.22.(10分)(2010•全国新课标)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.【分析】(I)先根据题中条件:“”,得∠BCD=∠ABC.再根据EC是圆的切线,得到∠ACE=∠ABC,从而即可得出结论.(II)欲证BC2=BE x CD.即证.故只须证明△BDC~△ECB即可.【解答】解:(Ⅰ)因为,所以∠BCD=∠ABC.又因为EC与圆相切于点C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5分)(Ⅱ)因为∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故.即BC2=BE×CD.(10分)【点评】本题主要考查圆的切线的判定定理的证明、弦切角的应用、三角形相似等基础知识,考查运化归与转化思想.属于基础题.23.(10分)(2010•全国新课标)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线.【分析】(I)先消去参数将曲线C1与C2的参数方程化成普通方程,再联立方程组求出交点坐标即可,(II)设P(x,y),利用中点坐标公式得P点轨迹的参数方程,消去参数即得普通方程,由普通方程即可看出其是什么类型的曲线.【解答】解:(Ⅰ)当α=时,C1的普通方程为,C2的普通方程为x2+y2=1.联立方程组,解得C1与C2的交点为(1,0).(Ⅱ)C1的普通方程为x sinα﹣y cosα﹣sinα=0①.则OA的方程为x cosα+y sinα=0②,联立①②可得x=sin2α,y=﹣cosαsinα;A点坐标为(sin2α,﹣cosαsinα),故当α变化时,P点轨迹的参数方程为:,P点轨迹的普通方程.故P点轨迹是圆心为,半径为的圆.【点评】本题主要考查直线与圆的参数方程,参数方程与普通方程的互化,利用参数方程研究轨迹问题的能力.24.(10分)(2010•全国新课标)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.【分析】(I)先讨论x的范围,将函数f(x)写成分段函数,然后根据分段函数分段画出函数的图象即可;(II)根据函数y=f(x)与函数y=ax的图象可知先寻找满足f(x)≤ax的零界情况,从而求出a的范围.【解答】解:(Ⅰ)由于f(x)=,函数y=f(x)的图象如图所示.(Ⅱ)由函数y=f(x)与函数y=ax的图象可知,极小值在点(2,1)当且仅当a<﹣2或a≥时,函数y=f(x)与函数y=ax的图象有交点.故不等式f(x)≤ax的解集非空时,a的取值范围为(﹣∞,﹣2)∪[,+∞).【点评】本题主要考查了函数的图象,以及利用函数图象解不等式,同时考查了数形结合的数学思想,属于基础题.2010年全国统一高考数学试卷(文科)(全国大纲版Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2010•全国大纲版Ⅰ)cos300°=()A.B.﹣C.D.2.(5分)(2010•全国大纲版Ⅰ)设全集U={1,2,3,4,5},集合M={1,4},N={1,3,5},则N∩(∁U M)=()A.{1,3}B.{1,5}C.{3,5}D.{4,5}3.(5分)(2010•全国大纲版Ⅰ)若变量x,y满足约束条件,则z=x﹣2y的最大值为()A.4B.3C.2D.14.(5分)(2010•全国大纲版Ⅰ)已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7C.6D.5.(5分)(2010•全国大纲版Ⅰ)(1﹣x)4(1﹣)3的展开式x2的系数是()A.﹣6B.﹣3C.0D.36.(5分)(2010•全国大纲版Ⅰ)直三棱柱ABC﹣A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角等于()A.30°B.45°C.60°D.90°7.(5分)(2010•全国大纲版Ⅰ)已知函数f(x)=|lgx|.若a≠b且,f(a)=f(b),则a+b的取值范围是()A.(1,+∞)B.[1,+∞)C.(2,+∞)D.[2,+∞)8.(5分)(2010•全国大纲版Ⅰ)已知F1、F2为双曲线C:x2﹣y2=1的左、右焦点,点P在C上,∠F1PF2=60°,则|PF1|•|PF2|=()A.2B.4C.6D.89.(5分)(2010•全国大纲版Ⅰ)正方体ABCD﹣A1B1C1D1中,BB1与平面ACD1所成角的余弦值为()A.B.C.D.10.(5分)(2010•全国大纲版Ⅰ)设a=log32,b=ln2,c=,则()A.a<b<c B.b<c<a C.c<a<b D.c<b<a 11.(5分)(2010•全国大纲版Ⅰ)已知圆O的半径为1,PA、PB为该圆的两条切线,A、B 为两切点,那么的最小值为()A.B.C.D.12.(5分)(2010•全国大纲版Ⅰ)已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为()A.B.C.D.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2010•全国大纲版Ⅰ)不等式的解集是.14.(5分)(2010•全国大纲版Ⅰ)已知α为第二象限角,sinα=,则tan2α=.15.(5分)(2010•全国大纲版Ⅰ)某学校开设A类选修课3门,B类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有种.(用数字作答)16.(5分)(2010•全国大纲版Ⅰ)已知F是椭圆C的一个焦点,B是短轴的一个端点,线段BF的延长线交C于点D,且,则C的离心率为.三、解答题(共6小题,满分70分)17.(10分)(2010•全国大纲版Ⅰ)记等差数列{a n}的前n项和为S n,设S3=12,且2a1,a2,a3+1成等比数列,求S n.18.(12分)(2010•全国大纲版Ⅰ)已知△ABC的内角A,B及其对边a,b满足a+b=a cot A+b cot B,求内角C.19.(12分)(2010•全国大纲版Ⅰ)投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审.(Ⅰ)求投到该杂志的1篇稿件被录用的概率;(Ⅱ)求投到该杂志的4篇稿件中,至少有2篇被录用的概率.20.(12分)(2010•全国大纲版Ⅰ)如图,四棱锥S﹣ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC⊥平面SBC.(Ⅰ)证明:SE=2EB;(Ⅱ)求二面角A﹣DE﹣C的大小.21.(12分)(2010•全国大纲版Ⅰ)求函数f(x)=x3﹣3x在[﹣3,3]上的最值.22.(12分)(2010•全国大纲版Ⅰ)已知抛物线C:y2=4x的焦点为F,过点K(﹣1,0)的直线l与C相交于A、B两点,点A关于x轴的对称点为D.(Ⅰ)证明:点F在直线BD上;(Ⅱ)设,求△BDK的内切圆M的方程.2010年全国统一高考数学试卷(文科)(全国大纲版Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2010•全国大纲版Ⅰ)cos300°=()A.B.﹣C.D.【分析】利用三角函数的诱导公式,将300°角的三角函数化成锐角三角函数求值.【解答】解:∵.故选:C.【点评】本小题主要考查诱导公式、特殊三角函数值等三角函数知识.2.(5分)(2010•全国大纲版Ⅰ)设全集U={1,2,3,4,5},集合M={1,4},N={1,3,5},则N∩(∁U M)=()A.{1,3}B.{1,5}C.{3,5}D.{4,5}【分析】根据补集意义先求∁U M,再根据交集的意义求N∩(∁U M).【解答】解:(∁U M)={2,3,5},N={1,3,5},则N∩(∁U M)={1,3,5}∩{2,3,5}={3,5}.故选:C.【点评】本小题主要考查集合的概念、集合运算等集合有关知识,属容易题.3.(5分)(2010•全国大纲版Ⅰ)若变量x,y满足约束条件,则z=x﹣2y的最大值为()A.4B.3C.2D.1【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=x﹣2y表示直线在y 轴上的截距,只需求出可行域直线在y轴上的截距最小值即可.【解答】解:画出可行域(如图),z=x﹣2y⇒y=x﹣z,由图可知,当直线l经过点A(1,﹣1)时,z最大,且最大值为z max=1﹣2×(﹣1)=3.故选:B.【点评】本小题主要考查线性规划知识、作图、识图能力及计算能力,以及利用几何意义求最值,属于基础题.4.(5分)(2010•全国大纲版Ⅰ)已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7C.6D.【分析】由数列{a n}是等比数列,则有a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10.【解答】解:a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10,a52=a2a8,∴,∴,故选:A.【点评】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想.5.(5分)(2010•全国大纲版Ⅰ)(1﹣x)4(1﹣)3的展开式x2的系数是()A.﹣6B.﹣3C.0D.3【分析】列举(1﹣x)4与可以出现x2的情况,通过二项式定理得到展开式x2的系数.【解答】解:将看作两部分与相乘,则出现x2的情况有:①m=1,n=2;②m=2,n=0;系数分别为:①=﹣12;②=6;x2的系数是﹣12+6=﹣6故选:A.【点评】本小题主要考查了考生对二项式定理的掌握情况,尤其是展开式的通项公式的灵活应用,以及能否区分展开式中项的系数与其二项式系数,同时也考查了考生的一些基本运算能力.6.(5分)(2010•全国大纲版Ⅰ)直三棱柱ABC﹣A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角等于()A.30°B.45°C.60°D.90°【分析】延长CA到D,根据异面直线所成角的定义可知∠DA1B就是异面直线BA1与AC1所成的角,而三角形A1DB为等边三角形,可求得此角.【解答】解:延长CA到D,使得AD=AC,则ADA1C1为平行四边形,∠DA1B就是异面直线BA1与AC1所成的角,又A1D=A1B=DB=AB,则三角形A1DB为等边三角形,∴∠DA1B=60°故选:C.【点评】本小题主要考查直三棱柱ABC﹣A1B1C1的性质、异面直线所成的角、异面直线所成的角的求法,考查转化思想,属于基础题.7.(5分)(2010•全国大纲版Ⅰ)已知函数f(x)=|lgx|.若a≠b且,f(a)=f(b),则a+b的取值范围是()A.(1,+∞)B.[1,+∞)C.(2,+∞)D.[2,+∞)【分析】由已知条件a≠b,不妨令a<b,又y=lgx是一个增函数,且f(a)=f(b),故可得,0<a<1<b,则lga=﹣lgb,再化简整理即可求解;或采用线性规划问题处理也可以.【解答】解:(方法一)因为f(a)=f(b),所以|lga|=|lgb|,不妨设0<a<b,则0<a<1<b,∴lga=﹣lgb,lga+lgb=0。
绝密★启用前2010年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,第I 卷1至2页,第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第I 卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并帖好条形码.请认真核准条形码的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........3.第I 卷共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求.参考公式:如果事件A 、B 互斥,那么球的表面积公式P(A+B)=P(A)+P(B) 24RS 如果事件A 、B 相互独立,那么其中R 表示球的半径P(A ·B)=P(A)·P (B)球的体积公式如果事件A 在一次试验中发生的概率是P ,那么334RV 球n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径kn kk n n P P C k P )1()(一、选择题(1)复数ii 3223(A )i (B )i(C )i 1312(D )i1312(2)记k )80cos(,那么100tan (A )kk 21(B )-kk 21(C )21kk (D )-21kk (3)若变量y x,满足约束条件.02,0,1yxy x y则y x z 2的最大值为(A )4(B )3(C )2(D )1(4)已知各项均为正数的等比数列}{n a 中,634987321,10,5a a a a a a a a a 则=(A )25(B )7(C )6(D )24(5)533)1()21(x x 的展开式中x 的系数是(A )-4(B )-2(C )2(D )4(6)某校开设A 类选修课3门,B 类选择题4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有(A )30种(B )35种(C )42种(D )48种(7)正方体ABCD —A 1B 1C 1D 1中,BB 1与平面ACD 1所成角的余弦值为(A )32(B )33(C )32(D )36(8)设2135,2ln ,2log cb a,则(A )cba(B )a cb (C )b ac (D )ab c (9)已知F 1、F 2为双曲线1:22yx C 的左、右焦点,点P 在C 上,6021PF F ,则P到x 轴的距离为(A )23(B )26(C )3(D )6(10)已知函数)()(,0.|lg |)(b f a f b a x x f 且若,则b a2的取值范围是(A )),22((B ),22(C )),3((D ),3(11)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PB PA 的最小值为(A )24(B )23(C )224(D )223(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AC=CD=2,则四面体ABCD 的体积的最大值为(A )332(B )334(C )32(D )338绝密★启用前2010年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)第Ⅱ卷注意事项:.;.1.答题前,考生先在答题卡上用直径0.5毫米黑色签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。
2010年普通高等学校招生全国统一考试(新课标全国卷)理科数学试题本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符 合题目要求的。
(1)已知集合A{xR|x |2}},B{xZ|x4},则AB(A)(0,2)(B)[0,2](C){0,2](D){0,1,2} (2)已知复数 z3i2 (13i) ,z 是z 的共轭复数,则zz=(A)1 4(B)1 2(C)1(D)2x在点(1,1)处的切线方程为 (3)曲线yx2(A)y2x1(B)y2x1(C)y2x3(D)y2x2(4)如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(2,2),角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图像大致为d 2 tOπ 4ABCD(5)已知命题xxp :函数y22在R 为增函数, 1xxp :函数y22在R 为减函数, 2则在命题 q :p 1p 2,q 2:p 1p 2,q 3:p 1p 2和q 4:p 1p 2中,真命1 题是(A ) q ,1 q (B ) 3 q , 2 q (C ) 3 q , 1 q (D ) 4q , 2 q4(6)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再 补种2粒,补种的种子数记为X ,则X 的数学期望为 开始 (A)100(B )200 输入N (C)300(D )400k=1,S=0 (7)如果执行右面的框图,输入N5,则输出的数等于(A) 5 4 (B )4 5(C) 6 5 (D )5 61S=S+k(k+1) k<N 否 输出Sk=k+1 是(8)设偶函数f(x)满足 3 f(x)x8(x0),结束则{x|f(x 2)0}(A){x |x2或x4}(B){x |x0或x4} (C){x |x0或x6}(D){x |x2或x2}(9)若cos 45 ,是第三象限的角,则 1tan 1tan2 2(A)1 2(B)1 2(C)2(D)2(10)设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为(A) 2 a(B)7 3 2 a(C)11 3 2 a(D)2 5a|lgx|,0x10,(11)已知函数 f x ()12x6,x10.若a,b,c 互不相等,且f(a)f(b)f(c),则abc 的取值范围是(A)(1,10)(B)(5,6)(C)(10,12)(D)(20,24)(12)已知双曲线E 的中心为原点,P(3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (12,15),则E 的方程式为(A) 22 xy 36 1 (B) 22 xy 45 1 (C) 22 xy 63 1 (D) 22 xy 541第Ⅱ卷本卷包括必考题和选考题两部分,第(13)题~第(21)题为必考题,每个试题考生都 必须做答,第(22)题~第(24)题为选考题,考试求做答。
绝密★启用前启用前2010年普通高等学校招生全国统一考试(安徽卷) 数 学(理科)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷第1至第2页,第II 卷第3至第4页。
全卷满分150分钟,考试时间120分钟。
考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。
务必在答题卡背面规定的地方填写姓名和座位号后两位。
背面规定的地方填写姓名和座位号后两位。
2.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
需改动,用橡皮擦干净后,再选涂其他答案标号。
3.答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡...上书写,要求字体工整、笔迹清晰。
作图题可先用铅笔在答题卡规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。
必须在题号所指示的答题区域作答,超出答题区域书写的答案无效.............,在试题卷....、草稿纸上答题无效........。
4.考试结束,务必将试题卷和答题卡一并上交。
.考试结束,务必将试题卷和答题卡一并上交。
参考公式:如果事件A 与B 互斥,那么互斥,那么()()()P A B P A P B +=+ 如果如果A 与B 是两个任意事件,()0P A ¹,那么那么如果事件A 与B 相互独立,那么相互独立,那么 ()()()|P AB P A P B A = ()()()P AB P A P B =第Ⅰ卷(选择题,共50分)一、选择题:本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1、i 是虚数单位,33i i=+333333333i i+33i+3i -22225、双曲线方程为2221x y -=,则它的右焦点坐标为,则它的右焦点坐标为A 、2,02æöç÷ç÷èøB 、5,02æöç÷ç÷èøC 、6,02æöç÷ç÷èøD 、()3,05.C 【解析】双曲线的2211,2a b ==,232c =,62c =,所以右焦点为6,02æöç÷ç÷èø. 【误区警示】本题考查双曲线的交点,把双曲线方程先转化为标准方程,然后利用222c a b =+求出c 即可得出交点坐标.但因方程不是标准形式,很多学生会误认为21b =或22b =,从而得出错误结论. 6、设0a b c >,二次函数()2f x ax bx c =++的图象可能是的图象可能是6.D 【解析】当0a >时,b 、c 同号,(C )(D )两图中0c <,故0,02b b a<->,选项(D )符合. 【方法技巧】根据二次函数图像开口向上或向下,分0a >或0a <两种情况分类考虑另外还要注意c 值是抛物线与y 轴交点的纵坐标,还要注意对称轴的位置或定点坐标的位置等. 7、设曲线C 的参数方程为23cos 13sin x y q q=+ìí=-+î(q 为参数),直线l 的方程为320x y -+=,则曲线C 上到直线l 距离为71010的点的个数为的点的个数为A 、1 B 、2 C 、3 D 、4 7.B 【解析】化曲【解析】化曲线线C 的参数方程为普的参数方程为普通方程:通方程:22(2)(1)9x y -++=,圆心(2,1)-到直线320x y -+=的距离|23(1)2|71031010d -´-+==<,直线和圆相交,过圆心和l 平行的直线和圆的2个交点符合要求,又71071031010>-,在直线l 的另外一侧没有圆上的点符合要求,所以选B. 【方法总结】解决这类问题首先把曲线C 的参数方程为普通方程,然后利用圆心到直线的距离判断直线与圆的位置关系,这就是曲线C 上到直线l 距离为71010,然后再判断知71071031010>-,进而得出结论. 8、一个几何体的三视图如图,该几何体的表面积为、一个几何体的三视图如图,该几何体的表面积为A 、280 B 、292 C 、360 D 、372 8.C 【解析】该几何体由两个长方体组合而成,该几何体由两个长方体组合而成,其表面积等于下面长方体的全其表面积等于下面长方体的全面积加上面长方体的4个侧面积之和。
2010年普通高等学校招生统一考试江苏卷语文试题答案与解析语文Ⅰ试题一、语言文字运用(15分)1.下列词语中加点的字,每对读音都不相同....的一组是(3分)A.弹.劾/弹.丸之地哽咽./狼吞虎咽.责难./多难.兴邦B.鲜.活/寡廉鲜.耻泊.位/淡泊.明志叶.韵/一叶.知秋C.大度./审时度.势长.进/身无长.物解.救/浑身解.数D.参.差/扪参.历井披靡./风靡.一时畜.牧/六畜.兴旺【答案】C【解析】A.tán/dàn,yè/yàn,nàn/nàn;B.xiān/xiǎn,bó/bó,xié/yè;C.dù/duó,zhǎng/cháng,jiě/xiè;D.cēn/shēn,mǐ/mǐ,xù/chù。
“叶韵”之“叶”,此为历年仅见;本题选项“大度/审时度势、长进/身无长物、解救/浑身解数”的判读难度不大,与往年持平。
2.下列各句中,加点的成语使用恰当..的一句是(3分)A.司机张师傅冒着生命危险解救乘客的事迹,一经新闻媒体报道,就被传得满城风雨....,感动了无数市民。
B.近年来,在种种灾害面前,各级政府防患未然....,及时启动应急预案,力争把人民的生命财产损失降到最低限度。
C.这些“环保老人”利用晨练的机会,将游客丢弃在景点的垃圾信手拈来....,集中带到山下,分类处理。
D.“生命的价值在于厚度而不在于长度,在于奉献而不在于获取……”院士的一番话入木三分....,让我们深受教育。
【答案】D【解析】A.褒贬不当。
满城风雨:形容事情传遍各处,到处都在议论着(多指坏事)。
此处为英雄事迹。
B.前后矛盾、不合语境。
防患未然:在事故或灾害尚未发生之前采取预防措施,也说防患于未然。
此处灾害已经发生。
C.对象不当、不合语境。
信手拈来:随手拿来。
2010年普通高等学校招生全国统一考试(全国Ⅰ卷)英语试题第一部分听力(共两节,满分30分)第一节(共5小题:每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳答案,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
例:How much is the shirt?A.$ 19.15B. $9.15C. $ 9.18答案是B1.What will Dorothy do on the weeked?A.go out with her friendB.work on her paperC.make some plans2.What was the normal price of the T-shirt ?A.$15B. $ 30C. $503.What has the woman decided to do on Sunday afternoon?A.to attend a wedding.B.To visit an exhibitionC.To meet a friend4.When does the bank close on Sunday ?A.at 1:00pmB.at 3:00pmC.at 4:00pm5.Where are the speakers?A.In a storeB.In a classroomC.At a hotel第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。
每段对话或独白后有几小题,从题中所给的A、B、C 三个选项中选出最佳答案,并标在试卷的相应位置。
听完每段对话后,你将有时间阅读各小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
每段对话或独白读两遍。
听第6段材料,回答第6,7 小题6,What do we know about Nora?A.She prefers a room of her own.B.She likes to work with other girls.C.She lives near the city center.7.What is good about the flat?A. It has a large sitting room.B. It has good furnitureC. It has a big kitchen.听第7 段材料,回答第8,9题。
2010年普通高等学校招生全国统一考试(四川卷)英语本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1页至11页,第Ⅱ卷12页至14页。
满分150分,考试时间120分钟。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题,共100分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。
2.1—65小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。
第一部分英语知识运用(共两节,满分50分)第一节语法和词汇知识(共20小题;每小题1分,满分20分)从A、B、C、D四个选项中,选出可以填入空白处的最佳选项,并在答题卡上将该项涂黑。
1. —Here’s your change.——A. Thank you.B. Don’t mention it.C. No problemD. With pleasure.2. In most countries, a university degree can give you flying start in life.A. the; aB. the; 不填C.不填; 不填D.不填; a3. —I take the book out?—I'm afraid not.A. WillB. MayC. MustD. Need4. A great number of students said they were forced to practise the piano.A. to questionB. to be questionedC. questionedD. questioning5. Tired, Jim was fast asleep with his back a big tree.A. inB. belowC. besideD. against6. Some people eat with their eyes. They prefer to order what nice.A. looksB. smellsC. feelsD. tastes7. On my desk is a photo that my father took of when I was a baby.A. himB. hisC. meD. mine8.Jenny was looking for a seat when,luckily,a man and left.A.took up B.got up C.shut up D.set up 9.We laugh at jokes,but seldom about how they work.A.we think B.think weC.we do think D.do we think10.After graduating from college,I took some time off to go travelling,turned out to be a wise decision.A.that B.which C.when D.where 11.In many pe ople’s opinion,that company,though relatively small,is pleasant .A.to deal with B.dealing with C.to be dealt with D.dealt with 12.The school was moved out of downtown as the number of students had growntoo .A.small B.few C.1arge D.many 13.一I’m sorry.That wasn’t of much help.一Oh,.As a matter of fact,it was most helpful.A.sure it was B.it doesn’t matterC.of course not D.thanks anyway14.How much one enjoys himself travelling depends largely on he goes with,whether his friends or relatives.A.what B.who C.how D.why15.Such poets as Shakespeare widely read,of whose works,however,some difficult to understand.A.are;are B.is;is C.are;is D.is:are16.一When shall we restart our business?一Not until we our plan.A.will finish B.ar e finishingC.are to finish D.have finished17.The lawyer listened with full attention,to miss any point.A.not trying B.trying notC.to try not D.not to try18.You’ve failed to do what you to and I’m afraid the teacher will blame you.A.will expect B.will be expectedC.expected D.were expected19.If you have a job,yourself to it and finally you’ll succeed.A.do devote B.don't devoteC.devoting D.not devoting20.Because of the heavy traffic,it was already time for lunch break she got to her office.A.since B.that C.when D.until第二节完形填空(共20小题;每小题l 5分,满分30分)阅读下面短文,从短文后各题所给的四个选项(A、B、C和D)中,选出可以填入空白处的最佳选项,并在答题卡上将该项涂黑。
2010年普通高等学校招生全国统一考试数学理工农医类(新课标卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~24题为选考题.其他题为必考题.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回.参考公式:样本数据x 1,x 2,…,x n 的标准差s其中x 为样本平均数 柱体体积公式V =Sh其中S 为底面面积,h 为高 锥体体积公式V =13Sh 其中S 为底面面积,h 为高 球的表面积,体积公式 S =4πR 2,V =43πR 2 其中R 为球的半径第Ⅰ卷(选择题共50分)一、选择题:本大题共12小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x ||x |≤2,x ∈R },B ={x≤4,x ∈Z },则A ∩B =( ) A .(0,2) B .[0,2] C .{0,2} D .{0,1,2} 答案:D ∵A ={-2,-1,0,1,2},B ={0,1,2,3,…,16},∴A∩B ={0,1,2}. 2.已知复数z,z 是z 的共轭复数,则z ·z =( ) A.14 B.12C .1D .2 答案:A z·z =|z|2而|z|=221=24=12,∴|z|2=14,∴z·z =14. 3.曲线y =2x +x在点(-1,-1)处的切线方程为( ) A .y =2x +1 B .y =2x -1 C .y =-2x -3 D .y =-2x -2 答案:A ∵y ′=22(2)x x x ++-=22(2)x +,∴在点(-1,-1)处的切线方程的斜率为2)21(22=+-.∴切线方程为y +1=2(x +1), 即y =2x +1.4.如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0),角速度为1,那么点P 到x 轴的距离d 关于时间t 的函数图像大致为( )答案:C 法一:P 从P 0出发,逆时针运动,t =0时,d ,t 与d 满足关系式d =2sin(t -π4)(t ≥0).所以选择C 项. 法二:(排除法)当t =0时,P )到x ,排除A 、D 两项,当t =π4时, P (2,0)到x 轴的距离为0,排除B.故选C 项. 5.已知命题:p 1:函数y =2x -2-x 在R 上为增函数,p 2:函数y =2x +2-x 在R 上为减函数,则在命题q 1:p 1∨p 2,q 2:p 1∧p 2,q 3:(p 1)∨p 2和q 4:p 1∧(p 2)中,真命题是( )A .q 1,q 3B .q 2,q 3C .q 1,q 4D .q 2,q 4 答案:C 对于p 1:y ′=2x ln2-(12)x ln 12=ln2(2x +2-x ),∴y ′>0,∴函数为增函数, ∴p 1为真.对于p 2:y ′=2x ln2+(12)x ln 12=ln2[2x -(12x ],y ′<0不一定成立,∴p 2为假,∴q 1为真,q 2为假,q 3为假,q 4为真.6.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A .100B .200C .300D .400 答案:BE (X )=1 000×0.9×0+1 000×0.1×2=200.7.如果执行下面的框图,输入N =5,则输出的数等于 ()A.54 B.45 C.65 D.56答案:D 由框图可知,输出的S 为 S =112⨯+123⨯+134⨯+145⨯+156⨯=1-12+12-13+13-14+14-15+15-16=1-16=56.8.设偶函数f (x )满足f (x )=x 3-8(x ≥0),则{x |f (x -2)>0}=( )A .{x |x <-2或x >4}B .{x |x <0或x >4}C .{x |x <0或x >6}D .{x |x <-2或x >2 答案:B ∵f (x )为偶函数,∴f (x -2)=f (|x -2|),∴f (x -2)>0等价于f (|x -2|)>0=f (2),又∵f (x )=x 3-8(x ≥0)为增函数, ∴|x -2|>2.解得x >4或x <0.9.若cos α=-45,α是第三象限的角,则1tan21tan 2αα+-=( ) A .-12 B.12C .2D .-2答案:A ∵cos α=-45,α为第三象限角,∴sin α=-35.∵sin211tancos 221tansin 221cos2αααααα++=--=2cossin(cossin )2222cos sin(cos sin )(cos sin )222222αααααααααα++=+--=2231()1sin 1sin 54cos cos sin 225ααααα+++==---=-12. 10.设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为( )A .πa 2 B.73πa 2 C.113πa 2 D .5πa 2 答案:B 如图,O 1,O 分别为上、下底面的中心,D 为O 1O 的中点,则DB 为球的半径,有r =DBS 表=4πr 2=4π×2712a =73πa 2. 11.已知函数f (x )=|lg |,010,16,10.2x x x x <≤⎧⎪⎨+>⎪⎩-若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( )A .(1,10)B .(5,6)C .(10,12)D .(20,24) 答案:C 由图知a ,b ,c 有两个在(0,10]上,假设a ,b ∈(0,10],并有一个大于1一个小于1,不妨设a <1,b >1,则f (a )=|lg a |=-lg a =lg1a,f (b )=|lg b |=lg b ,∴1a=b .∴a ·b ·c =c ,由图知c ∈(10,12).12已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),则E 的方程为( )A.23x -26y =1B.24x -25y =1C.26x -23y =1D.25x -24y =1答案:B 由c =3,设双曲线方程为22x a -229y a -=1,k AB =k NF =015312++=1, 设A (x 1,y 1),B (x 2,y 2),则212x a -2129y a -=1, ①222x a -2229y a-=1, ② ①-②,得12122()()x x x x a +--12122()()9y y y y a +--=0.又N (-12,-15)为AB 中点,∴x 1+x 2=-24,y 1+y 2=-30. ∴122()x x a -24-=122()9y y a -30--.∴1212y y x x --=22(9)5a a 4-=1. ∴a 2=4.∴双曲线方程为24x -25y =1. 第Ⅱ卷(非选择题共100分)二、填空题:本大题共4小题,每小题5分,共20分.13.设y =f (x )为区间[0,1]上的连续函数,且恒有0≤f (x )≤1,可以用随机模拟方法近似计算积分1⎰f(x)d x.先产生两组(每组N 个)区间[0,1]上的均匀随机数x 1,x 2,…,x N 和y 1,y 2,…,y N ,由此得到N 个点(x i ,y i )(i =1,2,…,N).再数出其中满足y i ≤f(x i )(i =1,2,…,N)的点数N 1,那么由随机模拟方法可得积分1⎰f(x)d x 的近似值为__________.答案:1N N解析:由题意可知01,01,x y ≤≤⎧⎨≤≤⎩它所围成的区域面积为S =1,结合积分的几何意义和几何模型可知,1()f x dx S⎰=1N N ,即10⎰f(x)d x =1NN.14.正视图为一个三角形的几何体可以是__________.(写出三种)答案:三棱锥、圆锥、四棱锥(答案不唯一)15.过点A(4,1)的圆C 与直线x -y -1=0相切于点B(2,1),则圆C 的方程为__________.答案: (x -3)2+y 2=2解析:法一:设圆C 方程:(x -a)2+(y -b)2=r 2, 圆心(a ,b)到直线x -y -1=0的距离 d=r , ①又圆C 过点A(4,1),B(2,1),∴(4-a)2+(1-b)2=r 2, ② (2-a)2+(1-b)2=r 2, ③由①②③,得a =3,b =0,r,∴圆的方程为(x -3)2+y 2=2.法二:∵圆过A 、B 两点,∴圆心C 在线段AB 的中垂线上.而k AB =1142--=0 AB 中点M(3,1),∴AB 中垂线方程为x =3.又∵圆C 与直线x -y -1=0,相切于点B(2,1),所以圆心在过点B 且与x -y -1=0垂直的直线x +y -3=0上.由330x x y =⎧⎨+=⎩-得圆心C(3,0),∴r =|CA|∴圆的方程为:(x -3)2+y 2=2.16.在△ABC 中,D 为边BC 上一点,BD =12DC ,∠ADB =120°,AD =2.若△ADC 的面积为3,则∠BAC =__________. 答案:60°解析:S △ADC =12×2×DC×2=3解得DC =1),∴BD -1,BC =1).在△ABD 中,AB 2=4+1)2-2×2×1)×cos 120°=6,∴AB .在△ACD 中,AC 2=4+-1)]2-2×2×1)×cos 60°=24-∴AC 1),则cos ∠BAC =222AB +AC BC 2AB AC ⋅-12,∴∠BAC =60°.三、解答题:共80分.解答应写出文字说明、证明过程或演算步骤. 17.(12分)设数列{a n }满足a 1=2,a n +1-a n =3·22n -1.(1)求数列{a n }的通项公式;(2)令b n =na n ,求数列{b n }的前n 项和S n . 解析: (1)由已知,当n≥1时,a n +1=[(a n +1-a n )+(a n -a n -1)+…+(a 2-a 1)]+a 1=3(22n -1+22n -3+…+2)+2=22(n +1)-1. 而a 1=2,所以数列{a n }的通项公式为a n =22n -1.(2)由b n =na n =n·22n -1知S n =1·2+2·23+3·25+…+n·22n -1. ① 从而22·S n =1·23+2·25+3·27+…+n·22n +1. ②①-②,得(1-22)S n =2+23+25+…+22n -1-n·22n +1, 即S n =19[(3n -1)22n +1+2]. 18.(12分)如图,已知四棱锥P —ABCD 的底面为等腰梯形,AB ∥CD ,AC ⊥BD ,垂足为H ,PH 是四棱锥的高,E 为AD 中点.(1)证明PE ⊥BC ;(2)若∠APB =∠ADB =60°,求直线PA 与平面PEH 所成角的正弦值.解析:以H 为原点,HA ,HB ,HP 分别为x ,y ,z 轴,线段HA 的长为单位长,建立空间直角坐标系如图,则A(1,0,0),B(0,1,0).(1) 证明:设C(m,0,0),P(0,0,n)(m <0,n >0),则D(0,m,0),E(12,2m,0).可得PE =(12,m2,-n),BC =(m ,-1,0).因为PE ·BC=m 2-m 2+0=0,所以PE ⊥BC. (2) 解:由已知条件可得m=-3,n =1,故C(-3,0,0),D(0,-3,0), E(12,-6,0),P(0,0,1).设n =(x ,y ,z )为平面PEH 的法向量,则10,0,20,0.HE x y HP z ⎧⎧⋅==⎪⎪⎨⎨⋅=⎪⎪⎩=⎩n n 即 因此可以取n =(10).由PA =(1,0,-1),可得|cos 〈PA ,n 〉|,所以直线P A 与平面PEH 所成角的正弦值为4. 19.(12分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由.附:K 2=2n(ad bc)(a+b)(c+d)(a+c)(b+d)-解析: (1)调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中,需要帮助的老年人的比例的估计值为70500=14%. (2)K 2=2500(4027030160)20030070430⨯⨯⨯⨯⨯⨯-≈9.967.由于9.967>6.635,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关. (3)由(2)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好.20.(12分)设F 1,F 2分别是椭圆E :22x a +22y b=1(a >b >0)的左、右焦点,过F 1斜率为1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB|,|BF 2|成等差数列.(1)求E 的离心率;(2)设点P(0,-1)满足|PA|=|PB|,求E 的方程.解析:得|AB |=43a . l 的方程为y =x +c ,其中c 设A (x 1,y 1),B (x 2,y 2), 则A ,B 两点坐标满足方程组2222,1.y x c x y ab =+⎧⎪⎨+=⎪⎩ 化简得(a 2+b 2)x 2+2a 2cx +a 2(c 2-b 2)=0,则x 1+x 2=2222a c a b +-,x 1x 2=22222()a c b a b+-. 因为直线AB 斜率为1,所以|AB |x 2-x 1|=得43a =2224ab a b +,故a 2=2b 2. 所以E 的离心率e =ca=2a =. (2)设AB 的中点为N (x 0,y 0),由(1)知x 0=122x x +=22223a c a b =+--c ,y 0=x 0+c =3c. 由|P A |=|PB |得k PN =-1. 即001y x +=-1, 得c =3,从而a =,b =3.故椭圆E 的方程为22189x y +=1. 21.(12分)(理)设函数f(x)=e x -1-x -ax 2.(1)若a =0,求f(x)的单调区间;(2)若当x≥0时f(x)≥0,求a 的取值范围. 解析: (1)a =0时,f (x )=e x -1-x ,f ′(x )=e x -1.当x ∈(-∞,0)时,f ′(x )<0;当x ∈(0,+∞)时,f ′(x )>0.故f (x )在(-∞,0)上单调减少,在(0,+∞)上单调增加. (2)f ′(x )=e x -1-2ax .由(1)知e x ≥1+x ,当且仅当x =0时等号成立, 故f ′(x )≥x -2ax =(1-2a )x , 从而当1-2a ≥0,即a ≤12时,f ′(x )≥0(x ≥0),而f (0)=0, 于是当x ≥0时,f (x )≥0.由e x >1+x (x ≠0)可得e -x >1-x (x ≠0).从而当a >12时,f ′(x )<e x -1+2a (e -x -1)=e -x (e x -1)(e x -2a ),故当x ∈(0,ln2a )时,f ′(x )<0,而f (0)=0,于是当x ∈(0,ln2a )时,f (x )<0.综合得a 的取值范围为(-∞,12]. 方法二,分离参数法:当0≥x 时,0)(≥x f ,由012≥---ax x e x,即x e ax x--≤12,(1)当0=x 时,R a ∈,(2)当0≠x 时,21x x e a x --≤,令21)(x xe x g x --=,则322)(xx e xe x g x x ++-=' 令22)(++-=x e xe x h xx,则,1)(+-='xxe xe x h 令,1)(+-=xxe xe x m 则0)(>='x xe x m ,∴)(x m 为增函数,则0)0()(=>m x m ,∴0)(>'x h ,∴)(x h 为增函数,则0)0()(=>h x h ,∴0)(>'x g ,)(x g 为增函数,则)0()(g x g >,∴)0(g a ≤ 可是)0(g 不存在,只能求极限,由洛比达法则得,212lim )2()1(lim )()1(lim )(lim 00200==''-=''--=++++→→→→x x x x x x x e x e x x e x g ,故21≤a 22.(10分)选修4-1:几何证明选讲如图,已知圆上的弧,过C 点的圆的切线与BA 的延长线交于E 点,证明:(1)∠ACE =∠BCD ;(2)BC 2=BE×CD. 解析: (1)因为,所以∠BCD =∠ABC .又因为EC 与圆相切于点C , 故∠ACE =∠ABC , 所以∠ACE =∠BCD .(2)因为∠ECB =∠CDB ,∠EBC =∠BCD , 所以 △BDC ∽△ECB , 故BC CDBE BC=,即BC 2=BE ×CD .23.(10分)选修4-4:坐标系与参数方程已知直线C 1:1cos sin x t y t αα=+⎧⎨=⎩ (t 为参数),圆C 2:cos sin x y θθ=⎧⎨=⎩(θ为参数). (1)当α=3π时,求C 1与C 2的交点坐标; (2)过坐标原点O 作C 1的垂线,垂足为A ,P 为OA 的中点,当α变化时,求P 点轨迹的参数方程,并指出它是什么曲线.解析: (1)当α=3π时,C 1的普通方程为y(x -1),C 2的普通方程为x 2+y 2=1.联立方程组221),1,y x x y ⎧=⎪⎨+=⎪⎩-解得C 1与C 2的交点为)0,1(,(12,-2). (2)C 1的普通方程为0sin cos sin =--αααy xA 点坐标为)sin cos ,(sin 2ααα- 故当α变化时,P 点轨迹的参数方程为21sin 21sin cos 2x y ααα⎧=⎪⎪⎨⎪=⎪⎩- (α为参数). P 点轨迹的普通方程为(x -14)2+y 2=116. 故P 点轨迹是圆心为(14,0),半径为14的圆. 24.(10分)选修4-5:不等式选讲设函数1|42|)(+-=x x f(1)画出函数)(x f y =的图像;(2)若不等式ax x f ≤)(的解集非空,求a 的取值范围.解析:(1)由于⎩⎨⎧≥-<+-=2322,52)(x x x x x f 则函数)(x f y =的图像如图所示.(2)由函数)(x f y =与函数ax y =的图像可知,当且仅当21≥a 或2-<a 时,函数)(x f y =与函数ax y =的图像有交点.故不等式ax x f ≤)(的解集非空时,a 的取值范围为),21[)2,(+∞⋃--∞。
2010年全国统一高考语文试卷(大纲版Ⅱ)一、(12分,每小题3分)1.(3分)下列词语中加点的字,读音全都正确的一组是()A.泊车(bó )称心(chèn)唱主角(jiǎo)弹丸之地(dàn)B.苍穹(qióng)掺和(cān)单行本(xíng)不偏不倚(yǐ)C.梦魇(yǎn)本埠(bù)黑魆魆(xū)燕颔虎颈(hàn)D.祝祷(dǎo)鞭笞(chī)便利店(biàn)名噪一时(cào)2.(3分)下列各句中,划线的成语便用不恰当的一项是()A.这名运动员看上去一副弱不胜衣的样子,实际上,他身体健,骨骼强健,耐力和速度非一般人可比.B.在座的各位都是本领域的顶尖专家,我们请大家来,就是想听听各位的高见,大家不必客气.就姑妄言之吧.C.他闲来无事,就经常上网发一些飞短流长的帖子,结果不仅弄得与同事邻里的关系很紧张,甚至还惹上了官司.D.唐玄宗虽早就觉察到安安禄山有反叛之心,但并没有及时除掉他,反而放虎归山,让他出任范阳节度使,这未免有点蹊跷.3.(3分)下列各句中,没有语病的一句是()A.随着“天河一号”的问世,我国成为继美国后第二个能够研制运算速度为每秒千万亿次的超级计算机的国家,在这一重要科学领域中跻身前列.B.该厂狠抓生产质量,重视企业文化,十几年来凝聚了一批技术骨干,所生产的内衣产量成为全国同行业销售额率先突破十亿大关的一个著名品牌.C.对于那些指责这些学说缺乏理论支持、说她不以实验而以先验方式作一般性推理的人,这表明他们对这一学说缺乏深入认识,还没有掌握其精髓.D.那个年代的手抄本很难得,书中的故事对我产生了潜移默化的影响,爱国心、人生观、事业心、爱情观以及手抄本那漂亮的字迹也让我非常喜欢.4.(3分)依次填入下面一段文字横线处的语句,衔接最恰当的一组是()在21世纪的今天,正确对待任何大自然的关系比以往任何时候都重要________。
绝密★启用前试卷类型:B 2010年普通高等学校招生全国统一考试(湖北卷)语文本试卷共8页,七大题23小题。
全卷满分150分,考试用时150分钟。
一、(15分,每小题3分)1.下列各组词语中加点的字,读音全部相同的一组是A.屏.气摒.弃并.蒂莲秉.烛待旦B.黄鹂.黎.明霹雳.舞磨砺.意志C.驼.绒滂沱.拓.荒者脱.颖而出D.翌.日游弋.溢.洪道逸.兴遄飞【参考答案】D【试题分析】A.屏.气bǐng 摒.弃bìng 并.蒂莲bìng秉.烛待旦bǐngB.黄鹂. lí黎.明lí霹雳.舞lì磨砺.意志lìC.驼.绒tuó滂沱.tuó拓.荒者tuò脱.颖而出tuōD.翌.日 yì游弋.yì溢.洪道yì逸.兴遄飞yì【高考考点】识记现代汉语普通话常用字的字音。
【易错提醒】“游弋”易读错。
四个选项都有一定的迷惑性【备考提示】考查读音相近的字的读音,要求考生不能只抓住常见易错的字音,而要切实练好普通话,在比较中辨别。
要注重考查普通话的读写能力培养。
2.下更各组词语中,有错别字....的一组是A.扭怩/扭捏交接/交结急风暴雨/疾风劲草B.姻缘/因缘机遇/际遇促膝谈心/抵足谈心C.口型/口形飘荡/漂荡轻歌曼舞/清歌妙舞D.意想/臆想定势/定式唾手可得/垂手而得【参考答案】A【试题分析】“扭怩”应为“忸怩”。
忸怩:羞惭的样子,与心理有关,应用“忸”。
【高考考点】识记并正确书写现代常用规范汉字。
【易错提醒】“飘荡/漂荡”“定势/定式”有一定迷惑性,要加强平时积累。
【备考提示】本题重点在于辨别容易混淆的形近词。
如果怀疑某个是别字,可以写出几个同音字来比较,可以写出几个形似字来比较。
通过分析形声字的形旁来推导这个字的含意,再放到这个词语中去判定是否相符。
对于独体字或形声字中的形旁已失去表意功能的形声字可以通过分析词语的语法结构来确定它是不是别字,还可以通过对整个词语的理解,来寻找不合语境的别字。
2010年普通高等学校招生全国统一考试(江苏卷)语文一、语言文字运用(15分)1.下列加点的字,每对读音都不相同的一组是(3分) CA.弹.劾/弹.丸之地哽咽./狼吞虎咽.责难./多难.兴邦B.鲜.活/寡廉鲜.耻泊.位/淡泊.明志叶.韵/一叶.知秋C.大度./审时度.势长.进/身无长.物解.救/浑身解.数D.参.差/扪参.历井披靡./风靡.一时畜.牧/六畜.兴旺2.下列各句中,加点的成语使用恰当的一句是(3分) DA.司机张师傅冒着生命危险解救乘客的事迹,一经新闻媒体报道,就被传得满城风雨,感动了无数市民。
B.近年来,在种种灾害面前,各级政府防患未然,及时启动应急预案,力争把人民的财产损失将到最低限度。
C.这些“环保老人”利用晨练的机会,将游客丢弃在景点的垃圾信手拈来,集中带到山下,分类处理。
D.“生命的价值在于厚度而不在于长度,在于奉献而不在于获取……院士的一番话入木三分,让我们深受教育。
3.阅读下面一段文字,找出“碳链式反应”过程的三个关键性词语。
(4分)科学家在喀斯特地貌的研究中,发现了一个复杂的碳链式反应。
当水流从空气中“大口吮吸”二氧化碳并侵蚀石灰岩时,持续不断的吸碳过程就开始了。
接着,在岩石表面自由流淌的酸性水流携带着大量碳酸氢根,随着自然界的水循环转辗奔向江河湖海。
此时,浮游植物体内的“食物加工厂”在急切地“找米下锅”,它们惊喜地发现,只要分泌一种叫做“碳酸酐酶”的催化剂,对水中的碳酸氢根“略施魔法”,等待加工的“米”——二氧化碳,就唾手可得。
最终,光合作用将大量随波逐流的碳转化成有机碳,封存与水生植物体内。
4.2010年上海世博会丹麦国家馆,有一尊“小美人鱼”铜像。
(5分)(1)“小美人鱼”故事出自哪位作家的哪篇作品?安徒生《海的女儿》(2)请以“小美人鱼”口吻,写一段不超过30个字的话,表达对上海世博会的祝愿或赞美二、文言文阅读(19分)阅读下面的文言文,完成5~8题南阳县君谢氏墓志铭欧阳修庆历四年秋,予友宛陵梅圣俞来自吴兴,出其哭内之诗而悲曰:“吾妻谢氏亡矣。
年秋·明心数学资优生水平测试·6年级试卷简答下面仅提供简答,详细过程将于开学后第一节课讲解一、计算题(4′×4=16′)1、4848⨯+等于()。
【答案:83】2、下列各选项中的数位于14和116正中间的是()。
【答案:5 32】3、将()放在19口下面的方框中,所得分数之值最接近于212。
A、5B、6C、7D、8E、9 【答案:D】4、11112++的值等于()。
【答案:53】二、A组填空题(5′×8=40′)1、现有100只鹿进城,如果每家分1只鹿,分不完;又让每3家分一只剩余的鹿,刚好分完。
问城中共有__________户人家。
【答案:75】2、小明买了一辆二手山地车,支付了山地车原价的90%,没过几天,他的朋友看中了这辆山地车,并表示愿意支付高出原价25%的价格买下。
小明答应了,只经过简单一转手,这辆山地车就让小明赚了105元。
那么,小明这辆山地车的原价是________元。
【答案:300元】3、小华每分钟吹一次肥皂泡,每次恰好吹100个。
肥皂泡吹出之后,经过一分钟有一半破裂,经过两分钟还有120没有破裂,经过两分半钟肥皂泡全部破裂。
小华在第21次吹出100个新的肥皂泡的时候,没有破裂的肥皂泡共有________个。
【答案:155】4、按图中数字规律,问号处的数字是________。
【答案:13】5、一位魔术师让观众写下一个六位数a,并将a的各位数字相加得b,他让观众说出a b中的5个数字,观众报出1、3、5、7、9,魔术师便说出余下的那个数字,那个数字是________。
【答案:2】6、有一群体育爱好者,他们之中所有的桥牌爱好者都爱好围棋,有围棋爱好者爱好武术;所有的武术爱好者都不爱好健身操,有桥牌爱好者同时爱好健身操,如果上述结论都是真实的,则以下说法不对的是()。
A、所有的围棋爱好者也都爱好桥牌;B、有的桥牌爱好者爱好武术;C、健身操爱好者都爱好围棋;D、围棋爱好者都爱好健身操。
【答案:D】7、将1~15的数不重复地排成三角阵的形式,下图就是其中一个排成的例子。
若要求排成的三角阵三边上的数之和都相等且为最小。
这个最小的和是()。
A、20B、24C、28D、32E、36【答案:C】8、有一批木材,木材可以做30张桌子,也可以做15张床,现在做了2张桌子,2张床,2张凳子用了14的木材,剩下的木材还可以做________张凳子。
【答案:30张】三、B组填空题(6′×4=24′)9、已知一个正八边形中最长的对角线等于a,最短的对角线等于b,则这个正八边形的面积等于________。
(用含字母a b、的式子表示)【答案:ab 】10、某海关得到一个情报,跨国贩毒集团将毒品藏在一批货物的几个箱子中运入境内,毒品箱子上标有一个神秘的号码是09x yz xyz = 。
经查看发现,这批货物每个箱子都有一个编号,编号都是四位数字,并且数字的百位都是“0”。
则毒品藏在标号为______________________的箱子里。
【答案:2025、4050、6075】11、将分数360n 约分成分母为一位数的最简分数,其中n 为小于360的正整数,那么n 共有( )个不同的取值。
A 、7B 、11C 、17D 、19E 、21【答案:E 】12、如图,甲、乙两动点分别从正方形ABCD 的顶点A 、C 同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行。
若乙的速度是甲的速度的5倍,则它们第2010次相遇在边( )上。
A 、AB B 、BC C 、CD D 、DA【答案:A 】四、解答题(10′×2=20′)13、一副三角板如图摆放,直角顶点A 是EF 的中点,DE=DF=4,三角板ABC 绕点A 顺时针旋转(090)αα<<度,则四边形AHDG 的面积是多少?【答案:4】14、如图,第(1)个多边形由正三角形“扩展”而来,边数记为a 3,第(2)个多边形由正方形“扩展”而来,边数记为a 4,……依此类推,由正n (n ≥3)边形“扩展”而来的多边形的边数记为a n 。
当n a a a 11143+++ 的结果是60302007时,n 的值是多少?【答案:2009】1、依题意,第一次分的是第二次的3倍,所以总数就是第二次分的3+1=4倍100÷﹙3+1﹚=25只25×3=75户2、高出车价的25%看做125%,125%-90%=35%(这是小明卖车赚钱部分的百分比)105/35%=300元,原车价是300元,3、1、小华每分钟吹一次肥皂泡,每次恰好吹100个。
第21次吹出100个新的肥皂泡,共需21分钟。
2、经过两分半钟肥皂泡全部破裂,因此18分钟及此前吹出的肥皂泡已经全部破裂。
3、19分钟吹出的100个肥皂泡,已经经过两分钟,还有1/20没有破裂,即5个。
4、20分钟吹出的100个肥皂泡,已经经过一分钟,有一半破裂,没有破裂的有50个。
5、21分钟刚刚吹出了100个肥皂泡。
此时,没有破裂的肥皂泡共有:5 + 50 + 100 = 155(个)。
4、将整个分成3*3的小矩形则4个角的数之和为中间数,则?=28-6-7-2=135、数字顺序改变了,但是数字本身不变故除以9的余数不变所以差是9的倍数故差的数字和是9的倍数9|1+3+5+7+9+?=25+??=26、本题属于概念之间的关系型题目,要应用图示法,所有围棋爱好者有一部分爱好武术,但是武术爱好者都不爱好健身操,所有围棋爱好者不可能都爱好健身操。
否则就会发生冲突。
7、解一、第一、要使每条边上的和最小,当然要把最大的三个数13、14、15放在中间位置(不在边上)第二、1、2、3放在顶点处,重复的就是最小的。
其它的调整一下即可,余下的4~12,分成三组,4~6、7~9、10~126放1、2所在的边上,5放在1、3所在的边上,4放在2、3所在边上,7+12=8+11=9+10;三边任选一组。
即可。
每边的和是:[(1++2+3+……+12)+(1+2+3)]÷3=28解二、其实就阵中3个数不在边上。
要使边上的和相等、最小,则使阵中3个数最大为13、14、15。
使3个顶点数字和最小:1-3排在顶点。
剩余4-12排在3边。
此时每边和最小= [(1+2+3+……+12)+(1+2+3)]/3 = 28例如有:0104 0509 15 0812 13 14 1102 06 07 10 038、一张桌子用全部木材的1/30,一张床用1/15,1/4-2/30-2/15=1/20,所以两把椅子用木料1/20,即一把椅子用1/40,剩下3/4木料,用其除以1/40,得出还可做30把椅子。
解二、设总木材W,1张桌子需木材D,1张床需木材B,1张椅子需木材C 列方程组W=30D;W=15B;1/4W=2D+2B+2C;则求3/4W=?C解得W=40C则3/4W=30C9、解:如图所示,在正八边形中,最长的对角线为AE=BF=CG=D4=a,最短得对角线为AC=BD=CE=DF=EG=FH=GA=HB=b,按图所示进行割补得,S正八边形ABCDE9GH=S四边形PQMN=ab.故选ab.本题从正面很难作答,故可利用割补法把正八边形割补成矩形,再利用求解. 10\由题意可知1000x+10y+z=9×(100x+10y+z ),100x=80y=8z ,25x=20y+2z ,因此x 是偶数,z=0或5,然后分组求出x 、y 、z 的值,即可得出答案.由. xoyz =. 9xyz ,可知:1000x+10y+z=9×(100x+10y+z ), 100x=80y=8z ,25x=20y+2z ,因此x 是偶数,z=0或5, 当x=2,z=5,y=z ,号码为:225;当x=4,z=0,y=5,号码为450;当x=6,z=5,y=7,号码为:675;当x=8时,不符合要求.答:毒品藏在标有神秘号码225、450、675的箱子里.此题解答的关键是推出四位数.xoyz是9的倍数,进而求出x 、y 、z 的值.11\360的约数中,是1位数的有(1除外):2、3、4、5、6、8、9当最简分数的分母为2时对应的分子有:1,1个当最简分数的分母为3时对应的分子有:1、2,2个当最简分数的分母为4时对应的分子有:1、3,2个同理当最简分数的分母分别为5、6、8、9时对应的分子分别有4个、2个、4个、6个所以对应的N 有1+2+2+4+2+4+6=21个不同取值。
14\如图,第(1)个多边形由正三角形“扩展”而来,边数记为3a ,第(2)个多边形由正方形“扩展”而来,边数记为4a ,…,依此类推,由正n 边形“扩展”而来的多边形的边数记为n a (n ≥3).则5a 的值是 ,当3451111n a a a a +++⋅⋅⋅+的结果是197600时,n 的值 . 类似的题目解:因为3a =12=3×4,4a =20=4×5,5a =30=5×6,……,a n =n ·(n+1),所以3451111n a a a a +++⋅⋅⋅+=13-14+14-15+15-16+……+1n -1n+1=13-1n+1,所以13-1n+1=197600,所以n=199.。