2019高一数学必修一作业本【答案】
- 格式:docx
- 大小:40.78 KB
- 文档页数:9
(新课标)2018-2019学年度苏教版高中数学必修一§1.1 集合的含义及其表示(1)课后训练【感受理解】1.给出下列命题(其中N 为自然数集) :①N 中最小的元素是1 ②若a ∈N 则-a ∉N ③ 若a ∈N,b ∈N ,则a+b 的最小值是2(4)x x 212=+的解可表示为}1,1{, 其中正确的命题个数为 . 2.用列举法表示下列集合.①小于12的质数构成的集合;②平方等于本身的数组成的集合;③由||||(,)a b a b R a b+∈所确定的实数的集合; ④抛物线221y x x =-+ (x 为小于5的自然数)上的点组成的集合.3. 若方程x 2-5x+6=0和方程x 2-x-2=0的解为元素的集合为M ,则M 中元素的个数为4.由2,2,4a a -组成一个集合A ,A 中含有3个元素,则a 的取值可以是【思考应用】5.由实数332,,,x x x x --所组成的集合里最多有 个元素.6. 由“,x xy 0,||,x y ”组成的集合是同一个集合,则实数,x y 的值是否确定的?若确定,请求出来,若不确定,说明理由.7.定义集合运算:},),({B y A x y x xy z z B A ∈∈+==Θ,设集合}3,2{},1,0{==B A ,求集合B A Θ.8.关于x 的方程20(0)ax bx c a ++=≠,当,,a b c 分别满足什么条件时,解集为空集、含一个元素、含两个元素?9. 已知集合{,}A x x m m Z N Z ==+∈∈.(1)证明:任何整数都是A 的元素;(2)设12,,x x A ∈求证:12,x x A ⋅∈【拓展提高】9.设S 是满足下列两个条件的实数所构成的集合: ①1S ∉,②若a S ∈,则11S a∈-, 请解答下列问题:(1)若2S ∈,则S 中必有另外两个数,求出这两个数;(2)求证:若a S ∈,则11S a-∈ (3)在集合S 中元素能否只有一个?请说明理由;(4)求证:集合S 中至少有三个不同的元素.§1.1集合的含义及其表示(2)课后训练1. 设a ,b ,c 均为非零实数,则x=||||||||a b c abc a b c abc+++的所有值为元素组成集合是________ 2. 集合}9,7,5,3,1{用描述法表示为 .3. 下列语句中,正确的是 .(填序号)(1)0与{0}表示同一个集合;(2)由1,2,3组成的集合可表示为{1,2,3}或{3,1,2};(3)方程0)2()1(22=--x x 的所有解的集合可表示为{1,1,2,2} (4)集合}54{<<x x 可以用列举法表示.4.所有被3整除的数用集合表示为 .5.下列集合中表示同一集合的是` (填序号)(1)M={3,2},N={2,3} (2)M={(3,2)},N={(2,3)}(3)M={(,)1},{(,)1}x y x y N y x x y +==+= (4) M={1,2},N={(1,2)}6.下列可以作为方程组⎩⎨⎧-=-=+13y x y x 的解集的是 (填序号) (1){1,2},x y ==(2){1,2}(3){(1,2)} (4){(,)12}(5){(,)12}x y x y x y x y ====且或(6)}0)2()1(),{(22=-+-y x y x7.用另一种方法表示下列集合.(1){绝对值不大于2的整数} (2){能被3整除,且小于10的正数}(3)}5,{Z x x x x x ∈<=且 (4)*},*,6),{(N y N x y x y x ∈∈=+(5){5,3,1,1,3--}8.已知{}{}0|,0|22=+-==++=q px x x B q px x x A .当{}2=A 时,求集合B9.用描述法表示图中阴影部分(含边界)的点的坐标集合.10.对于*,N b a ∈,现规定:⎩⎨⎧⨯+=)()(*的奇偶性不同与的奇偶性相同与b a b a b a b a b a ,集合{(,)*36,,*}M a b a b a b N ==∈ (1) 用列举法表示b a ,奇偶性不同时的集合M.(2) 当b a ,奇偶性相同时的集合M 中共有多少个元素?【拓展提高】11 设元素为正整数的集合A 满足“若x A ∈,则10x A -∈”.(1)试写出只有一个元素的集合A ;(2)试写出只有两个元素的集合A ;(3)这样的集合A 至多有多少个元素?(4)满足条件的集合A 共有多少个?§1.2 子集·全集·补集(1)课后训练【感受理解】1. 设M 满足{1,2,3}⊆M ≠⊂{1,2,3,4,5,6},则集合M 的个数为 2.下列各式中,正确的个数是 ①0={0};②0∈{0};③{1}∈{1,2,3};④{1,2}⊆{1,2,3};⑤{a ,b}⊆{a ,b}.3.设{|12}A x x =<< ,{|}B x x a =<,若A 是B 的真子集,则a 的取值范围是 .4.若集合A ={1,3,x},B ={x 2,1},且B ⊆A ,则满足条件的实数x 的个数为 .5.设集合M ={(x,y)|x+y<0,xy>0}和N ={(x,y)|x<0,y<0},那么M 与N 的关系为______________.6.集合A ={x|x=a 2-4a+5,a ∈R},B ={y|y=4b 2+4b+3,b ∈R} 则集合A 与集合B 的关系是________.【思考应用】7.设x ,y ∈R ,B={(x,y)|y-3=x-2},A={(x,y)|32y x --=1},则集合A 与B 的关系是_______ ____. 8.已知集合{}{}|21,,|41,,A x x n n Z B x x n n Z ==+∈==±∈则,A B 的关系是 .9.设集合{}{}21,3,,1,,1,A a B a a a ==-+,A B =若则________=a . 10.已知非空集合P 满足:(){}11,2,3,4;P ⊆()2,5a P a P ∈-∈若则,符合上述要求的集合P 有 个.11.已知A={2,4,x 2-5x+9},B={3,x 2+ax+a},C={x 2+(a+1)x-3,1}. 求(1)当A={2,3,4}时,求x 的值;(2)使2∈B ,B A ,求x a ,的值;(3)使B= C 的x a ,的值.【拓展提高】12.已知集合{}{},121|,52|-≤≤+=≤≤-=m x m x B x x A 满足,A B ⊆求实数m 的取值范围.⊂ ≠(变式)已知集合{}{}|25,|121,A x x B x m x m =-<<=+<<-满足,A B ⊆求实数m 的取值范围.§1.2 子集·全集·补集(2)课后训练【感受理解】1.设集合{}{},,3|,,4|22R b b y y B R a a x x A ∈+-==∈+-==则A ,B 间的关系为 . 2若U={x|x 是三角形},P={x|x 是直角三角形}则U C P = . 3已知全集+=R U ,集合{}|015,,A x x x R =<-≤∈则_______.U C A = 4.已知全集}{非零整数=U ,集合}},42{U x x x A ∈>+=,则=A C U .5.设},61{},,5{N x x x B N x x x A ∈<<=∈≤=,则=B C A .【思考应用】6.设全集U={1,2,3,4,5},M={1,4},则U C M 的所有子集的个数是 .7.已知全集},21{*N n x x U n ∈==,集合}*,21{2N n x x A n∈==,则=A C U .8.已知A A y ax y x A Z a ∉-∈≤-=∈)4,1(,)1,2(}3),{(,且,则满足条件a 的值为 .9.设U=R ,}1{},31{+≤≤=≥≤=m x m x B x x x P 或,记所有满足P C B U ⊆的m 组成的集合为M ,求M C U .10.(1)设全集{}{},1|,1|,+>=≤==a x x B x x A R U 且U C A B ⊆,求a 的范围.(2)已知全集{}{}{}22,3,23,2,,5,U U a a A b C A =+-==求实数b a 和的值.【拓展提高】10.已知全集}5{的自然数不大于=U ,集合}1,0{=A ,}1{<∈=x A x x B 且,}1{U x A x x C ∈∉-=且.(1)求U B ,U C .(2)若}{A x x D ∈=,说明D B A ,,的关系.§1.3 交集·并集(1)课后训练【感受理解】1.设全集{1,2,3,4,5},{1,3,5},{2,4,5}U A B ===,则()()U U C A C B = . 2.设集合{|5,},{|1,}A x x x N B x x x N =≤∈=>∈,那么AB = . 3.若集合22{|21,},{|21,}P y y x x x N Q y y x x x N ==+-∈==-+-∈,则下列各式中正确的是 .(1);(2){0};(3){1};(4)P Q P Q P Q P Q N =∅==-=4.已知集合A={x|-5<x<5},B={x|-7<x<a},C={x|b<x<2},且A ∩B=C ,则 a ,b 的值分别为 .【思考应用】5.设全集U={1,2,3,4},A 与B 是U 的子集,若A ∩B ={1,3 },则称(A,B)为一个“理想配集”.(若A =B ,规定(A,B)=(B, A);若A ≠B ,规定(A,B)与(B, A)是两个不同的“理想配集”).那么符合此条件的“理想配集”的个数是 .6.记{}{},361T ,的三角形,至少有一内角为至少有一边为等腰三角形。
[基础巩固](25分钟,60分)一、选择题(每小题5分,共25分)1.已知集合A={x|x≥-3},B={x|-5≤x≤2},则A∪B=( ) A.{x|x≥-5} B.{x|x≤2}C.{x|-3<x≤2} D.{x|-5≤x≤2}解析:结合数轴(图略)得A∪B={x|x≥-5}.答案A2.已知集合M={0,1,2},N={x|x=2a-1,a∈N*},则M∩N=( )A.{0} B.{1,2}C.{1} D.{2}解析:因为N={1,3,5,…},M={0,1,2},所以M∩N={1}.答案:C3.设集合A={(x,y)|x+y=1},B={(x,y)|2x-y=-4},则A∩B 等于( )A.{x=-1,y=2} B.(-1,2)C.{-1,2} D.{(-1,2)}解析:由Error!得Error!所以A∩B={(-1,2)},故选D.答案:D4.已知集合A={1,2,3},B={x|(x+1)(x-2)<0,x∈Z},则A∪B=( )A.{1} B.{1,2}C.{0,1,2,3} D.{-1,0,1,2,3}解析:B={x|(x+1)(x-2)<0,x∈Z}={x|-1<x<2,x∈Z}={0,1},又A={1,2,3},所以A∪B={0,1,2,3}.答案:C5.设集合A={x|-1≤x<2},B={x|x<a},若A∩B≠?,则a的取值范围是( )A.a<2 B.a>-2C.a>-1 D.-1<a≤2解析:在数轴上表示出集合A,B即可得a的取值范围为a>-1.答案:C二、填空题(每小题5分,共15分)6.设集合A ={x|2≤x<5},B ={x|3x -7≥8-2x},则A ∩B =________.解析:∵A ={x|2≤x<5},B ={x|3x -7≥8-2x}={x|x ≥3},∴A ∩B ={x|3≤x<5}.答案:{x|3≤x<5}7.设集合A ={1,2,a},B ={1,a 2},若A ∩B =B ,则实数a 允许取的值有________个.解析:由题意A ∩B =B 知B?A ,所以a 2=2,a =±,或a 2=a ,a 2=0或a =1(舍去),所以a =±,0,共3个.2答案:38.已知集合A ={x|x ≤1},B ={x|x ≥a},且A ∪B =R ,则实数a 的取值范围为________.解析:由A ∪B =R ,得A 与B 的所有元素应覆盖整个数轴.如图所示:所以a 必须在1的左侧,或与1重合,故a ≤1.答案:{a|a ≤1}三、解答题(每小题10分,共20分)9.设A ={x|-1<x<2},B ={x|1<x<3},求A ∪B ,A ∩B.解析:如图所示:A ∪B ={x|-1<x<2}∪{x|1<x<3}={x|-1<x<3}.A ∩B ={x|-1<x<2}∩{x|1<x<3}={x|1<x<2}.10.已知集合A ={x|x 2+x -6=0},B ={x|mx +1=0},若B?A ,求实数m 的取值范围.解析:由x 2+x -6=0,得A ={-3,2},∵B?A ,且B 中元素至多一个,∴B ={-3},或B ={2},或B =?.(1)当B ={-3}时,由(-3)m +1=0,得m =;13(2)当B ={2}时,由2m +1=0,得m =-;12(3)当B =?时,由mx +1=0无解,得m =0.∴m =或m =-或m =0.1312[能力提升](20分钟,40分)11.设A={x|-3≤x≤3},B={y|y=-x2+t}.若A∩B=?,则实数t的取值范围是( )A.t<-3 B.t≤-3C.t>3 D.t≥3解析:B={y|y≤t},结合数轴可知t<-3.答案:A12.定义A-B={x|x∈A,且x?B},若M={1,2,3,4,5},N={2,3,6},则N-M=________.解析:关键是理解A-B运算的法则,N-M={x|x∈N,且x?M},所以N-M={6}.答案:{6}13.设A ={x|x 2-2x =0},B ={x|x 2-2ax +a 2-a =0}.(1)若A ∩B =B ,求a 的取值范围;(2)若A ∪B =B ,求a 的值.解析:由x 2-2x =0,得x =0或x =2.所以A ={0,2}.(1)因为A ∩B =B ,所以B?A ,B =?,{0},{2},{0,2}.当B =?时,Δ=4a 2-4(a 2-a)=4a<0,所以a<0.当B ={0}或{2}时,则Error!?a =0,或Error!无解,所以a =0,B ={0,2},则Error!?a =1,综上,a 的取值范围为{a|a ≤0或a =1}.(2)因为A ∪B =B ,所以A?B ,所以B ={0,2},所以a =1.14.已知集合A ={x|2m -1<x<3m +2},B ={x|x ≤-2或x ≥5},是否存在实数m ,使A ∩B ≠??若存在,求实数m 的取值范围;若不存在,请说明理由.解析:若A ∩B =?,分A =?和A ≠?讨论:(1)若A =?,则2m -1≥3m +2,解得m ≤-3,此时A ∩B =?;(2)若A ≠?,要使A ∩B =?,则应有Error!即Error!所以-≤m ≤1.12综上,当A ∩B =?时,m ≤-3或-≤m ≤1,12所以当m 取值范围为时,{m|-13<m <-12或m >1}A ∩B ≠?.。
第二章函数第2.2节函数的表示方法解析版一.选择题(共12小题)1.国家统计局统计了我国近10年(2009年2018年)的GDP(GDP是国民经济核算的核心指标,也是衡量一个国家或地区总体经济状况的重要指标)增速的情况,并绘制了下面的折线统计图.根据该折线统计图,下面说法错误的是()A.这10年中有3年的GDP增速在9.00%以上B.从2010年开始GDP的增速逐年下滑C.这10年GDP仍保持6.5%以上的中高速增长D.2013年﹣2018年GDP的增速相对于2009年﹣2012年,波动性较小【答案】:B【解析】解:由图可知,这10年中有3年的GDP增速在9.00%以上,故A正确,由图可知,从2010年开始GDP的增速逐年下滑,故B错误,由图可知,这10年GDP仍保持6.5%以上的中高速增长,故C正确,由图可知2013年﹣2018年GDP的增速相对于2009年﹣2012年,波动性较小,故D正确,故选:B.2.某商场一年中各月份的收入、支出情况的统计如图所示,下列说法中正确的是()A.支出最高值与支出最低值的比是8:1B.4至6月份的平均收入为50万元C.利润最高的月份是2月份D.2至3月份的收入的变化率与11至12月份的收入的变化率相同【答案】:D【解析】解:由图可知,支出最高值为60万元,支出最低值为10万元,其比是5:1,故A错误,由图可知,4至6月份的平均收入为(50+30+40)=40万元,故B错误,由图可知,利润最高的月份为3月份和10月份,故C错误,由图可知2至3月份的收入的变化率与11至12月份的收入的变化率相同,故D正确,故选:D.3.樟村中学将于近期召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于5时再增选一名代表.那么,各班可推选代表人数y与该班人数x之间的函数关系用取整函数y=[x]([x]表示不大于x的最大整数)可以表示为()A.y=[]B.y=[]C.y=D.y=【答案】:C【解析】解:根据规定10推选一名代表,当各班人数除以10的余数大于6时再增加一名代表,即余数分别为6,7,8,9时可以增选一名代表,也就是x要进一位,所以最小应该加4.因此利用取整函数可表示为y=[];故选:C.4.可作为函数y=f(x)的图象的是()A.B.C.D.【答案】:D【解析】解:由函数的定义可知:每当给出x的一个值,则f(x)有唯一确定的实数值与之对应,只有D符合.故正确答案为D.故选:D.5.已知函数y=,若f(a)=10,则a的值是()A.3或﹣3B.﹣3或5C.﹣3D.3或﹣3或5【答案】:B【解析】解:若a≤0,则f(a)=a2+1=10∴a=﹣3(a=3舍去)若a>0,则f(a)=2a=10∴a=5综上可得,a=5或a=﹣3故选:B.6.若函数f(x)满足f(3x+2)=9x+8,则f(x)是()A.f(x)=9x+8B.f(x)=3x+2C.f(x)=﹣3x﹣4D.f(x)=3x+2或f(x)=﹣3x﹣4【答案】:B【解析】解:令t=3x+2,则x=,所以f(t)=9×+8=3t+2.所以f(x)=3x+2.故选:B.7.若f(2x+1)=6x+5,则f(x)的解析式是()A.f(x)=3x+2B.f(x)=3x+1C.f(x)=3x﹣1D.f(x)=3x+4【答案】:A【解析】解:令2x+1=t,∴;∴f(t)=3(t﹣1)+5=3t+2;∴f(x)=3x+2.故选:A.8.已知f(x+1)=x2+6x+5,则f(x)的表达式是()A.f(x)=x2+4x B.f(x)=x2+6x﹣4C.f(x)=x2+3x﹣8D.f(x)=x2+4x﹣4【答案】:A【解析】解:∵f(x+1)=x2+6x+5=(x+1)2+4(x+1);∴f(x)=x2+4x.故选:A.9.已知f(x+2)=4x+3,则f(x)=()A.4x﹣5B.4x+5C.4x+13D.4x﹣13【答案】:A【解析】解:f(x+2)=4x+3=4(x+2)﹣5;∴f(x)=4x﹣5.故选:A.10.为更好实施乡村振兴战略,加强村民对本村事务的参与和监督,根据《村委会组织法》,某乡镇准备在各村推选村民代表.规定各村每15户推选1人,当全村户数除以15所得的余数大于10时再增加1人.那么,各村可推选的人数y与该村户数x之间的函数关系用取整函数y=[x]([x]表示不大于x的最大整数)可以表示为()A.y=[]B.y=[]C.y=[]D.y=[]【答案】:B【解析】解:根据规定15推选一名代表,当各班人数除以15的余数大于10时再增加一名代表,即余数分别为11,12,13,14时可以增选一名代表,也就是x要进一位,所以最小应该加4.因此利用取整函数可表示为y=[].故选:B.11.若函数f(x)对于任意实数x恒有f(x)﹣2f(﹣x)=3x﹣1,则f(x)等于()A.x+1B.x﹣1C.2x+1D.3x+3【答案】:A【解析】解:函数f(x)对于任意实数x恒有f(x)﹣2f(﹣x)=3x﹣1,令x=﹣x,则:f(﹣x)﹣2f(x)=3(﹣x)﹣1.则:,解方程组得:f(x)=x+1.故选:A.12.若f(x)满足关系式f(x)+2f()=3x,则f(2)的值为()A.1B.﹣1C.﹣D.【答案】:B【解析】解:∵f(x)满足关系式f(x)+2f()=3x,∴,①﹣②×2得﹣3f(2)=3,∴f(2)=﹣1,故选:B.二.填空题(共10小题)13.已知,则函数f(3)=11.【答案】:11【解析】解:令x﹣=t,t2=x2+﹣2,∴f(t)=t2+2,∴f(3)=32+2=11;故答案为11.14.已知,那么f(x)的解析式为(x≠﹣1,x≠0).【答案】:(x≠﹣1,x≠0).【解析】解:由可知,函数的定义域为{x|x≠0,x≠﹣1},取x=,代入上式得:f(x)==,故答案为:(x≠﹣1,x≠0).15.已知f(x+1)=2x2+1,则f(x﹣1)=.【答案】:2x2﹣8x+9.【解析】解:设x+1=t,则x=t﹣1,f(t)=2(t﹣1)2+1=2t2﹣4t+3,f(x﹣1)=2(x﹣1)2﹣4(x﹣1)+3=2x2﹣4x+2﹣4x+4+3=2x2﹣8x+9.故答案:2x2﹣8x+9.16.已知f(x+1)=x2,则f(x)=.【答案】:(x﹣1)2【解析】解:由f(x+1)=x2,得到f(x+1)=(x+1﹣1)2,故f(x)=(x﹣1)2.故答案为:f(x)=(x﹣1)2.17.设函数f(x)=,若f(x0)=8,则x0=.【答案】:4或【解析】解:由题意,得①当x0≤2时,有x02+2=8,解之得x0=±,而>2不符合,所以x0=﹣;②当x0>2时,有2x0=8,解之得x0=4.综上所述,得x0=4或.故答案为:4或.18.已知函数f(x)是一次函数,且f[f(x)]=3x+2,则一次函数f(x)的解析式为【答案】:f(x)=或f(x)=..【解析】解:∵函数f(x)是一次函数,∴设f(x)=kx+b,(k≠0).∴f(f(x))=k(kx+b)+b=k2x+kb+b=3x+2,∴,解得或,故答案为:f(x)=或f(x)=.19.已知f(x+1)=x2+2x+2,则f(x)的解析式为【答案】:f(x)=x2+1.【解析】解:f(x+1)=x2+2x+2=(x+1)2+1,则f(x)=x2+1,故答案为:f(x)=x2+1.20.若f(2x)=3x2+1,则函数f(x)的解析式是.【答案】:【解析】解:f(2x)=3x2+1=,可得.故答案为:.21.已知函数f(x)=3x+2,则f(x+1)=.【答案】:3x+5【解析】解:∵函数f(x)=3x+2,∴将上式中的“x”用“x+1”代入f(x+1)=3(x+1)+2=3x+5.故答案为:3x+5.22.已知:f(x﹣)=x2+,则f(x)=.【答案】:x2+2【解析】解:∵,∴f(x)=x2+2.故答案为:x2+2.三.解答题(共1小题)23.已知函数y=|x+1|+|1﹣x|.(1)用分段函数形式写出函数的解析式;(2)画出该函数的大致图象.【解析】解:(1)函数y=|x+1|+|1﹣x|=(2)据(1)的函数的解析式画出图象如图所示:。
课时作业(七)(第一次作业)1.(2015·广东,理)若集合M={x|(x+4)(x+1)=0},N={x|(x-4)(x-1)=0},则M∩N=() A.{1,4} B.{-1,-4}C.{0}D.∅答案 D2.设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素的个数为()A.3B.4C.5D.6答案 A3.集合M={x|x=1+a2,a∈N*},P={x|x=a2-4a+5,a∈N*},则下列关系中正确的是() A.M P B.P MC.M=PD.M P且P M答案 A解析P={x|x=1+(a-2)2,a∈N*},当a=2时,x=1而M中无元素1,P比M多一个元素.4.设U=R,A={x|x>0},B={x|x>1},则A∩(∁U B)=()A.{x|0≤x≤1}B.{x|0<x≤1}C.{x|x<0}D.{x|x>1}答案 B5.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩(∁N B)=()A.{1,5,7}B.{3,5,7}C.{1,3,9}D.{1,2,3}答案 A6.已知方程x2-px+15=0与x2-5x+q=0的解集分别为S与M,且S∩M={3},则p+q 的值是()A.2B.7C.11D.14答案 D解析 由交集定义可知,3既是集合S 中的元素,也是集合M 中的元素.亦即是方程x 2-px +15=0与x 2-5x +q =0的公共解,把3代入两方程,可知p =8,q =6,则p +q 的值为14.7.已知全集R ,集合A ={x|(x -1)(x +2)(x -2)=0},B ={y|y ≥0},则A ∩(∁R B)为( ) A.{1,2,-2} B.{1,2} C.{-2} D.{-1,-2}答案 C解析 A ={1,2,-2},而B 的补集是{y|y<0},故两集合的交集是{-2},选C. 8.集合P ={1,4,9,16,…},若a ∈P ,b ∈P ,则a ⊕b ∈P ,则运算⊕可能是( ) A.除法 B.加法 C.乘法 D.减法 答案 C解析 当⊕为除法时,14∉P ,∴排除A ;当⊕为加法时,1+4=5∉P ,∴排除B ;当⊕为乘法时,m 2·n 2=(mn)2∈P ,故选C ; 当⊕为减法时,1-4∉P ,∴排除D.9.设全集U =Z ,集合P ={x|x =2n ,n ∈Z },Q ={x|x =4m ,m ∈Z },则U 等于( ) A.P ∪Q B.(∁U P)∪Q C.P ∪(∁U Q) D.(∁U P)∪(∁U Q) 答案 C10.设S ,P 为两个非空集合,且S P ,PS ,令M =S ∩P ,给出下列4个集合:①S ;②P ;③∅;④S ∪P.其中与S ∪M 能够相等的集合的序号是( ) A.① B.①② C.②③ D.④答案 A11.设集合I ={1,2,3},A 是I 的子集,若把满足M ∪A =I 的集合M 叫做集合A 的“配集”,则当A ={1,2}时,A 的配集的个数是( ) A.1 B.2 C.3 D.4 答案 D解析 A 的配集有{3},{1,3},{2,3},{1,2,3}共4个. 12.已知集合A ,B 与集合A@B 的对应关系如下表:________.答案 {2 012,2 013}13.已知A ={2,3},B ={-4,2},且A ∩M ≠∅,B ∩M =∅,则2________M ,3________M. 答案 ∉ ∈解析 ∵B ∩M =∅,∴-4∉M ,2∉M. 又A ∩M ≠∅且2∉M ,∴3∈M.14.若集合A ={1,3,x},B ={1,x 2},且A ∪B ={1,3,x},则x =________. 答案 ±3或0解析 由A ∪B ={1,3,x},B A ,∴x 2∈A.∴x 2=3或x 2=x. ∴x =±3或x =0,x =1(舍).15.已知S ={a ,b},A ⊆S ,则A 与∁S A 的所有有序组对共有________组. 答案 4解析 S 有4个子集,分别为∅,{a},{b},{a ,b}注意有序性.⎩⎪⎨⎪⎧A ={a},∁S A ={b}和⎩⎪⎨⎪⎧A ={b},∁S A ={a}是不同的.16.已知A ⊆M ={x|x 2-px +15=0,x ∈R },B ⊆N ={x|x 2-ax -b =0,x ∈R },又A ∪B ={2,3,5},A ∩B ={3},求p ,a 和b 的值.解析 由A ∩B ={3},知3∈M ,得p =8.由此得M ={3,5},从而N ={3,2},由此得a =5,b =-6.(第二次作业)1.(2014·北京,理)已知集合A={x|x2-2x=0},B={0,1,2},则A∩B=()A.{0}B.{0,1}C.{0,2}D.{0,1,2}答案 C解析解x2-2x=0,得x=0或x=2,故A={0,2},所以A∩B={0,2},故选C.2.(高考真题·全国Ⅰ)已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有()A.2个B.4个C.6个D.8个答案 B解析由题意得P=M∩N={1,3},∴P的子集为∅,{1},{3},{1,3},共4个,故选B.3.设集合A={x∈Z|0≤x≤5},B={x|x=k2,k∈A},则集合A∩B=()A.{0,1,2}B.{0,1,2,3}C.{0,1,3}D.B答案 A4.设M={1,2,m2-3m-1},P={1,3},且M∩P={1,3},则m的值为()A.4B.-1C.-4或1D.-1或4答案 D5.已知集合M={x|y=x2-1},N={y|y=x2-1},那么M∩N等于()A.∅B.NC.MD.R答案 B解析∵M=R,N={y|y≥-1},∴M∩N=N.6.若A∪B=∅,则()A.A=∅,B≠∅B.A≠∅,B=∅C.A=∅,B=∅D.A≠∅,B≠∅答案 C7.设集合A={x|x∈Z且-15≤x≤-2},B={x|x∈Z且|x|<5},则A∪B中的元素个数是() A.10 B.11C.20D.21答案 C解析 ∵A ∪B ={x|x ∈Z 且-15≤x<5}={-15,-14,-13,…,1,2,3,4},∴A ∪B 中共20个元素.8.已知全集U ={0,1,2}且∁U A ={2},则集合A 的真子集的个数为( ) A.3 B.4 C.5 D.6答案 A解析 ∵A ={0,1},∴真子集的个数为22-1=3.9.如果U ={x|x 是小于9的正整数},A ={1,2,3,4},B ={3,4,5,6},那么(∁U A)∩(∁U B)等于()A.{1,2}B.{3,4}C.{5,6}D.{7,8}答案 D解析 ∵∁U A ={5,6,7,8},∁U B ={1,2,7,8},∴(∁U A)∩(∁U B)={7,8}. 10.已知集合P ={x|-1≤x ≤1},M ={-a ,a},若P ∪M =P ,则a 的取值范围是( ) A.{a|-1≤a ≤1} B.{a|-1<a<1}C.{a|-1<a<1,且a ≠0}D.{a|-1≤a ≤1,且a ≠0}答案 D解析 由P ∪M =P ,得M ⊆P.所以⎩⎪⎨⎪⎧-1≤a ≤1,-1≤-a ≤1,即-1≤a ≤1.又由集合元素的互异性知-a ≠a ,即a ≠0, 所以a 的取值范围是{a|-1≤a ≤1,且a ≠0}.11.若A ,B ,C 为三个集合,且A ∪B =B ∩C ,则一定有( ) A.A ⊆C B.C ⊆A C.A ≠C D.A =∅答案 A12.已知集合A ={1,2,3},B ={2,m ,4},A ∩B ={2,3},则m =________. 答案 313.集合A 含有10个元素,集合B 含有8个元素,集合A ∩B 含有3个元素,则集合A ∪B 有________个元素. 答案 15解析 由A ∩B 含有3个元素知,仅有3个元素相同,根据集合元素的互异性,集合的元素个数为10+8-3=15,或直接利用韦恩图得出结果.14.已知集合A={-1,2},B={x|mx+1>0},若A∪B=B,求实数m的取值范围.思路首先根据题意判断出A与B的关系,再对m分类讨论化简集合B,根据A,B的关系求出m的范围.解析∵A∪B=B,∴A⊆B.①当m>0时,由mx+1>0,得x>-1m,此时B={x|x>-1m},由题意知-1m<-1,∴0<m<1.②当m=0时,B=R,此时A⊆B.③当m<0时,得B={x|x<-1m},由题意知-1m>2,∴-12<m<0.综上:-12<m<1.点评在解有关集合交、并集运算时,常会遇到A∩B=A,A∪B=B等这类问题.解答时应充分利用交集、并集的有关性质,准确转化条件,有时也借助数轴分析处理,另外还要注意“空集”这一隐含条件.已知全集U={a,1,3,b,x2-2=0},集合A={a,b},则∁U A=________.答案{1,3,x2-2=0}解析在全集U中除去A中的元素后所组成的集合即为∁U A,故∁U A={1,3,x2-2=0}.1.(2015·新课标全国Ⅰ,文)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5B.4C.3D.2答案 D2.(2015·天津,理)已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩(∁U B)=()A.{2,5}B.{3,6}C.{2,5,6}D.{2,3,5,6,8}答案 A3.(2016·天津)已知集合A={1,2,3,4},B={y|y=3x-2,x∈A},则A∩B=()A.{1}B.{4}C.{1,3}D.{1,4}答案 D解析由题意得,B={1,4,7,10},所以A∩B={1,4}.4.(2014·辽宁)已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1}答案 D解析∵A∪B={x|x≤0或x≥1},∴∁U(A∪B)={x|0<x<1},故选D.5.(2013·山东,文)已知集合A,B均为全集U={1,2,3,4}的子集,且∁U(A∪B)={4},B ={1,2},则A∩(∁U B)=()A.{3}B.{4}C.{3,4}D.∅答案 A解析由题意知A∪B={1,2,3},又B={1,2},所以A中必有元素3,没有元素4,∁U B ={3,4},故A∩(∁U B)={3}.6.(2013·课标全国)已知集合A={1,2,3,4},B={x|x=n2,n∈A},A∩B=()A.{1,4}B.{2,3}C.{9,16}D.{1,2}答案 A7.(2013·山东)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是() A.1 B.3C.5D.9答案 C解析逐个列举可得.x=0,y=0,1,2时,x-y=0,-1,-2;x=1,y=0,1,2时,x -y=1,0,-1;x=2,y=0,1,2时,x-y=2,1,0.根据集合中元素的互异性可知集合B的元素为-2,-1,0,1,2.共5个.8.(2013·天津)已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(-∞,2]B.[1,2]C.[-2,2]D.[-2,1]答案 D解析解不等式|x|≤2,得-2≤x≤2,所以A=[-2,2],所以A∩B=[-2,1].9.(2012·福建)已知集合M={1,2,3,4},N={-2,2},下列结论成立的是()A.N⊆MB.M∪N=MC.M∩N=ND.M∩N={2}答案 D解析A项,M={1,2,3,4},N={-2,2},M与N显然无包含关系,故A错.B项同A项,故B项错.C项,M∩N={2},故C错,D对.10.(2012·湖北)已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为()A.1B.2C.3D.4答案 D解析A={1,2},B={1,2,3,4},A⊆C⊆B,则集合C的个数为24-2=22=4,即C={1,2},{1,2,3},{1,2,4},{1,2,3,4}.故选D.11.(2012·山东)已知集合U={0,1,2,3,4},集合A={1,2,3,4},B={2,4},则(∁U A)∪B 为()A.{1,2,4}B.{2,3,4}C.{0,2,4}D.{0,2,3,4}答案 C解析由题意知∁U A={0},又B={2,4},∴(∁U A)∪B={0,2,4},故选C.12.(2014·重庆,理)设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,∁U A∩B=________.9},则()答案{7,9}解析由题意,得U={1,2,3,4,5,6,7,8,9,10},故∁U A={4,6,7,9,10},(∁U A)∩B ={7,9}.1.(2014·大纲全国理改编)设集合M={x|x2-3x-4<0},N={x|0≤x≤5},则M∩(∁R N)=() A.(0,4] B.[0,4)C.[-1,0)D.(-1,0)答案 D解析∵M={x|x2-3x-4<0}={x|-1<x<4},N={x|0≤x≤5},∴∁R N={x|x<0或x>5}.∴M∩(∁R N)={x|-1<x<0}.2.(2014·江西,文)设全集为R,集合A={x|x2-9<0},B={x|-1<x≤5},则A∩(∁R B)=() A.(-3,0) B.(-3,-1)C.(-3,-1]D.(-3,3)答案 C解析由题意知,A={x|x2-9<0}={x|-3<x<3},∵B={x|-1<x≤5},∴∁R B={x|x≤-1或x>5}.∴A ∩(∁R B)={x|-3<x<3}∩{x|x ≤-1或x>5}={x|-3<x ≤-1}.3.(2010·北京)集合P ={x ∈Z |0≤x<3},M ={x ∈R |x 2≤9},则P ∩M =( ) A.{1,2} B.{0,1,2} C.{x|0≤x<3} D.{x|0≤x ≤3}答案 B4.(2016·浙江)已知集合P ={x ∈R |1≤x ≤3},Q ={x ∈R |x 2≥4},则P ∪(∁R Q)=( ) A.[2,3] B.(-2,3]C.[1,2)D.(-∞,-2]∪[1,+∞) 答案 B解析 由于Q ={x|x ≤-2或x ≥2},∁R Q ={x|-2<x<2},故得P ∪(∁R Q)={x|-2<x ≤3}.选B.5.(2014·四川,文)已知集合A ={x|(x +1)(x -2)≤0},集合B 为整数集,则A ∩B =( ) A.{-1,0} B.{0,1}C.{-2,-1,0,1}D.{-1,0,1,2} 答案 D解析 由二次函数y =(x +1)(x -2)的图像可以得到不等式(x +1)(x -2)≤0的解集A =[-1,2],属于A 的整数只有-1,0,1,2,所以A ∩B ={-1,0,1,2},故选D.6.(2012·北京)已知集合A ={x ∈R |3x +2>0},B ={x ∈R |(x +1)(x -3)>0},则A ∩B =( ) A.(-∞,-1) B.(-1,-23)C.(-23,3)D.(3,+∞)答案 D解析 A ={x|x>-23},B ={x|x>3或x<-1},则A ∩B ={x|x>3},故选D.。
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|ax=x2},B={0,1,2},若A⊆B,则实数a的取值个数为()A.3B.2C.1D.02.下列不等式中,正确的是()A.若a>b,则a2>b2B.若a>b,则c﹣a<c﹣bC.若a>b,c>d,e>f,则ace>bdfD.若a>b,c>d,e>f,则ac>bd>ef3.已知P=a2+2b+3,Q=﹣b2+4a﹣2,则P,Q的大小关系是()A.P>Q B.P<Q C.P≥Q D.P≤Q4.若实数a,b满足ab>0,则a2+b2+12ab+1的最小值为()A.2B.3C.4D.55.若方程x2+(1﹣k)x﹣2(k+1)=0的一个根在区间(2,3)内,则实数k的取值范围是()A.(3,4)B.(2,3)C.(1,3)D.(1,2)6.已知对数函数y=log a x(a>0,a≠1)的图象经过点P(3,﹣1),则幂函数y=x a的图象是()A.B.C.D.7.函数f(x)=x﹣3+e x的零点所在的区间是()A.(0,1)B.(1,3)C.(3,4)D.(4,+∞)8.下列式子成立的是()A.a√−a=√−a3B.a√−a=−√−a3C.a√−a=√a3D.a√−a=−√a3二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求的.全部选对的得5分,部分选对的得3分,有选错的得0分.9.设函数f(x)=2x,对于任意的x1,x2(x1≠x2),下列命题中正确的是()A.f(x1+x2)=f(x1)•f(x2)B.f(x1•x2)=f(x1)+f(x2)C.f(x1)−f(x2)x1−x2>0D.f(x1+x22)<f(x1)+f(x2)210.已知α是第三象限角,则α2可能是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角高一年级数学学科假期作业使用日期:假期作业1编辑:校对:审核:11.已知扇形的周长是6cm ,面积是2cm 2,下列选项正确的有( ) A .圆的半径为2cm B .圆的半径为1cm C .圆心角的弧度数是1 D .圆心角的弧度数是212.下列各式中正确的是( )A .若角α和β的终边关于x 轴对称,sin α=sin βB .若角α和β的终边关于y 轴对称,cos α=cos βC .若角α和β的终边关于原点对称,tan α=tan βD .若角α和β的终边相同,cos (π+α)=cos (π﹣β) 三、填空题:本题共4小题,每小题5分,共20分.13.已知sin(π2+θ)=−45,θ是第二象限角,则tan θ= .14.若tan α=12,则sinα−cosαsinα−2cosα= .15.如图所示,某学校要在长为8米,宽为6米的一块矩形地面上进行绿化,计划四周种花卉,花卉带的宽度相同,均为x 米,中间植草坪.为了美观,要求草坪的面积大于矩形土地面积的一半,则x 的取值范围为 .16.已知函数f(x)={1x ,x ≥1x 3,x <1,若关于x 的方程f (x )=k 有两个不同零点,则k 的取值范围是 .四、解答题:本题共6个小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知集合A ={x ||x ﹣2|≤1},B ={x|x+1x−2>0}.(1)求A ∩B ; (2)求(∁R A )∪B .18.设m 为实数,函数y =(m +1)x 2﹣mx +m ﹣1,分别根据以下条件求实数m 的取值范围. (1)方程y =0有实根; (2)不等式y >0的解集为∅.19.若正实数x ,y 满足2x +y +a =xy . (1)若a =0,求x +y 的最小值; (2)若a =6,求xy 的最小值20.比较下列各题中两个值的大小(1)lg0.6,lg0.8;(2)log0.56,log0.54;(3)log m5,log m7.21.已知α是锐角,且f(α)=sin(π−α)cos(2π−α)tan(−α−π) tan(π+α)sin(−π−α).(1)化简f(α);(2)若cos(α−32π)=−15,求f(α)的值.22.某市乘出租车计费规定:2公里以内5元,超过2公里不超过8公里的部分按每公里1.6元计费,超过8公里以后按每公里2.4元计费.(1)写出乘出租车所走公里数x与乘车费y的函数关系y=f(x).(2)若甲、乙两地相距10公里,则乘出租车从甲地到乙地共需要支付乘车费为多少元?(1)求实数a,b的值;假期作业1答案1.解:由题意可得,当a≠0时,A={a,0},B={0,1,2},若A⊆B,,则a=1或a=2,当a=0时,A={0},满足条件,综上可得,a=0,1,2共3个.故选:A.2.解:A.a>b得不出a2>b2,比如a=2,b=﹣3,∴该选项错误;B.∵a>b,∴﹣a<﹣b,∴c﹣a<c﹣b.该选项正确;C.a>b,c>d,e>f得不出ace>bdf,比如,a=1,b=﹣2,c=2,d=﹣3,e=2,f=1,∴该选项错误;D.a>b,c>d,e>f得不出ac>bd>ef,比如,a=1,b=﹣6,c=1,d=﹣2,e=6,f=1.故选:B.3.解:P=a2+2b+3,Q=﹣b2+4a﹣2,则P﹣Q=a2+2b+3﹣(﹣b2+4a﹣2)=(a﹣2)2+(b+1)2,∵(a﹣2)2≥0,(b+1)2≥0,∴P﹣Q≥0,∴P≥Q,故选:C.4.解:因为ab>0,则a2+b2+12ab+1≥2ab+12ab+1,当且仅当a=b时取等号,≥2√2ab⋅12ab+1=3,当且仅当2ab=12ab且a=b时取等号,即a=b=√22时取等号,此时取得最小值3.故选:B.5.解:若方程x2+(1﹣k)x﹣2(k+1)=0有两相等的实根,则△=(1﹣k)2+8(k+1)=0,解得:k=﹣3,此时x=﹣2,不在区间(2,3)内,令f(x)=x2+(1﹣k)x﹣2(k+1),若方程x2+(1﹣k)x﹣2(k+1)=0有两不相等的实根,且一个根在区间(2,3)内,则f(2)f(3)<0,即(4﹣4k)(10﹣5k)<0,解得:k∈(1,2),故选:D.6.解:∵对数函数y=log a x(a>0,a≠1)的图象经过点P(3,﹣1),∴﹣1=log a3,∴a=13,故幂函数y=xa=√x3,它的图象如图D所示,故选:D.7.解:根据函数f(x)=x﹣3+e x的解析式,所以f(0)=0﹣3+1=﹣2<0,f(1)=1﹣3+e>0,f(3)=3﹣3+e3>0,f(4)=4﹣3+e4>0,所以f(0)•f(1)<0,故函数的零点所在的区间为(0,1).故选:A.8.解:要使a√−a有意义,则a<0,∴a√−a=−√−a⋅a2=−√−a3.故选:B.9.解:2x1⋅2x2=2x1+x2,所以A成立,2x1+⋅2x2≠2x1⋅x2,所以B不成立,函数f(x)=2x,在R上是单调递增函数,若x1>x2则f(x1)>f(x2),则f(x1)−f(x2)x1−x2>0,若x1<x2则f(x1)<f(x2),则f(x1)−f(x2)x1−x2>0,故C正确f(x1+x22)<f(x1)+f(x2)2说明函数是凹函数,而函数f(x)=2x是凹函数,故D正确故选:ACD.10.解:因为α是第三象限角,所以2k π+π<α<2k π+3π2,k ∈Z ,∴k π+π2<α2<k π+3π4,k ∈Z ,当k 为偶数时,α2是第二象限角;当k 为奇数时,α2是第四象限角,故选:BD .11.解:设扇形半径为r ,圆心角弧度数为α, 则由题意得{2r +αr =612αr 2=2,解得:{r =1α=4,或{r =2α=1,可得圆心角的弧度数是4,或1.故选:ABC .12.解:由角α和β的终边关于x 轴对称,可知β=﹣α+2k π(k ∈Z ),故sin α=﹣sin β,故A 错误;角α和β的终边关于y 轴对称,可知β=π﹣α+2k π(k ∈Z ),cos α=﹣cos β,故B 错误; 角α和β的终边关于原点对称,可知β=π+α+2k π(k ∈Z ),得tan α=tan β,故C 正确; 角α和β的终边相同,可知β=α+2k π(k ∈Z ),得cos α=cos β,又cos (π+α)=﹣cos α,cos (π﹣β)=﹣cos β,∴cos (π+α)=cos (π﹣β),故D 正确. 故选:CD . 二、填空题13.解:已知sin(π2+θ)=−45=cos θ,θ是第二象限角,∴sin θ=√1−cos 2θ=35,则tan θ=sinθcosθ=−34,故答案为:−34. 14.解:因为tan α=12, 则sinα−cosαsinα−2cosα=tanα−1tanα−2=12−112−2=13.故答案为:13.15.解:设花卉带宽度为xm (0<x <3),则中间草坪的长为(8﹣2x )m ,宽为(6﹣2x )m , 根据题意可得:(8﹣2x )(6﹣2x )>12×8×6,整理得:x 2﹣7x +6>0, 即(x ﹣6)(x ﹣1)>0,解得0<x <1或x >6.x >6不合题意,舍去. 故所求花卉带宽度的范围为(0,1).故答案为:(0,1).16.解:作出f (x )的函数图象如图所示:∵f (x )=k 有两个不同解, ∴0<k <1.故答案为:(0,1).17.解:(1)∵A ={x |1≤x ≤3},B ={x |x <﹣1或x >2},∴A ∩B ={x |2<x ≤3}; (2)∵∁R A ={x |x <1或x >3}, ∴(∁R A )∪B ={x |x <1或x >2}.18.解:(1)由题意可得(m +1)x 2﹣mx +m ﹣1=0有根, 当m +1=0即m =﹣1时,x ﹣2=0即x =2满足题意, 当m +1≠0时,△=m 2﹣4(m ﹣1)(m +1)≥0,解得,−2√33≤m ≤2√33且m ≠﹣1, 综上,−2√33≤m ≤2√33,(2)由题意可得,(m +1)x 2﹣mx +m ﹣1≤0恒成立,当m +1=0时,显然不成立, {m +1≠0m 2−4(m +1)(m −1)≤0, 解得,m ≥2√33或m ≤−2√33,综上,m ≥2√33或m ≤−2√33.19.解:(1)当a =0时,2x +y =xy 即2y+1x=1,∴x +y =(x +y )(1x +2y )=3+yx +2xy ≥3+2√2,当且仅当yx =2x y且2y+1x=1即x =1+√2,y =√2+2时取等号,故x +y 的最小值3+2√2,(2)∵a =6,∴2x +y =xy ﹣6≥2√2xy ,当且仅当2x =y 且2x +y =xy ﹣6即x =3,y =6时取等号, 解得,xy ≥18,即xy 的最小值18.20.解:(1)由f (x )=lgx 为增函数,可知f (0.6)<f (0.8),即lg 0.6<lg 0.8; (2)由f (x )=log 0.5x 为减函数,可知f (6)<f (4),即log 0.56<log 0.54; (3)令f (x )=log m x ,当0<m <1时,函数f (x )为减函数,由5<7,可知log m 5>log m 7; 当m >1时,函数f (x )为增函数,由5<7,可知log m 5<log m 7. 21.解:(1)f (α)=sin(π−α)cos(2π−α)tan(−α−π)tan(π+α)sin(−π−α)=sinαcosα(−tanα)sinαtanα=−cos α.(2)∵cos (α−32π)=﹣sin α=−15,∴sin α=15,可得cos α=2√55,∴f (α)=﹣cos α=−2√55. 22.解:(1)设乘出租车走x 公里,车费为y 元,由题意得y ={5,0<x ≤25+1.6(x −2),2<x ≤814.6+2.4(x −8),x >8即y ={5,0<x ≤21.8+1.6x ,2<x ≤82.4x −4.6,x >8,(2)因为甲、乙两地相距10公里,即x =10>8,所以车费y =2.4×10﹣4.6=19.4(元).所以乘出租车从甲地到乙地共需要支付乘车费为19.4元.。
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!§3.3 幂函数限时作业一.选择题1.给出下列函数:4.函数13y x =的图象是( )A .B .C .D .5.如图是幂函数n y x =的部分图像,已知n 取11,2,2,22--这四个值,则于曲线1234,,,C C C C 相对应的n 依次为( )A .112,,,222--B .112,,,222--C .11,2,2,22--D .112,,2,22--6.已知幂函数()f x x a =的图像过点(8,4),则()f x x a = 的值域是( )A .(),0-¥B .()(),00,-¥+¥U C .()0,+¥D .[)0,+¥7.函数121y x =-的图象关于x 轴对称的图象大致是( )A B C D8.若幂函数m n y x =(*,m n ÎN 且,m n 互素)的图象如下图所示,则下列说法中不正确的是( )A .0<1mn<B .m 是偶数,n 是奇数C .m 是偶数,n 是奇数,且1m n<D .m 、n 是偶数,且1m n >二.填空题9.比较下列各式的大小(1) 0.525æöç÷èø 0.513æöç÷èø; (2) 123-æö-ç÷èø 135-æö-ç÷èø.10.已知幂函数()21()*()m m f x x m N Î-+=,经过点,试确定m 的值,则满足条件(2)(1)f a f a >--的实数a 的取值范围 .三.解答题11.已知幂函数()24-=m m f x x (实数m Z Î)的图像关于y 轴对称,且()()23f f >.(1)求m 的值及函数()f x 的解析式;(2)若()()212+<-f a f a ,求实数a 的取值范围.12.已知函数()()2531m f x m m x --=--,m 为何值时,()f x :(1)是幂函数;(2)是正比例函数;(3)是反比例函数;(4)是二次函数.§3.3 幂函数限时作业【参考答案】一.选择题1.给出下列函数:【答案】B 4.函数13y x=的图象是()A.B.C.D .【答案】B5.如图是幂函数n y x =的部分图像,已知n 取11,2,2,22--这四个值,则于曲线1234,,,C C C C 相对应的n 依次为( )A .112,,,222--B .112,,,222--C .11,2,2,22--D .112,,2,22--【答案】A6.已知幂函数()f x x a =的图像过点(8,4),则()f x x a = 的值域是( )A .(),0-¥B .()(),00,-¥+¥U C .()0,+¥D .[)0,+¥【答案】D 7.函数121y x =-的图象关于x 轴对称的图象大致是( )A B C D【答案】B8.若幂函数m ny x =(*,m n ÎN 且,m n 互素)的图象如下图所示,则下列说法中不正确的是( )A .0<1mn<B .m 是偶数,n 是奇数C .m 是偶数,n 是奇数,且1m n<D .m 、n 是偶数,且1m n>【答案】D二.填空题9.比较下列各式的大小(1) 0.525æöç÷èø 0.513æöç÷èø; (2) 123-æö-ç÷èø 135-æö-ç÷èø.【答案】,>>10.已知幂函数()21()*()m m f x x m N Î-+=,经过点,试确定m 的值,则满足条件(2)(1)f a f a >--的实数a 的取值范围 .【答案】 ∵()f x 的图象过点21()2m m -+=,∴22m m +=,又*m N Î,∴1m =.即12()f x x =,其定义域为0x ³,且在定义域上函数为增函数,∴由(2)(1)f a f a ->-得012a a £-<-,解得312a £<.三.解答题11.已知幂函数()24-=m m f x x (实数m Z Î)的图像关于y 轴对称,且()()23f f >.(1)求m 的值及函数()f x 的解析式;(2)若()()212+<-f a f a ,求实数a 的取值范围.【答案】(1)由题意,函数()24-=m m f x x (实数m Z Î)的图像关于y 轴对称,且()()23f f >,所以在区间(0,)+¥为单调递减函数,所以240m m -<,解得04m <<,又由m Z Î,且函数()24-=m m f x x (实数m Z Î)的图像关于y 轴对称,所以24m m -为偶数,所以2m =,所以()4f x x -=.(2)因为函数()4f x x -=图象关于y 轴对称,且在区间(0,)+¥为单调递减函数,所以不等式()()212+<-f a f a ,等价于122a a -<+且120,20a a -¹+¹,解得1132a -<<或132a <<,所以实数a 的取值范围是111(,(,3)322-U .12.已知函数()()2531m f x m m x --=--,m 为何值时,()f x :(1)是幂函数;(2)是正比例函数;(3)是反比例函数;(4)是二次函数.【答案】(1)m =2或m =-1.(2)m =-45 .(3)m =-25.(4) m =-1. (1)∵f (x )是幂函数,故m 2-m -1=1,即m 2-m -2=0,解得m =2或m =-1.(2)若f (x )是正比例函数,则-5m -3=1,解得m =-.此时m2-m-1≠0,故m=-.(3)若f(x)是反比例函数,则-5m-3=-1,则m=-,此时m2-m-1≠0,故m=-.(4)若f(x)是二次函数,则-5m-3=2,即m=-1,此时m2-m-1≠0,故m=-1.。
2019高一一数学必修一作业本【答案】答案与提示仅供参考第一章集合与函数概念1.1集合1 1 1集合的含义与表示1.D.2.A.3.C.4.{1,-1}.5.{x|x=3n+1,n∈N}.6.{2,0,-2}.7.A={(1,5),(2,4),(3,3),(4,2),(5,1)}.8.1.9.1,2,3,6.10.列举法表示为{(-1,1),(2,4)},描述法的表示方法不,如可表示为(x,y)|y=x+2,y=x2.11.-1,12,2.1 1 2集合间的基本关系1.D.2.A.3.D.4. ,{-1},{1},{-1,1}.5. .6.①③⑤.7.A=B.8.15,13.9.a≥4.10.A={ ,{1},{2},{1,2}},B∈A.11.a=b=1.1 1 3集合的基本运算(一)1.C.2.A.3.C.4.4.5.{x|-2≤x≤1}.6.4.7.{-3}.8.A∪B={x|x<3,或x≥5}.9.A∪B={-8,-7,-4,4,9}.10.1.11.{a|a=3,或-22<a<22}.提示:∵A∪B=A,∴B A.而A={1,2},对B实行讨论:①当B= 时,x2-ax+2=0无实数解,此时Δ=a2-8<0,∴-22<a<22.②当B≠ 时,B={1,2}或B={1}或B={2};当B={1,2}时,a=3;当B={1}或B={2}时,Δ=a2-8=0,a=±22,但当a=±22时,方程x2-ax+2=0的解为x=±2,不合题意. 1 1 3集合的基本运算(二)1.A.2.C.3.B.4.{x|x≥2,或x≤1}.5.2或8.6.x|x=n+12,n∈Z.7.{-2}.8.{x|x>6,或x≤2}.9.A={2,3,5,7},B={2,4,6,8}.10.A,B的可能情形有:A={1,2,3},B={3,4};A={1,2,4},B={3,4};A={1,2,3,4},B={3,4}.11.a=4,b=2.提示:∵A∩ 綂 UB={2},∴2∈A,∴4+2a-12=0 a=4,∴A={x|x2+4x-12=0}={2,-6},∵A∩ 綂 UB={2},∴-6 綂 UB,∴-6∈B,将x=-6代入B,得b2-6b+8=0 b=2,或b=4.①当b=2时,B={x|x2+2x-24=0}={-6,4},∴-6 綂 UB,而2∈ 綂 UB,满足条件A∩ 綂UB={2}.②当b=4时,B={x|x2+4x-12=0}={-6,2},∴2 綂 UB,与条件A∩ 綂 UB={2}矛盾.1.2函数及其表示1 2 1函数的概念(一)1.C.2.C.3.D.4.22.5.-2,32∪32,+∞.6.[1,+∞).7.(1)12,34.(2){x|x≠-1,且x≠-3}.8.-34.9.1.10.(1)略.(2)72.11.-12,234.1 2 1函数的概念(二)1.C.2.A.3.D.4.{x∈R|x≠0,且x≠-1}.5.[0,+∞).6.0.7.-15,-13,-12,13.8.(1)y|y≠25.(2)[-2,+∞).9.(0,1].10.A∩B=-2,12;A∪B=[-2,+∞).11.[-1,0).1 2 2函数的表示法(一)1.A.2.B.3.A.4.y=x100.5.y=x2-2x+2.6.1x.7.略.8.x1234y828589889.略.10.1.11.c=-3.1 2 2函数的表示法(二)1.C.2.D.3.B.4.1.5.3.6.6.7.略.8.f(x)=2x(-1≤x<0),-2x+2(0≤x≤1).9.f(x)=x2-x+1.提示:设f(x)=ax2+bx+c,由f(0)=1,得c=1,又f(x+1)-f(x)=2x,即a(x+1)2+b(x+1)+c-(ax2+bx+c)=2x,展开得2ax+(a+b)=2x,所以2a=2, a+b=0,解得a=1,b=-1.10.y=1.2(0<x≤20),2.4(20<x≤40),3.6(40<x≤60),4.8(60<x≤80).11.略.1.3函数的基本性质1 3 1单调性与(小)值(一)1.C.2.D.3.C.4.[-2,0),[0,1),[1,2].5.-∞,32.6.k<12.7.略.8.单调递减区间为(-∞,1),单调递增区间为[1,+∞).9.略.10.a≥-1.11.设-1<x1<x2<1,则f(x1)-f(x2)=x1x21-1-x2x22-1=(x1x2+1)(x2-x1)(x21-1)(x22-1),∵x21-1<0,x22-1<0,x1x2+1<0,x2-x1>0,∴(x1x2+1)(x2-x1)(x21-1)(x22-1)>0,∴函数y=f(x)在(-1,1)上为减函数.1 3 1单调性与(小)值(二)1.D.2.B.3.B.4.-5,5.5.25.6.y=316(a+3x)(a-x)(0<x<a),312a2,5364a2.7.12.8.8a2+15.9.(0,1].10.2500m2.11.日均利润,则总利润就.设定价为x元,日均利润为y元.要获利每桶定价必须在12元以上,即x>12.且日均销售量应为440-(x-13)·40>0,即x<23,总利润y=(x-12)[440-(x-13)·40]-600(12<x<23),配方得y=-40(x-18)2+840,所以当x=18∈(12,23)时,y取得值840元,即定价为18元时,日均利润.1 3 2奇偶性1.D.2.D.3.C.4.0.5.0.6.答案不,如y=x2.7.(1)奇函数.(2)偶函数.(3)既不是奇函数,又不是偶函数.(4)既是奇函数,又是偶函数.8.f(x)=x(1+3x)(x≥0),x(1-3x)(x<0).9.略.10.当a=0时,f(x)是偶函数;当a≠0时,既不是奇函数,又不是偶函数.11.a=1,b=1,c=0.提示:由f(-x)=-f(x),得c=0,∴f(x)=ax2+1bx,∴f(1)=a+1b=2 a=2b-1.∴f(x)=(2b-1)x2+1bx.∵f(2)<3,∴4(2b-1)+12b<3 2b-32b<0 0<b<32.∵a,b,c∈Z,∴b=1,∴a=1.单元练习1.C.2.D.3.D.4.D.5.D.6.B.7.B.8.C.9.A.10.D.11.{0,1,2}.12.-32.13.a=-1,b=3.14.[1,3)∪(3,5].15.f12<f(-1)<f-72.16.f(x)=-x2-2x-3.17.T(h)=19-6h(0≤h≤11),-47(h>11).18.{x|0≤x≤1}.19.f(x)=x只有的实数解,即xax+b=x(*)只有实数解,当ax2+(b-1)x=0有相等的实数根x0,且ax0+b≠0时,解得f(x)=2xx+2,当ax2+(b-1)x=0有不相等的实数根,且其中之一为方程(*)的增根时,解得f(x)=1.20.(1)x∈R,又f(-x)=(-x)2-2|-x|-3=x2-2|x|-3=f(x),所以该函数是偶函数.(2)略.(3)单调递增区间是[-1,0],[1,+∞),单调递减区间是(-∞,-1],[0,1].21.(1)f(4)=4×13=5.2,f(5.5)=5×1.3+0.5×3.9=8.45,f(6.5)=5×1.3+1×3.9+0.5×6 5=13.65.(2)f(x)=1.3x(0≤x≤5),3.9x-13(5<x≤6),6.5x-28.6(6<x≤7).22.(1)值域为[22,+∞).(2)若函数y=f(x)在定义域上是减函数,则任取x1,x2∈(0,1]且x1<x2,都有f(x1)>f(x2)成立,即(x1-x2)2+ax1x2>0,只要a<-2x1x2即可,因为x1,x2∈(0,1],故-2x1x2∈(-2,0),a<-2,即a的取值范围是(-∞,-2).第二章基本初等函数(Ⅰ)2.1指数函数2 1 1指数与指数幂的运算(一)1.B.2.A.3.B.4.y=2x(x∈N).5.(1)2.(2)5.6.8a7.7.原式=|x-2|-|x-3|=-1(x<2),2x-5(2≤x≤3),1(x>3).8.0.9.2011.10.原式=2yx-y=2.11.当n为偶数,且a≥0时,等式成立;当n为奇数时,对任意实数a,等式成立. 2 1 1指数与指数幂的运算(二)1.B.2.B.3.A.4.94.5.164.6.55.7.(1)-∞,32.(2)x∈R|x≠0,且x≠-52.8.原式=52-1+116+18+110=14380.9.-9a.10.原式=(a-1+b-1)·a-1b-1a-1+b-1=1ab.11.原式=1-2-181+2-181+2-141+2-121-2-18=12-827.2 1 1指数与指数幂的运算(三)1.D.2.C.3.C.4.36.55.5.1-2a.6.225.7.2.8.由8a=23a=14=2-2,得a=-23,所以f(27)=27-23=19.9.4 7288,0 0885.10.提示:先由已知求出x-y=-(x-y)2=-(x+y)2-4xy=-63,所以原式=x-2xy+yx-y=-33.11.23.2 1 2指数函数及其性质(一)1.D.2.C.3.B.4.A B.5.(1,0).6.a>0.7.125.8.(1)图略.(2)图象关于y轴对称.9.(1)a=3,b=-3.(2)当x=2时,y有最小值0;当x=4时,y有值6.10.a=1.11.当a>1时,x2-2x+1>x2-3x+5,解得{x|x>4};当0<a<1时,x2-2x+1<x2-3x+5,解得{x|x<4}.2 1 2指数函数及其性质(二)1.A.2.A.3.D.4.(1)<.(2)<.(3)>.(4)>.5.{x|x≠0},{y|y>0,或y<-1}.6.x<0.7.56-0.12>1=π0>0.90.98.8.(1)a=0.5.(2)-4<x≤0.9.x2>x4>x3>x1.10.(1)f(x)=1(x≥0),2x(x<0).(2)略.11.am+a-m>an+a-n.2 1 2指数函数及其性质(三)1.B.2.D.3.C.4.-1.5.向右平移12个单位.6.(-∞,0).7.由已知得0.3(1-0.5)x≤0.08,因为0.51.91=0.2667,所以x≥1.91,所以2h后才可驾驶.8.(1-a)a>(1-a)b>(1-b)b.9.815×(1+2%)3≈865(人).10.指数函数y=ax满足f(x)·f(y)=f(x+y);正比例函数y=kx(k≠0)满足f(x)+f(y)=f(x+y).11.34,57.2.2对数函数2 2 1对数与对数运算(一)1.C.2.D.3.C.4.0;0;0;0.5.(1)2.(2)-52.6.2.7.(1)-3.(2)-6.(3)64.(4)-2.8.(1)343.(2)-12.(3)16.(4)2.9.(1)x=z2y,所以x=(z2y)2=z4y(z>0,且z≠1).(2)由x+3>0,2-x<0,且2-x≠1,得-3<x<2,且x≠1.10.由条件得lga=0,lgb=-1,所以a=1,b=110,则a-b=910.11.左边分子、分母同乘以ex,去分母解得e2x=3,则x=12ln3.2 2 1对数与对数运算(二)1.C.2.A.3.A.4.0 3980.5.2logay-logax-3logaz.6.4.7.原式=log2748×12÷142=log212=-12.8.由已知得(x-2y)2=xy,再由x>0,y>0,x>2y,可求得xy=4.9.略.10.4.11.由已知得(log2m)2-8log2m=0,解得m=1或16.2 2 1对数与对数运算(三)1.A.2.D.3.D.4.43.5.24.6.a+2b2a.7.提示:注意到1-log63=log62以及log618=1+log63,可得答案为1.8.由条件得3lg3lg3+2lg2=a,则去分母移项,可得(3-a)lg3=2alg2,所以lg2lg3=3-a2a.9.2 5.10.a=log34+log37=l og328∈(3,4).11.1.2 2 2对数函数及其性质(一)1.D.2.C.3.C.4.144分钟.5.①②③.6.-1.7.-2≤x≤2.8.提示:注意对称关系.9.对loga(x+a)1时,0a,得x>0.10.C1:a=32,C2:a=3,C3:a=110,C4:a=25.11.由f(-1)=-2,得lgb=lga-1①,方程f(x)=2x即x2+lga·x+lgb=0有两个相等的实数根,可得lg2a-4lgb=0,将①式代入,得a=100,继而b=10.2 2 2对数函数及其性质(二)1.A.2.D.3.C.4.22,2.5.(-∞,1).6.log20 4<log30.4<log40.4.7.logbab<logba<logab.8.(1)由2x-1>0得x>0.(2)x>lg3lg2.9.图略,y=log12(x+2)的图象能够由y=log12x的图象向左平移2个单位得到.10.根据图象,可得0<p<q<1.11.(1)定义域为{x|x≠1},值域为R.(2)a=2. 2 2 2对数函数及其性质(三)1.C.2.D.3.B.4.0,12.5.11.6.1,53.7.(1)f35=2,f-35=-2.(2)奇函数,理由略.8.{-1,0,1,2,3,4,5,6}.9.(1)0.(2)如log2x.10.能够用求反函数的方法得到,与函数y=loga(x+1)关于直线y=x对称的函数应该是y=ax-1,和y=logax+1关于直线y=x对称的函数应该是y=ax-1.11.(1)f(-2)+f(1)=0.(2)f(-2)+f-32+f12+f(1)=0.猜想:f(-x)+f(-1+x)=0,证明略.2 3幂函数1.D.2.C.3.C.4.①④.5.6.2518<0.5-12<0.16-14.6.(-∞,-1)∪23,32.7.p=1,f(x)=x2.8.图象略,由图象可得f(x)≤1的解集x∈[-1,1].9.图象略,关于y=x对称.10.x∈0,3+52.11.定义域为(-∞,0)∪(0,∞),值域为(0,∞),是偶函数,图象略.单元练习1.D.2.D.3.C.4.B.5.C.6.D.7.D.8.A.9.D.10.B.11.1.12.x>1.13.④.14.25 8.提示:先求出h=10.15.(1)-1.(2)1.16.x∈R,y=12x=1+lga1-lga>0,讨论分子、分母得-1<lga<1,所以a∈110,10.17.(1)a=2.(2)设g(x)=log12(10-2x)-12x,则g(x)在[3,4]上为增函数,g(x)>m对x∈[3,4]恒成立,m<g(3)=-178.18.(1)函数y=x+ax(a>0),在(0,a]上是减函数,[a,+∞)上是增函数,证明略.(2)由(1)知函数y=x+cx(c>0)在[1,2]上是减函数,所以当x=1时,y 有值1+c;当x=2时,y有最小值2+c2.19.y=(ax+1)2-2≤14,当a>1时,函数在[-1,1]上为增函数,ymax=(a+1)2-2=14,此时a=3;当0<a<1时,函数[-1,1]上为减函数,ymax=(a-1+1)2-2=14,此时a=13.∴a=3,或a=13.20.(1)F(x)=lg1-xx+1+1x+2,定义域为(-1,1).(2)提示:假设在函数F(x)的图象上存有两个不同的点A,B,使直线AB 恰好与y轴垂直,则设A(x1,y),B(x2,y)(x1≠x2),则f(x1)-f(x2)=0,而f(x1)-f(x2)=lg1-x1x1+1+1x1+2-lg1-x2x2+1-1x2+2=lg(1-x1)(x2+1)(x1+1)(1-x2)+x2-x1(x1+2)(x2+2)=①+②,可证①,②同正或同负或同为零,所以只有当x1=x2时,f(x1)-f(x2)=0,这与假设矛盾,所以这样的两点不存有.(或用定义证明此函数在定义域内单调递减)第三章函数的应用3 1函数与方程3 1 1方程的根与函数的零点1.A.2.A.3.C.4.如:f(a)f(b)≤0.5.4,254.6.3.7.函数的零点为-1,1,2.提示:f(x)=x2(x-2)-(x-2)=(x-2)(x-1)(x+1).8.(1)(-∞,-1)∪(-1,1).(2)m=12.9.(1)设函数f(x)=2ax2-x-1,当Δ=0时,可得a=-18,代入不满足条件,则函数f(x)在(0,1)内恰有一个零点.∴f(0)·f(1)=-1×(2a-1-1)<0,解得a>1.(2)∵在[-2,0]上存有x0,使f(x0)=0,则f(-2)·f(0)≤0,∴(-6m-4)×(-4)≤0,第5 / 9页解得m≤-23.10.在(-2,-1 5),(-0 5,0),(0,0 5)内有零点.11.设函数f(x)=3x-2-xx+1.由函数的单调性定义,能够证明函数f(x)在(-1,+∞)上是增函数.而f(0)=30-2=-1<0,f(1)=31-12=52>0,即f(0)·f(1)<0,说明函数f(x)在区间(0,1)内有零点,且只有一个.所以方程3x=2-xx+1在(0,1)内必有一个实数根.3 1 2用二分法求方程的近似解(一)1.B.2.B.3.C.4.[2,2 5].5.7.6.x3-3.7.1.8.提示:先画一个草图,可估计出零点有一个在区间(2,3)内,取2与3的平均数2 5,因f(2 5)=0 25>0,且f(2)<0,则零点在(2,2 5)内,再取出2 25,计算f(2 25)=-0 4375,则零点在(2 25,2 5)内.以此类推,最后零点在(2 375,2 4375)内,故其近似值为2 4375.9.1 4375.10.1 4296875.11.设f(x)=x3-2x-1,∵f(-1)=0,∴x1=-1是方程的解.又f(-0 5)=-0 1250,x2∈(-0 75,-0 5),又∵f(-0 625)=0 005859>0,∴x2∈(-0 625,-0 5).又∵f(-0 5625)=-0 052981,解得a=3,b=1.∴函数解析式为y=x(x-3)2+1.10.设y1=f(x)=px2+qx+r(p≠0),则f(1)=p+q+r=1,f(2)=4p+2q+r=1 2,f(3)=9p+3q+r=1 3,解得p=-0 05,q=0 35,r=0 7,∴f(4)=-0 05×42+0 35×4+0 7=1 3,再设y2=g(x)=abx+c,则g(1)=ab+c=1,g(2)=ab2+c=1 2,g(3)=ab3+c=1 3,解得a=-0 8,b=0 5,c=1 4,∴g(4)=-0 8×0 54+1 4=1 35,经比较可知,用y=-0 8×(0 5)x+1 4作为模拟函数较好.11.(1)设第n年的养鸡场的个数为f(n),平均每个养鸡场养g(n)万只鸡,则f(1)=30,f(6)=10,且点(n,f(n))在同一直线上,从而有:f(n)=34-4n(n=1,2,3,4,5,6).而g(1)=1,g(6)=2,且点(n,g(n))在同一直线上,从而有:g(n)=n+45(n=1,2,3,4,5,6).于是有f(2)=26,g(2)=1.2(万只),所以f(2)·g(2)=31.2(万只),故第二年养鸡场的个数是26个,全县养鸡31.2万只.(2)由f(n)·g(n)=-45n-942+1254,得当n=2时,[f(n)·g(n)]max=31.2.故第二年的养鸡规模,共养鸡31.2万只.单元练习1.A.2.C.3.B.4.C.5.D.6.C.7.A.8.C.9.A.10.D.11.±6.12.y=x2.13.-3.14.y3,y2,y1.15.令x=1,则12-0>0,令x=10,则1210×10-1<0.选初始区间[1,10],第二次为[1,5.5],第三次为[1,3.25],第四次为[2.125,3.25],第五次第7 / 9页为[2.125,2.6875],所以存有实数解在[2,3]内.(第16题)16.按以下顺序作图:y=2-xy=2-|x|y=2-|x-1|.∵函数y=2-|x-1|与y=m的图象在0。
人教A版高中数学必修1课后习题答案目录第一章集合与函数概念 (1)1.1集合 (1)【P5】1.1.1集合的含义与表示【练习】 (1)【P7】1.1.2集合间的基本关系【练习】 (2)【P11】1.1.3集合的基本运算【练习】 (4)【P11】1.1集合【习题1.1 A组】 (5)【P12】1.1集合【习题1.1 B组】 (9)1.2函数及其表示 (10)【P19】1.2.1函数的概念【练习】 (10)【P23】1.2.2函数的表示法【练习】 (12)【P24】1.2函数及其表示【习题1.2 A组】 (13)【P25】1.2函数及其表示【习题1.2 B组】 (20)1.3函数的基本性质 (23)【P32】1.3.1单调性与最大(小)值【练习】 (23)I【P36】1.3.2单调性与最大(小)值【练习】 (26)【P44】复习参考题A组 (33)【P44】复习参考题B组 (37)第二章基本初等函数(I) (42)2.1 指数函数 (42)【P54】2.1.1指数与指数幂的运算练习 (42)【P58】2.1.2指数函数及其性质练习 (42)【P59】习题2.1 A组 (43)【P60】习题2.1 B组 (45)2.2 对数函数 (47)【P64】2.2.1对数与对数运算练习 (47)【P68】2.2.1对数的运算练习 (47)【P73】2.2.2对数函数及其性质练习 (48)【P74】习题2.2 A组 (48)【P74】习题2.2 B组 (50)2.3幂函数 (51)【P79】习题2.3 (51)II【P82】第二章复习参考题A组 (51)【P83】第二章复习参考题B组 (53)第三章函数的应用 (56)3.1函数与方程 (56)【P88】3.1.1方程的根与函数的零点练习 (56)【P91】3.1.2用二分法求方程的近似解练习 (58)【P92】习题3.1 A组 (59)【P93】习题3.1 B组 (61)3.2 函数模型及其应用 (63)【P98】3.2.1几类不同增长的函数模型练习 (63)【P101】3.2.1几类不同增长的函数模型练习 (64)【P104】3.2.2函数模型的应用实例练习 (64)【P106】3.2.2函数模型的应用实例练习 (65)【P107】习题3.2 A组 (65)【P107】习题3.2 B组 (66)【P112】第三章复习参考题A组 (66)【P113】第三章复习参考题B组 (68)IIIIV1第一章 集合与函数概念1.1集合【P5】1.1.1集合的含义与表示【练习】1.用符号“∈”或“∉”填空:(1)设A 为所有亚洲国家组成的集合,则中国_____A ,美国_____A ,印度____A ,英国____A ;(2)若2{|}A x x x ==,则1-_______A ;(3)若2{|60}B x x x =+-=,则3_______B ;(4)若{|110}C x N x =∈≤≤,则8_______C ,9.1_______C . 解答:1.(1)中国∈A ,美国∉A ,印度∈A ,英国∉A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.(2)1-∉A 2{|}{0,1}A x x x ===. (3)3∉B 2{|60}{3,2}B x x x =+-==-. (4)8∈C ,9.1∉C 9.1N ∉.2.试选择适当的方法表示下列集合:(1)由方程290x -=的所有实数根组成的集合;(2)由小于8的所有素数组成的集合;2(3)一次函数3y x =+与26y x =-+的图象的交点组成的集合;(4)不等式453x -<的解集.解答:2.解:(1)因为方程290x -=的实数根为123,3x x =-=,所以由方程290x -=的所有实数根组成的集合为{3,3}-;(2)因为小于8的素数为2,3,5,7,所以由小于8的所有素数组成的集合为{2,3,5,7};(3)由326y x y x =+⎧⎨=-+⎩,得14x y =⎧⎨=⎩, 即一次函数3y x =+与26y x =-+的图象的交点为(1,4),所以一次函数3y x =+与26y x =-+的图象的交点组成的集合为{(1,4)};(4)由453x -<,得2x <,所以不等式453x -<的解集为{|2}x x <.【P7】1.1.2集合间的基本关系【练习】1.写出集合{,,}a b c 的所有子集.1.解:按子集元素个数来分类,不取任何元素,得∅;取一个元素,得{},{},{}a b c ;3取两个元素,得{,},{,},{,}a b a c b c ;取三个元素,得{,,}a b c ,即集合{,,}a b c 的所有子集为,{},{},{},{,},{,},{,},{,,}a b c a b a c b c a b c ∅.2.用适当的符号填空:(1)a ______{,,}a b c ; (2)0______2{|0}x x =; (3)∅______2{|10}x R x ∈+=; (4){0,1}______N ;(5){0}______2{|}x x x =; (6){2,1}______2{|320}x x x -+=.2.(1){,,}a a b c ∈a 是集合{,,}abc 中的一个元素; (2)20{|0}x x ∈= 2{|0}{0}x x ==;(3)2{|10}x R x ∅=∈+= 方程210x +=无实数根,2{|10}x R x ∈+==∅;(4){0,1}N (或{0,1}N ⊆) {0,1}是自然数集合N 的子集,也是真子集; (5){0}2{|}x x x = (或2{0}{|}x x x ⊆=) 2{|}{0,1}x x x ==;(6)2{2,1}{|320}x x x =-+= 方程2320x x -+=两根为121,2x x ==.3.判断下列两个集合之间的关系:(1){1,2,4}A =,{|8}B x x =是的约数;(2){|3,}A x x k k N ==∈,{|6,}B x x z z N ==∈;4(3){|410}A x x x N +=∈是与的公倍数,,{|20,}B x x m m N +==∈.3.解:(1)因为{|8}{1,2,4,8}B x x ==是的约数,所以A B ;(2)当2k z =时,36k z =;当21k z =+时,363k z =+,即B 是A 的真子集,B A ;(3)因为4与10的最小公倍数是20,所以A B =.【P11】1.1.3集合的基本运算【练习】1.设{3,5,6,8},{4,5,7,8}A B ==,求,AB A B . 1.解:{3,5,6,8}{4,5,7,8}{5,8}AB ==, {3,5,6,8}{4,5,7,8}{3,4,5,6,7,8}A B ==.2.设22{|450},{|1}A x x x B x x =--===,求,A B A B . 2.解:方程2450x x --=的两根为121,5x x =-=,方程210x -=的两根为121,1x x =-=,得{1,5},{1,1}A B =-=-,即{1},{1,1,5}A B A B =-=-.3.已知{|}A x x =是等腰三角形,{|}B x x =是直角三角形,求,AB A B . 3.解:{|}AB x x =是等腰直角三角形, {|}AB x x =是等腰三角形或直角三角形.54.已知全集U={1,2,3,4,5,6,7}, A={2,4,5}, B={1,3,5,7},求)(B C A U ,)()(B C A C U U . 4.解:显然,{1,3,6,7}=A C U ,}6,4,2{=B C U 则,}4,2{)(=B C A U ,}6{)()(=B C A C UU 【P11】1.1集合【习题1.1 A 组】1.用符号“∈”或“∉”填空:(1)237_______Q ; (2)23______N ; (3)π_______Q ; (4R ; (5Z ; (6)2_______N .1.(1)237Q ∈ 237是有理数; (2)23N ∈ 239=是个自然数; (3)Q π∉ π是个无理数,不是有理数; (4R(5Z3=是个整数; (6)2N ∈25=是个自然数. 2.已知{|31,}A x x k k Z ==-∈,用 “∈”或“∉” 符号填空:(1)5_______A ; (2)7_______A ; (3)10-_______A .2.(1)5A ∈; (2)7A ∉; (3)10A -∈.当2k =时,315k -=;当3k =-时,3110k -=-;3.用列举法表示下列给定的集合:(1)大于1且小于6的整数;(2){|(1)(2)0}A x x x =-+=;(3){|3213}B x Z x =∈-<-≤.6 3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(1)(2)0x x -+=的两个实根为122,1x x =-=,即{2,1}-为所求;(3)由不等式3213x -<-≤,得12x -<≤,且x Z ∈,即{0,1,2}为所求.4.试选择适当的方法表示下列集合:(1)二次函数24y x =-的函数值组成的集合;(2)反比例函数2y x=的自变量的值组成的集合; (3)不等式342x x ≥-的解集.4.解:(1)显然有20x ≥,得244x -≥-,即4y ≥-,得二次函数24y x =-的函数值组成的集合为{|4}y y ≥-;(2)显然有0x ≠,得反比例函数2y x =的自变量的值组成的集合为{|0}x x ≠; (3)由不等式342x x ≥-,得45x ≥,即不等式342x x ≥-的解集为4{|}5x x ≥. 5.选用适当的符号填空:(1)已知集合{|233},{|2}A x x x B x x =-<=≥,则有:4-_______B ; 3-_______A ; {2}_______B ; B _______A ;(2)已知集合2{|10}A x x =-=,则有:1_______A ; {1}-_______A ; ∅_______A ; {1,1}-_______A ;7(3){|}x x 是菱形_______{|}x x 是平行四边形;{|}x x 是等腰三角形_______{|}x x 是等边三角形.5.(1)4B -∉; 3A -∉; {2}B ; B A ;2333x x x -<⇒>-,即{|3},{|2}A x x B x x =>-=≥;(2)1A ∈; {1}-A ; ∅A ; {1,1}-=A ; 2{|10}{1,1}A x x =-==-;(3){|}x x 是菱形{|}x x 是平行四边形;菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;{|}x x 是等边三角形{|}x x 是等腰三角形.等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.6.设集合{|24},{|3782}A x x B x x x =≤<=-≥-,求,A B A B .6.解:3782x x -≥-,即3x ≥,得{|24},{|3}A x x B x x =≤<=≥,则{|2}A B x x =≥,{|34}A B x x =≤<.7.设集合{|9}A x x =是小于的正整数,{1,2,3},{3,4,5,6}B C ==,求A B , A C ,()A B C ,()A B C .7.解:{|9}{1,2,3,4,5,6,7,8}A x x ==是小于的正整数,8则{1,2,3}AB =,{3,4,5,6}AC =, 而{1,2,3,4,5,6}BC =,{3}B C =, 则(){1,2,3,4,5,6}A B C =,(){1,2,3,4,5,6,7,8}A B C =.8.学校里开运动会,设{|}A x x =是参加一百米跑的同学,{|}B x x =是参加二百米跑的同学,{|}C x x =是参加四百米跑的同学,学校规定,每个参加上述的同学最多只能参加两项,请你用集合的语言说明这项规定,并解释以下集合运算的含义:(1)A B ;(2)A C .8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项,即为()AB C =∅. (1){|}A B x x =是参加一百米跑或参加二百米跑的同学;(2){|}A C x x =是既参加一百米跑又参加四百米跑的同学.9.设{|}S x x =是平行四边形或梯形,{|}A x x =是平行四边形{|}B x x =是菱形 {|}C x x =是矩形,求B C ,B C A 、A C s9.解:同时满足菱形和矩形特征的是正方形,即{|}B C x x =是正方形,平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形,即B C A ={x |x 是领边不相等的平行四边形},A C s ={x |x 是梯形}。
第二章函数第4.2节简单幂函数的图像和性质一.选择题(共15小题)1.已知点(,27)在幂函数f(x)=(t﹣2)x a的图象上,则t+a=()A.﹣1B.0C.1D.2【答案】B【解析】解:∵点(,27)在幂函数f(x)=(t﹣2)x a的图象上,∴f()=(t﹣2)()a=27,且t﹣2=1,解得t=3,a=﹣3,∴t+a=3﹣3=0.故选:B.2.已知函数f(x)=(3m2﹣2m)x m是幂函数,若f(x)为增函数,则m等于()A.B.﹣1C.1D.或1【答案】C【解析】解:函数f(x)=(3m2﹣2m)x m是幂函数,则3m2﹣2m=1,解得m=1或m=﹣,又f(x)为增函数,则m=1满足条件,即m的值为1.故选:C.3.已知幂函数f(x)的图象过点(2,),则f(8)的值为()A.B.C.2D.8【答案】A【解析】解:∵幂函数f(x)=x a的图象过点(2,),∴=2α,∴α=﹣,∴f(x)=x,∴f(8)==,故选:A.4.如图表示的是四个幂函数在同一坐标系中第一象限内的图象,则幂函数y=的图象是()A.①B.②C.③D.④【答案】D【解析】解:幂函数y=为增函数,且增加的速度比较缓慢,只有④符合.故选:D.5.幂函数y=f(x)的图象经过点,则f(x)的图象是()A.B.C.D.【答案】D【解析】解:设幂函数为y=xα,∵幂函数y=f(x)的图象经过点(8,2),∴2=8α,∴=23α,∴α=,∴f(x)==,则函数的变化越来越慢,故选:D.6.设a∈{﹣1,1,2,3},则使函数y=x a的值域为R且为奇函数的所有a值为()A.1,3B.﹣1,1C.﹣1,3D.﹣1,1,3【答案】A【解析】解:当a=﹣1时,y=,为奇函数,但值域为{x|x≠0},不满足条件.当a=1时,y=x,为奇函数,值域为R,满足条件.当a=2时,y=x2为偶函数,值域为{x|x≥0},不满足条件.当a=3时,y=x3为奇函数,值域为R,满足条件.故选:A.7.幂函数在(0,+∞)时是减函数,则实数m的值为()A.2或﹣1B.﹣1C.2D.﹣2或1【答案】B【解析】解:由于幂函数在(0,+∞)时是减函数,故有,解得m=﹣1,故选:B.8.函数y=(a﹣2)a x是指数函数,则()A.a=1或a=3B.a=1C.a=3D.a>0且a≠1【答案】C【解析】解:若函数y=(a﹣2)a x是指数函数,则a﹣2=1,解得:a=3,故选:C.9.若点(a,27)在函数y=()x的图象上,则的值为()A.B.1C.2D.0【答案】A【解析】解:点(a,27)在函数y=()x的图象上,∴27=,即33=,∴=3,解得a=6;∴=.故选:A.10.函数y=a x在[0,1]上最大值与最小值的和为3,则a=()A.2B.C.4D.【答案】A【解析】解:根据题意,由y=a x的单调性,可知其在[0,1]上是单调函数,即当x=0和1时,取得最值,即a0+a1=3,再根据其图象,可得a0=1,则a1=2,即a=2,故选:A.11.若实数m,n,p满足m=4e,n=5e,b=,则()A.p<m<n B.p<n<m C.m<p<n D.n<p<m【答案】A【解析】解:实数m,n,p满足m=4e,n=5e,b=,==•<1,∴m<n;==•>1,∴m>p;∴p<m<n.故选:A.12.已知,则a,b,c的大小关系为()A.c>b>a B.c>a>b C.b>a>c D.a>b>c【答案】A【解析】解:∵0.20.3<0.30.3,0.30.3<0.30.2,∴0.20.3<0.30.2,由,∴0.30.1>0.30.2,∴c>b>a.故选:A.13.设a=0.60.4,b=0.40.6,c=0.40.4,则a,b,c的大小关系为()A.a<b<c B.b<c<a C.c<a<b D.c<b<a【答案】B【解析】解:∵a=0.60.4,c=0.40.4,由幂函数的性质可得a>c,∵b=0.40.6,c=0.40.4,由指数函数的性质可得b<c,∴b<c<a.故选:B.14.a=2,b=3,c=5则a,b,c的大小关系为()A.a<b<c B.b<a<c C.c<a<b D.b<c<a【答案】C【解析】解:∵a=2,b=3,c=5,很明显,a、b、c都是正实数,∵b6﹣a6=9﹣8=1>0,∴b6>a6,∴b>a.∵a10﹣c10=32﹣25>0,a10>c10,∴a>c.综上可得:b>a>c,故选:C.15.已知a=0.24,b=0.32,c=0.43,则()A.b<a<c B.a<c<b C.c<a<b D.a<b<c【答案】B【解析】解:∵a=0.24=0.042=0.0016,b=0.32=0.09,c=0.43=0.064,∴b>c>a,故选:B.二.填空题(共3小题)16.若幂函数y=(k﹣2)x m﹣1(k,m∈R)的图象过点(),则k+m=2.【答案】2【解析】解:函数为幂函数,则k﹣2=1,得k=3,则幂函数为y=f(x)=x m﹣1,∵函数过点(),∴f()=()m﹣1=4,即21﹣m=4,得1﹣m=2,得m=1﹣2=﹣1,则k+m=3﹣1=2.故答案为:2.17.若幂函数f(x)=x m﹣1在(0,+∞)上是减函数,则实数m的取值范围是(﹣∞,1).【答案】(﹣∞,1)【解析】解:∵幂函数f(x)=x m﹣1在(0,+∞)上是减函数,∴m﹣1<0,解得m<1.故答案为:(﹣∞,1).18.若幂函数f(x)=(m2﹣m﹣1)•在(0,+∞)上是减函数,则实数m=2.【答案】2【解析】解析∵f(x)=(m2﹣m﹣1)为幂函数,∴m2﹣m﹣1=1,∴m=2或m=﹣1.当m=2时,f(x)=x﹣3在(0,+∞)上是减函数,当m=﹣1时,f(x)=x0=1不符合题意.综上可知m=2.故答案为:2.三.解答题(共8小题)19.已知幂函数y=f(x)的图象经过点(2,4),对于偶函数y=g(x)(x∈R),当x≥0时,g(x)=f(x)﹣2x.(1)求函数y=f(x)的解析式;(2)求当x<0时,函数y=g(x)的解析式;【解析】解:(1)设幂函数y=f(x)=xα,图象过点(2,4),则2α=4,解得α=2,∴y=f(x)=x2;(2)当x≥0时,g(x)=f(x)﹣2x=x2﹣2x;当x<0时,﹣x>0,∴g(﹣x)=(﹣x)2﹣2(﹣x)=x2+2x;又g(x)为偶函数,则g(x)=g(﹣x)=x2+2x.20.已知幂函数y=f(x)的图象过点,(1)求函数f(x)的解析式,并求出它的定义域;(2)若偶函数g(x)满足,当x≥0时,g(x)=f(2x+4),写出函数g(x)的解析式,并求它的值域.【解析】解:(1)设f(x)=xα,则2α=,解得,∴;∴函数f(x)的定义域为[0,+∞);(2)当x≥0时,,当x<0时,,∴;∴函数g(x)的值域为[2,+∞)21.已知幂函数(m∈Z)的图象关于y轴对称,且在区间(0,+∞)为减函数(1)求m的值和函数f(x)的解析式(2)解关于x的不等式f(x+2)<f(1﹣2x).【解析】解:(1)幂函数(m∈Z)的图象关于y轴对称,且在区间(0,+∞)为减函数,所以,m2﹣4m<0,解得0<m<4,因为m∈Z,所以m=2;函数的解析式为:f(x)=x﹣4.(2)不等式f(x+2)<f(1﹣2x),函数是偶函数,在区间(0,+∞)为减函数,所以|1﹣2x|<|x+2|,解得,又因为1﹣2x≠0,x+2≠0所以,。
高中数学必修1课后习题答案完整版高中数学必修1课后习题答案第一章集合与函数概念1.1集合1.1.1集合的含义与表示练习(第5页)1.用符号“ ”或“ ”填空:(1)设A为所有亚洲国家组成的集合,则:中国_______A,美国_______A,印度_______A,英国_______A;(2)若A {x|x x},则1_______A;(3)若B {x|x x 6 0},则3_______B;(4)若C {x N|1 x 10},则8_______C,9.1_______C.1.(1)中国A,美国A,印度A,英国A;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.22} {0,.1} (2)1 A A {x|x x,2 (3)3 B B {x|x x 6 0} { 3.}(4)8 C,9.1 C 9.1 N.2.试选择适当的方法表示下列集合:(1)由方程x 9 0的所有实数根组成的集合;(2)由小于8的所有素数组成的集合;(3)一次函数y x 3与y 2x 6的图象的交点组成的集合;(4)不等式4x 5 3的解集.22.解:(1)因为方程x 9 0的实数根为x1 3,x2 3,222所以由方程x 9 0的所有实数根组成的集合为{ 3,3};(2)因为小于8的素数为2,3,5,7,所以由小于8的所有素数组成的集合为{2,3,5,7};2y x 3 x 1 (3)由,得,y 2x 6y 4即一次函数y x 3与y 2x 6的图象的交点为(1,4),所以一次函数y x 3与y 2x 6的图象的交点组成的集合为{(1,4)};(4)由4x 5 3,得x 2,所以不等式4x 5 3的解集为{x|x 2}.1.1.2集合间的基本关系练习(第7页)1.写出集合{a,b,c}的所有子集.1.解:按子集元素个数来分类,不取任何元素,得;取一个元素,得{a},{b},{c};取两个元素,得{a,b},{a,c},{b,c};取三个元素,得{a,b,c},即集合{a,b,c}的所有子集为,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}.2.用适当的符号填空:(1)a______{a,b,c};(2)0______{x|x 0};(3)______{x R|x 1 0};(4){0,1}______N;(5){0}______{x|x x};(6){2,1}______{x|x 3x 2 0}.2.(1)a {a,b,c} a是集合{a,b,c}中的一个元素;2222} (2)0 {x|x 0} {x|x 0222{;0}22(3){x R|x 1 0} 方程x 1 0无实数根,{x R|x 1 0} ;(4){0,1 }(5){0}是自然数集合N的子集,也是真子集;N (或{0,1} N){0,1} {x|x2 x} (或{0} {x|x2 x}){x|x2 x} {0,;1}22(6){2,1} {x|x 3x 2 0} 方程x 3x 2 0两根为x1 1,x2 2.3.判断下列两个集合之间的关系:(1)A {1,2,4},B {x|x是8的约数};(2)A {x|x 3k,k N},B {x|x 6z,z N};(3)A {x|x是4与10的公倍数,x N },B {x|x 20m,m N }.3.解:(1)因为B {x|x是8的约数} {1,2,4,8},所以AB;(2)当k 2z时,3k 6z;当k 2z 1时,3k 6z 3,即B是A的真子集,BA;(3)因为4与10的最小公倍数是20,所以A B.1.1.3集合的基本运算练习(第11页)1.设A {3,5,6,8},B {4,5,7,8},求A B,A B.1.解:A B {3,5,6,8} {4,5,7,8} {5,8},A B {3,5,6,8} {4,5,7,8} {3,4,5,6,7,8}.2.设A {x|x 4x 5 0},B {x|x 1},求A B,A B.22.解:方程x 4x 5 0的两根为x1 1,x2 5,2方程x 1 0的两根为x1 1,x2 1,22得A { 1,5},B { 1,1},即A B { 1},A B { 1,1,5}.3.已知A {x|x是等腰三角形},B {x|x是直角三角形},求A B,A B.3.解:A B {x|x是等腰直角三角形},A B {x|x是等腰三角形或直角三角形}.4.已知全集U {1,2,3,4,5,6,7},A {2,4,5},B {1,3,5,7},求A (痧UB),(UA) ( UB).4.解:显然UB {2,4,6},UA {1,3,6,7},则A (UB) {2,4},(痧UA) (UB) {6}.1.1集合习题1.1 (第11页)A组1.用符号“ ”或“ ”填空:(1)327_______Q;(2)32______N;(3)_______Q;2(4_______R;(5Z;(6)_______N.1.(1)32Q 3是有理数;(2)32 N 32 9是个自然数;77是实数;2(3)Q 是个无理数,不是有理数;(4R(5Z3是个整数;(6)2 N2) 5是个自然数.2.已知A {x|x 3k 1,k Z},用“ ”或“ ” 符号填空:(1)5_______A;(2)7_______A;(3)10_______A.2.(1)5 A;(2)7 A;(3)10 A.当k 2时,3k 1 5;当k 3时,3k 1 10;3.用列举法表示下列给定的集合:(1)大于1且小于6的整数;(2)A {x|(x 1)(x 2) 0};(3)B {x Z| 3 2x 1 3}.3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(x 1)(x 2) 0的两个实根为x1 2,x2 1,即{ 2,1}为所求;(3)由不等式3 2x 1 3,得1 x 2,且x Z,即{0,1,2}为所求.4.试选择适当的方法表示下列集合:(1)二次函数y x 4的函数值组成的集合;(2)反比例函数y 22x(3)不等式3x 4 2x的解集.22的自变量的值组成的集合;4.解:(1)显然有x 0,得x 4 4,即y 4,得二次函数y x 4的函数值组成的集合为{y|y 4};(2)显然有x0,得反比例函数y (3)由不等式3x 4 2x,得x 5.选用适当的符号填空:(1)已知集合A {x|2x 3 3x},B {x|x 2},则有:22x的自变量的值组成的集合为{x|x 0};45,即不等式3x 4 2x的解集为{x|x .454_______B;3_______A;{2}_______B;B_______A;(2)已知集合A {x|x 1 0},则有:1_______A;{ 1}_______A;_______A;{1 _______A;,1}(3){x|x 是菱形}_______{x|x是平行四边形};{x|x是等腰三角形}_______{x|x是等边三角形}.5.(1)4 B;3 A;{2}B;B2A;2x 3 3x x 3,即A {x|x 3},B {x|x 2};(2)1 A;{ 1}A;2=A;,1}A;{1A {x|x 1 0} { 1,1};(3){x|x是菱形}{x|x是平行四边形};菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;{x|x是等边三角形}{x|x是等腰三角形}.等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三6.设集合A {x|2 x 4},B {x|3x 7 8 2x},求A B,A B.6.解:3x 7 8 2x,即x 3,得A {x|2 x 4},B {x|x 3},则A B {x|x 2},A B {x|3 x 4}.7.设集合A {x|x是小于9的正整数},B {1,2,3},C {3,4,5,6},求A B,A C,A (B C),A (B C).7.解:A {x|x是小于9的正整数} {1,2,3,4,5,6,7,8},则A B {1,2,3},A C {3,4,5,6},而B C {1,2,3,4,5,6},B C {3},则A (B C) {1,2,3,4,5,6},A (B C) {1,2,3,4,5,6,7,8}.8.学校里开运动会,设A {x|x是参加一百米跑的同学},B {x|x是参加二百米跑的同学},C {x|x是参加四百米跑的同学},学校规定,每个参加上述的同学最多只能参加两项,请你用集合的语言说明这项规定,并解释以下集合运算的含义:(1)A B;(2)A C.8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项,即为(A B) C .(1)A B {x|x是参加一百米跑或参加二百米跑的同学};(2)A C {x|x是既参加一百米跑又参加四百米跑的同学}.9.设S {x|x是平行四边形或梯形},A {x|x是平行四边形},B {x|x 是菱形},C {x|是矩形,求B C,AB,SA.x}9.解:同时满足菱形和矩形特征的是正方形,即B C {x|x是正方形},平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形,即AB {x|x是邻边不相等的平行四边形},SA {x|x 是梯形}.10.已知集合A {x|3 x 7},B {x|2 x 10},求R(A B),R(A B),(RA) B,A (RB).10.解:A B {x|2 x 10},A B {x|3 x 7},RA {x|x 3,或x 7},RB {x|x 2,或x 10},得R(A B) {x|x 2,或x 10},R(A B) {x|x 3,或x 7},(RA) B {x|2 x 3,或7 x 10},A (RB) {x|x 2,或3 x 7或x 10}.1.已知集合A {1,2},集合B满足A B {1,2},则集合B有1.4 集合B满足A B A,则B A,即集合B是集合A的子集,得4个子集.2.在平面直角坐标系中,集合C {(x,y)|y x}表示直线y x,从这个角度看,集合D (x,y)|2x y 1表示什么?集合C,D之间有什么关系?x 4y 52x y 1表示两条直线2x y 1,x 4y 5的交点的集合,x 4y 52.解:集合D (x,y)|即D (x,y)|2x y 1{(1,1)},点D(1,1)显然在直线y x上,x 4y 5得DC.3.设集合A {x|(x 3)(x a) 0,a R},B {x|(x 4)(x 1) 0},求A B,A B.3.解:显然有集合B {x|(x 4)(x 1) 0} {1,4},当a 3时,集合A {3},则A B {1,3,4},A B ;当a 1时,集合A {1,3},则A B {1,3,4},A B {1};当a 4时,集合A {3,4},则A B {1,3,4},A B {4};当a 1,且a 3,且a 4时,集合A {3,a},则A B {1,3,4,a},A B .4.已知全集U A B {x N|0 x 10},A (UB) {1,3,5,7},试求集合B.4.解:显然U {0,1,2,3,4,5,6,7,8,9,10},由U A B,得UB A,即A (痧UB)UB,而A (UB) {1,3,5,7},U得UB {1,3,5,7},而B 痧U(即B {0,2,4,6,8.9,10}.B),第一章集合与函数概念1.2函数及其表示1.2.1函数的概念练习(第19页)1.求下列函数的定义域:(1)f(x)14x 7;(2)f(x) 1.1.解:(1)要使原式有意义,则4x 7 0,即x 得该函数的定义域为{x|x ;74,741 x 0 (2)要使原式有意义,则,即3 x 1,x 3 0得该函数的定义域为{x| 3 x 1}.2.已知函数f(x) 3x 2x,(1)求f(2),f( 2),f(2) f( 2)的值;(2)求f(a),f( a),f(a) f( a)的值.2.解:(1)由f(x) 3x 2x,得f(2) 3 2 2 2 18,同理得f( 2) 3 ( 2) 2 ( 2) 8,则f(2) f( 2) 18 8 26,即f(2) 18,f( 2) 8,f(2) f( 2) 26;(2)由f(x) 3x 2x,得f(a) 3 a 2 a 3a 2a,同理得f( a) 3 ( a) 2 ( a) 3a 2a,则f(a) f( a) (3a 2a) (3a 2a) 6a,即f(a) 3a 2a,f( a) 3a 2a,f(a) f( a) 6a.3.判断下列各组中的函数是否相等,并说明理由:(1)表示炮弹飞行高度h与时间t关系的函数h 130t 5t和二次函数y 130x 5x;(2)f(x) 1和g(x) x.3.解:(1)不相等,因为定义域不同,时间t 0;(2)不相等,因为定义域不同,g(x) x(x 0).0222222222222222221.2.2函数的表示法练习(第23页)1.如图,把截面半径为25cm的圆形木头锯成矩形木料,如果矩形的一边长为xcm,面积为ycm,把y表示为x的函数.1,y ,且0 x 50,即y (0 x 50).2.下图中哪几个图象与下述三件事分别吻合得最好?请你为剩下的那个图象写出一件事.(1)我离开家不久,发现自己把作业本忘在家里了,于是返回家里找到了作业本再上学;(2)我骑着车一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;(3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.2(A)(B)(C)(D)2.解:图象(A)对应事件(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化;图象(B)对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速;图象(D)对应事件(1),返回家里的时刻,离开家的距离又为零;图象(C)我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进.3.画出函数y |x 2|的图象.x 2,x 23.解:y |x 2| ,图象如下所示.x 2,x 24.设与AA {x|x是锐角},B {0,1},从A到B的映射是“求正弦”,中元素60相对应的么?B中的元素是什么?与B中的元素2相对应的A中元素是什4.解:因为sin6022,所以与A中元素60相对应的B中的元素是2;因为sin45,所以与B中的元素2相对应的A中元素是45.1.2函数及其表示习题1.2(第23页)1.求下列函数的定义域:(1)f(x)3xx 42;(2)f(x)(3)f(x)6x 3x 2;(4)f(x)x 11.解:(1)要使原式有意义,则x 4 0,即x 4,得该函数的定义域为{x|x 4};(2)xR,f(x)即该函数的定义域为R;(3)要使原式有意义,则x 3x 2 0,即x 1且x 2,得该函数的定义域为{x|x 1且x 2};24 x 0(4)要使原式有意义,则,即x 4且x 1,x 1 0得该函数的定义域为{x|x 4且x 1}.2.下列哪一组中的函数f(x)与g(x)相等?(1)f(x) x 1,g(x)x2x1;(2)f(x) x2,g(x) 4;(3)f(x) x,g(x)2.2.解:(1)f(x) x 1的定义域为R,而g(x)x2x1的定义域为{x|x 0},即两函数的定义域不同,得函数f(x)与g(x)不相等;(2)f(x) x的定义域为R,而g(x) 的定义域为{x|x 0},24即两函数的定义域不同,得函数f(x)与g(x)不相等;(3x,即这两函数的定义域相同,切对应法则相同,得函数f(x)与g(x)相等.3.画出下列函数的图象,并说出函数的定义域和值域.(1)y 3x;(2)y 3.解:(1)定义域是( , ),值域是( , );(2)定义域是( ,0) (0, ),值域是( ,0) (0, );(3)28x;(3)y 4x 5;(4)y x 6x 7.2定义域是( , ),值域是( , );(4)定义域是( , ),值域是[ 2, ).4.已知函数f(x) 3x 5x2,求f(,f( a),f(a 3),f(a) f(3).4.解:因为f(x) 3x 5x2,所以f( 3 ( 5 ( 2 8即f( 8同理,f( a) 3 ( a) 5 ( a) 2 3a 5a 2,即f( a) 3a 5a 2;f(a 3) 3 (a 3) 5 (a 3) 2 3a 13a 14,即f(a 3) 3a 13a 14;f(a) f(3) 3a 5a 2 f(3) 3a 5a 16,即f(a) f(3) 3a 5a 16.5.已知函数f(x)222222222222x 2x 6,(1)点(3,14)在f(x)的图象上吗?(2)当x 4时,求f(x)的值;(3)当f(x) 2时,求x的值.5.解:(1)当x 3时,f(3)3 23 65314,即点(3,14)不在f(x)的图象上;(2)当x 4时,f(4)4 24 63,即当x 4时,求f(x)的值为3;(3)f(x)x 2x 6 即x 14.22,得x 2 2(x 6),6.若f(x) x bx c,且f(1) 0,f(3) 0,求f( 1)的值.6.解:由f(1) 0,f(3) 0,得1,3是方程x bx c 0的两个实数根,即1 3 b,1 3 c,得b 4,c 3,即f(x) x 4x 3,得f( 1) ( 1) 4 ( 1) 3 8,即f( 1)的值为8.7.画出下列函数的图象:2220,x 0(1)F(x) ;(2)G(n) 3n 1,n {1,2,3}.1,x 07.图象如下:8.如图,矩形的面积为10,如果矩形的长为x,宽为y,对角线为d,周长为l,那么你能获得关于这些量的哪些函数?8.解:由矩形的面积为10,即xy 10,得y10x(x 0),x10y(y 0),由对角线为d,即dd x 0),由周长为l,即l 2x 2y,得l 2x2220x2(x 0),另外l 2(x y),而xy 10,d x y,得l (d 0),即l (d 0).9.一个圆柱形容器的底部直径是dcm,高是hcm,现在以vcm/s 的速度向容器内注入某种溶液.求溶液内溶液的高度xcm关于注入溶液的时间ts的函数解析式,并写出函数的定义域和值域.9.解:依题意,有()x vt,即x 3d24v2d2t,h d24v显然0 x h,即04vd2t h,得0 t ,得函数的定义域为[0,h d24v]和值域为[0,h].10.设集合A {a,b,c},B {0,1},试问:从A到B的映射共有几个?并将它们分别表示出来.10.解:从A到B的映射共有8个.f(b) 0,f(b) 0,f(b) 1,f(b) 0,f(c) 0 f(c) 1 f(c) 0 f(c) 1 f(a) 1 f(a) 1 f(a) 1 f(a) 1f(b) 0,f(b) 0,f(b) 1,f(b) 0.f(c) 0 f(c) 1 f(c) 0 f(c) 1B组1.函数r f(p)的图象如图所示.(1)函数r f(p)的定义域是什么?(2)函数r f(p)的值域是什么?(3)r取何值时,只有唯一的p值与之对应?1.解:(1)函数r f(p)的定义域是[ 5,0] [2,6);(2)函数r f(p)的值域是[0, );(3)当r 5,或0 r 2时,只有唯一的p值与之对应.2.画出定义域为{x| 3 x 8,且x 5},值域为{y| 1 y 2,y 0}的一个函数的图象.(1)如果平面直角坐标系中点P(x,y)的坐标满足3 x 8,1 y 2,那么其中哪些点不能在图象上?(2)将你的图象和其他同学的相比较,有什么差别吗?2.解:图象如下,(1)点(x,0)和点(5,y)不能在图象上;(2)省略.3.函数f(x) [x]的函数值表示不超过x的最大整数,例如,[ 3.5] 4,[2.1] 2.当x ( 2.5,3]时,写出函数f(x)的解析式,并作出函数的图象.3, 2.5 x 2 2, 2 x 11, 1 x 03.解:f(x) [x] 0,0 x 11,1 x 22,2 x 33,x 3图象如下4.如图所示,一座小岛距离海岸线上最近的点P的距离是2km,从点P沿海岸正东12km 处有一个城镇.(1)假设一个人驾驶的小船的平均速度为3km/h,步行的速度是5km/h,t(单位:h)表示他从小岛到城镇的时间,x(单位:km)表示此人将船停在海岸处距P点的距离.请将t表示为x的函数.(2)如果将船停在距点P4km处,那么从小岛到城镇要多长时间(精确到1h)?4.解:(112 x,得t3312 x5,(0 x 12),即t 12 x5,(0 x 12).(2)当x 4时,t312 453853(h).第一章集合与函数概念1.3函数的基本性质1.3.1单调性与最大(小)值练习(第32页)1.请根据下图描述某装配线的生产效率与生产线上工人数量间的关系.1.答:在一定的范围内,生产效率随着工人数量的增加而提高,当工人数量达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率随着工人数量的增加而降低.由此可见,并非是工人越多,生产效率就越高.2.整个上午(8:00 12:00)天气越来越暖,中午时分(12:00 13:00)一场暴风雨使天气骤然凉爽了许多.暴风雨过后,天气转暖,直到太阳落山(18:00)才又开始转凉.画出这一天8:00 20:00期间气温作为时间函数的一个可能的图象,并说出所画函数的单调区间. 2.解:图象如下[8,12是递增区间,][12,13]是递减区间,[13,18]是递增区间,[18,20]是递减区间.3.根据下图说出函数的单调区间,以及在每一单调区间上,函数是增函数还是减函数.3.解:该函数在[ 1,0]上是减函数,在[0,2]上是增函数,在[2,4]上是减函数,在[4,5]上是增函数.4.证明函数f(x) 2x 1在R上是减函数. 4.证明:设x1,x2 R,且x1 x2,因为f(x1) f(x2) 2(x1 x2) 2(x2 x1) 0,即f(x1) f(x2),所以函数f(x) 2x 1在R上是减函数.5.设f(x)是定义在区间[ 6,11]上的函数.如果f(x)在区间[ 6, 2]上递减,在区间[ 2,11]上递增,画出f(x)的一个大致的图象,从图象上可以发现f( 2)是函数f(x)的一个 . 5.最小值.1.3.2单调性与最大(小)值练习(第36页)1.判断下列函数的奇偶性:(1)f(x) 2x 3x;(2)f(x) x 2x423(3)f(x)x2 1x;(4)f(x) x 1.4221.解:(1)对于函数f(x) 2x 3x,其定义域为( , ),因为对定义域内每一个x都有f( x) 2( x) 3( x) 2x 3x f(x),所以函数f(x) 2x 3x为偶函数;(2)对于函数f(x) x 2x,其定义域为( , ),因为对定义域内每一个x都有f( x) ( x) 2( x) (x 2x) f(x),所以函数f(x) x 2x为奇函数;3333424242(3)对于函数f(x)x2 1x,其定义域为( ,0) (0, ),因为对定义域内每一个x都有f( x)( x)2 1 xx2 1xf(x),所以函数f(x) x2 1x为奇函数;。
活页作业(十九) 对数的运算(时间:30分钟 满分:60分)一、选择题(每小题4分,共12分) 1.计算:log 39100+2log 310=( )A .0B .1C .2D .3解析:原式=log 39100+log 3100=log 39=2.答案:C2.已知log 32=a,3b =5,则log 330用a ,b 表示为( ) A.12(a +b +1) B.12(a +b )+1 C.13(a +b +1) D .a2+b +1解析:由3b =5得,b =log 35,而log 330=12(log 310+1)=12(log 32+log 35+1)=12(a +b+1),故选A.答案:A3.设log 34·log 48·log 8m =log 416,则m 的值为( ) A.12 B .9 C .18D .27解析:由题意得lg 4lg 3·lg 8lg 4·lg mlg 8=log 416=log 442=2.∴lg mlg 3=2,即lg m =2lg 3=lg 9. ∴m =9.故选B. 答案:B二、填空题(每小题4分,共8分) 4.计算:823×3log 32ln e +log 4164=______.解析:原式=(23)23×21+log 44-3=22×21-3=-4.答案:-45.(log 43+log 83)(log 32+log 98)=________. 解析:原式=⎝⎛⎭⎫lg 3lg 4+lg 3lg 8⎝⎛⎭⎫lg 2lg 3+lg 8lg 9=⎝⎛⎭⎫lg 32lg 2+lg 33lg 2⎝⎛⎭⎫lg 2lg 3+3lg 22lg 3=5lg 36lg 2·5lg 22lg 3=2512. 答案:2512三、解答题6.(本小题满分10分)求值: (1)15⎝⎛⎭⎫lg 32+log 4 16+6lg 12+15lg 15. (2)(lg 2)2+lg 2·lg 50+lg 25.解:(1)原式=15⎣⎡⎦⎤lg 32+2+lg ⎝⎛⎭⎫126+15lg 15 =15⎣⎡⎦⎤2+lg ⎝⎛⎭⎫32×164×15 =15⎝⎛⎭⎫2+lg 110=15[]2+()-1=15. (2)∵lg 2+lg 5=lg(2×5)=lg 10=1, ∴原式=(lg 2)2+lg 2·lg(2×52)+lg 52 =(lg 2)2+lg 2·(lg 2+2lg 5)+2lg 5 =(lg 2)2+(lg 2)2+2lg 2·lg 5+2lg 5 =2(lg 2)2+2lg 2·lg 5+2lg 5 =2lg 2·(lg 2 +lg 5)+2lg 5 =2lg 2+2lg 5=2(lg 2+lg 5)=2.一、选择题(每小题5分,共10分)1.已知2x =3,log 4 83=y ,则x +2y 等于( )A .3B .8C .4D .log 48解析:∵2x =3,∴x =log 23.又log 4 83=y ,∴x +2y =log 23+2log 483=log 23+2(log 4 8-log 43) =log 23+2⎝⎛⎭⎫32log 22-12log 23=log 23+3-log 23=3.故选A. 答案:A2.定义新运算“&”与“*”:x &y =x y -1,x *y =log (x -1)y ,则函数f (x )=(x &3)+13*2x 是( )A .奇函数B .偶函数C .非奇非偶函数D .既是奇函数又是偶函数解析:因为f (x )=(x &3)+13*2x =x 3-1+1log (3-1)2x =x 2+1log 22x =x 2+1x (x ≠0), 且f (-x )=(-x )2+1-x =-x 2+1x =-f (x ),所以f (x )为奇函数.故选A. 答案:A二、填空题(每小题5分,共10分)3.已知lg x +lg y =2lg(2x -3y ),则log 32xy 的值为________.解析:由⎩⎪⎨⎪⎧x >0,y >0,2x -3y >0,xy =(2x -3y )2,得(4x -9y )(x -y )=0,且x ≠y ,∴4x -9y =0,即x y =94.∴log 32x y =log 3294=2.答案:24.已知f (x )=kx +6x -4(k ∈R ),f (lg 2)=0,则f ⎝⎛⎭⎫lg 12=________. 解析:f (lg 2)=k lg 2+6lg 2-4=0,∴k =4-6lg 2lg 2=4lg 2-6lg 2·lg 2,f ⎝⎛⎭⎫lg 12=4lg 2-6lg 2·lg 2·(-lg 2)-6lg 2-4=-8. 答案:-8 三、解答题5.(本小题满分10分)若a ,b ,c ∈N *,且满足a 2+b 2=c 2. (1)求log 2⎝⎛⎭⎫1+b +c a +log 2⎝⎛⎭⎫1+a -c b 的值.(2)若log 4⎝⎛⎭⎫1+b +c a =1,log 8(a +b -c )=23,求a ,b ,c 的值.解:(1)∵a 2+b 2=c 2,∴log 2⎝⎛⎭⎫1+b +c a +log 2⎝⎛⎭⎫1+a -c b=log 2⎣⎡⎦⎤⎝⎛⎭⎫1+b +c a ⎝⎛⎭⎫1+a -cb =log 2(a +b +c )(a +b -c )ab=log 2a 2+b 2-c 2+2ab ab =log 22ab ab =1.(2)∵log 4⎝⎛⎭⎫1+b +c a =1,∴a +b +ca=4.即3a -b -c =0.① ∵log 8(a +b -c )=23,∴a +b -c =4.② ∵a 2+b 2=c 2,③ 且a ,b ,c ∈N *,∴由①②③解得a =6,b =8,c =10.。
寒假作业九1.设0<α<π2,0≤β≤π2,则2α-β3的范围是( )A .0<2α-β3<5π6B .-π6<2α-β3<5π6 C .0<2α-β3<πD .-π6<2α-β3<π2.已知集合A ={x |x =2m -1,m ∈Z },B ={x |x =2n ,n ∈Z },且x 1,x 2∈A ,x 3∈B ,则下列判断不正确的是( )A .x 1x 2∈AB .x 2x 3∈BC .x 1+x 2∈BD .x 1+x 2+x 3∈A3.化简 3⎝ ⎛⎭⎪⎫-8a -327b 34(其中a >0,b >0)的结果是( ) A.2a3b B .-2a 3b C.1681a 4b 4D .-181a 4b 44.函数f (x )=ax 2+bx +c ,若f (1)>0,f (2)<0,则f (x )在(1,2)上的零点( ) A .至多有一个 B .有一个或两个 C .有且仅有一个D .一个也没有5.若函数f (x )=a |2x -4|(a >0,且a ≠1)满足f (1)=19,则f (x )的单调递减区间是( )A .(-∞,2]B .[2,+∞)C .[-2,+∞)D .(-∞,-2]6.若函数f (x )在[a ,b ]上的图象为一条连续不断的曲线,且同时满足f (a )·f (b )<0,f (a )·f ⎝ ⎛⎭⎪⎫a +b 2>0,则( )A .f (x )在⎣⎢⎡⎦⎥⎤a ,a +b 2上有零点 B .f (x )在⎣⎢⎡⎦⎥⎤a +b 2,b 上有零点 C .f (x )在⎣⎢⎡⎦⎥⎤a ,a +b 2上无零点 D .f (x )在⎣⎢⎡⎦⎥⎤a +b 2,b 上无零点7.已知函数f (x )=log 2(1+2-x ),则函数f (x )的值域是( )A .[0,2)B .(0,+∞)C .(0,2)D .[0,+∞)8.三个变量y 1,y 2,y 3,随着变量x 的变化情况如下表:则关于x ) A .y 1,y 2,y 3B .y 2,y 1,y 3高一年级 数学学科 假期作业使用日期:寒假 编辑: 校对:审核:C .y 3,y 2,y 1D .y 1,y 3,y 2 9.方程2log 3x =14的解是( ) A .x =19 B .x =33 C .x = 3D .x =910.函数y =lg|x |x 的图象大致是( )11.(多选)设指数函数f (x )=a x (a >0,且a ≠1),则下列等式中正确的是( ) A .f (x +y )=f (x )f (y ) B .f (x -y )=f (x )f (y ) C .f ⎝ ⎛⎭⎪⎫x y =f (x )-f (y ) D .f (nx )=[f (x )]n (n ∈Q )12.(多选)函数y =sin x |sin x |+|cos x |cos x +tan x|tan x |的值可能为( ) A .-1 B .0 C .1D .313.已知sin α-2cos α3sin α+5cos α=-5,那么tan α= .14.已知a >0,将a 2a ·3a 2表示成分数指数幂,其结果是________.15.函数f (x )=|x -2|-ln x 的零点的个数为________. 16.下列存在量词命题是真命题的序号是________. ①有些不相似的三角形面积相等;②存在实数x ,使x 2+2<0;③存在实数a ,使函数y =ax +b 的值随x 的增大而增大; ④有一个实数的倒数是它本身.17.已知函数f (x )=3log 13x 的定义域为[3,9],则函数f (x )的值域是________.18.某中学开展小组合作学习模式,某班某组小王同学给组内小李同学出题如下:若命题“∃x ∈R ,x 2+2x +m ≤0”是假命题,求m 范围.小李略加思索,反手给了小王一道题:若命题“∀x ∈R ,x 2+2x +m >0”是真命题,求m 范围.你认为,两位同学题中m 范围是否一致?________(填“是”“否”中的一种)19.(本小题满分12分)已知全集U =R ,集合A ={x |a -1<x <2a +1},B ={x |0<x <1}. (1)若a =12,求A ∩B ;(2)若A ∩B =∅,求实数a 的取值范围.20.已知a ,b ∈R ,a +b >0,试比较a 3+b 3与ab 2+a 2b 的大小.21.已知函数f (x )=22x2+22x . (1)求f ⎝ ⎛⎭⎪⎫13+f ⎝ ⎛⎭⎪⎫23,f (3)+f (-2)的值; (2)求f (x )+f (1-x )的值;(3)利用(2)的结论求f ⎝ ⎛⎭⎪⎫1100+f ⎝ ⎛⎭⎪⎫2100+f ⎝ ⎛⎭⎪⎫3100+…+f ⎝ ⎛⎭⎪⎫98100+f ⎝ ⎛⎭⎪⎫99100的值.22.若a ,b 是方程2(lg x )2-lg x 4+1=0的两个实根,求lg(ab )·(log a b +log b a )的值.寒假作业九答案1.解析:选D 由已知,得0<2α<π,0≤β3≤π6,∴-π6≤-β3≤0,由同向不等式相加得到-π6<2α-β3<π. 2.解析:选D ∵集合A 表示奇数集,集合B 表示偶数集, ∴x 1,x 2是奇数,x 3是偶数,∴x 1+x 2+x 3应为偶数,即D 是错误的.3解析:选C 3⎝ ⎛⎭⎪⎫-8a -327b 34=3212a -12312b 12=24a -434b 4=1681a 4b 4,故选C. 4.解析:选C 若a =0,则f (x )=bx +c 是一次函数,由f (1)·f (2)<0得零点只有一个;若a ≠0,则f (x )=ax 2+bx +c 为二次函数,若f (x )在(1,2)上有两个零点,则必有f (1)·f (2)>0,与已知矛盾.故选C.5.解析:选B 由f (1)=19,得a 2=19,于是a =13, 因此f (x )=⎝ ⎛⎭⎪⎫13|2x -4|.令t =|2x -4|,∴h (t )=⎝ ⎛⎭⎪⎫13t 为减函数.因为g (x )=|2x -4|在[2,+∞)上单调递增,所以f (x )的单调递减区间是[2,+∞).故选B.6.解析:选B 由f (a )·f (b )<0,f (a )·f ⎝ ⎛⎭⎪⎫a +b 2>0可知f ⎝ ⎛⎭⎪⎫a +b 2·f (b )<0,根据零点存在性定理可知f (x )在⎣⎢⎡⎦⎥⎤a +b 2,b 上有零点.7.解析:选B f (x )=log 2(1+2-x ),∵1+2-x >1,∴log 2(1+2-x )>0,∴函数f (x )的值域是(0,+∞),故选B.8.解析:选C 通过指数函数、对数函数、幂函数等不同函数模型的增长规律比较可知,对数函数的增长速度越来越慢,变量y 3随x 的变化符合此规律;指数函数的增长速度成倍增长,y 2随x 的变化符合此规律;幂函数的增长速度介于指数函数与对数函数之间,y 1随x 的变化符合此规律,故选C.9.解析:选A ∵2log 3x =2-2,∴log 3x =-2, ∴x =3-2=19.10.解析:选D 函数y =lg|x |x 的定义域是{x |x ≠0},且易得函数为奇函数,所以函数图象关于原点对称,可排除A ,B ,当x =1时,y =lg 1=0,故图象与x 轴相交,且其中一个交点为(1,0),只有D 中图象符合.11.解析:解析:选ABD f (x +y )=a x +y =a x a y =f (x )f (y ),故A 中的等式正确;f (x -y )=a x -y =a x a -y =a x a y =f (x )f (y ),故B 中的等式正确;f ⎝ ⎛⎭⎪⎫x y =a x y =(a x )1y ,f (x )-f (y )=a x -a y ≠(a x )1y ,故C 中的等式错误;f (nx )=a nx =(a x )n =[f (x )]n ,故D 中的等式正确.12.解析:选AD 当x 是第一象限角时,y =3; 当x 是第二象限角时,y =-1; 当x 是第三象限角时,y =-1;当x 是第四象限角时,y =-1.故函数y =sin x |sin x |+|cos x |cos x +tan x|tan x |的值可能为-1或3.13.解析:易知cos α≠0,由sin α-2cos α3sin α+5cos α=-5,得tan α-23tan α+5=-5,解得tan α=-2316.答案:-231614.解析:a 2a ·3a 2=a 2a ·a23=a 2a 53=a 2a 53×12=a 2·a -56=a 2-56=a 76. 答案:a 7615.解析:由题意知,函数f (x )的定义域为(0,+∞),函数f (x )在(0,+∞)内的零点就是方程|x -2|-ln x =0的根.令y 1=|x -2|,y 2=ln x (x >0),在同一平面直角坐标系中画出两个函数的图象,由图知,两个函数图象有两个交点,故方程|x -2|-ln x =0有2个根,即对应函数有2个零点.答案:216.解析:①为真命题,只要找出等底等高的两个三角形,面积就相等,但不一定相似;②中对任意x ∈R ,x 2+2>0,所以不存在实数x ,使x 2+2<0,为假命题;③中当实数a 大于0时,结论成立,为真命题;④中如1的倒数是它本身,为真命题.故真命题的序号是①③④.答案:①③④17.解析:∵y =log 13x 在(0,+∞)上是减函数,∴当3≤x ≤9时,log 139≤log 13x ≤log 133,即-2≤log 13x ≤-1, ∴-6≤3log 13x ≤-3,∴函数f (x )的值域是[-6,-3]. 答案:[-6,-3]18.解析:∵命题“∃x ∈R ,x 2+2x +m ≤0”的否定是“∀x ∈R ,x 2+2x +m >0”. 而命题“∃x ∈R ,x 2+2x +m ≤0”是假命题,则其否定“∀x ∈R ,x 2+2x +m >0”为真命题.∴两位同学题中m 范围是一致的.答案:是19.解:(1)若a =12,则A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-12<x <2,又B ={x |0<x <1},∴A ∩B ={x |0<x <1}. (2)当A =∅时,a -1≥2a +1, ∴a ≤-2,此时满足A ∩B =∅;当A ≠∅时,由A ∩B =∅,B ={x |0<x <1}, 易得⎩⎨⎧2a +1>a -1,a -1≥1或⎩⎨⎧2a +1>a -1,2a +1≤0, ∴a ≥2或-2<a ≤-12.综上可知,实数a的取值范围是⎩⎨⎧⎭⎬⎫a ⎪⎪⎪a ≤-12或a ≥2.20.解:因为a +b >0,(a -b )2≥0,所以a 3+b 3-ab 2-a 2b =a 3-a 2b +b 3-ab 2=a 2(a -b )+b 2(b -a )=(a -b )(a 2-b 2)=(a -b )(a -b )(a +b )=(a -b )2(a +b )≥0,所以a 3+b 3≥ab 2+a 2b .21.解:(1)f ⎝ ⎛⎭⎪⎫13+f ⎝ ⎛⎭⎪⎫23=2232+223+2432+243=1213+1+2131+213=1. f (3)+f (-2)=262+26+2-42+2-4=262+26+125+1=262+26+226+2=1.(2)f (x )+f (1-x )=22x 2+22x +22(1-x )2+22(1-x )=4x 2+4x +41-x 2+41-x =4x 2+4x +42·4x +4=4x2+4x+24x +2=4x +22+4x =1.(3)由(2)知f ⎝ ⎛⎭⎪⎫1100+f ⎝ ⎛⎭⎪⎫2100+…+f ⎝ ⎛⎭⎪⎫98100+f ⎝ ⎛⎭⎪⎫99100=992. 22.解:原方程可化为2(lg x )2-4lg x +1=0. 设t =lg x ,则方程化为2t 2-4t +1=0,∴t 1+t 2=2,t 1·t 2=12. 又∵a ,b 是方程2(lg x )2-lg x 4+1=0的两个实根, ∴t 1=lg a ,t 2=lg b ,即lg a +lg b =2,lg a ·lg b =12.∴lg(ab )·(log a b +log b a ) =(lg a +lg b )·⎝ ⎛⎭⎪⎫lg b lg a +lg a lg b =(lg a +lg b )·(lg b )2+(lg a )2lg a ·lg b =(lg a +lg b )·(lg a +lg b )2-2lg a ·lg b lg a ·lg b =2×22-2×1212=12, 即lg(ab )·(log a b +log b a )=12.。
寒假作业三一、选择题1.cos120°是()A.﹣B.﹣C.D.2.集合A={x|x2﹣x﹣6<0},集合B=,则A∪B=()A.(1,2)B.(﹣2,3)C.(﹣2,2)D.(0,2)3.使得函数f(x)=log2x+x﹣5有零点的一个区间是()A.(1,2)B.(2,3)C.(3,4)D.(4,5)4.已知a=log20.2,b=20.2,c=0.20.3,则()A.a<b<c B.a<c<b C.c<a<b D.b<c<a 5.已知tan x=﹣,x∈[,π],则cos(﹣x)=()A.B.C.﹣D.﹣6.已知a、b都是实数,那么“”是“lna>lnb”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.下列函数中周期为π且为偶函数的是()A.B.C.D.8.如图是函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<)在一个周期内的图象,则其解析式是()A.f(x)=3sin(x+)B.f(x)=3sin(2x+)C.f(x)=3sin(2x﹣)D.f(x)=3sin(2x+)9.函数在(﹣∞,+∞)上是减函数,则a的取值范围是()A.B.C.D.10.已知,若存在三个不同实数a,b,c使得f(a)=f(b)=f(c),则abc的取值范围是()A.(0,1] B.[﹣2,0)C.(﹣2,0] D.(0,1)11.(多选)下列命题中,真命题的是()A.y=sin|x|的图象与y=sin x的图象关于y轴对称B.y=cos(-x)的图象与y=cos|x|的图象相同C.y=|sin x|的图象与y=sin(-x)的图象关于x轴对称高一年级数学学科假期作业使用日期:寒假编辑:校对:审核:D .y =cos x 的图象与y =cos(-x)的图象相同 12. (多选)函数y =tan x2的性质有( )A .在⎝⎛⎭⎫0,π2上单调递增 B .为奇函数C .以π为最小正周期D .定义域为⎩⎨⎧x ⎪⎪⎭⎬⎫x ≠π4+k π2,k ∈Z二.填空题13.命题:“∃x >0,x 2+x ﹣1>0”的否定是 .14.若x >0,y >0,且,则x +y 的最小值是 .15.不等式()>1的解集是 .16.化简log 2.56.25+lg 0.001+2ln ﹣= .17.已知函数y =log 2(ax +2)在(1,3)上单调递减,则a 的取值范围是 . 三.解答题18.已知α,β均为锐角,sin α=,cos β=,求:(1)求sin (α﹣β)的值; (2)求α﹣β的值.19.已知=2.(1)求tan x 的值;(2)求的值.20.已知函数f (x )=cos (2x ﹣)﹣2sin 2x +a (a ∈R ),且f ()=0.(Ⅰ)求a 的值; (Ⅱ)若x ∈[0,],求f (x )的值域.21.已知函数f(x )=是定义域(﹣1,1)上的奇函数,(1)确定f(x)的解析式;(2)用定义证明:f(x)在区间(﹣1,1)上是减函数;(3)解不等式f(t﹣1)+f(t)<0.22.已知函数f(x)=2sin x cos x+2cos2x(x∈R).(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)将f(x )的图象向右平移个单位,得到g(x)的图象,已知g(x0)=,x0∈[,],求cos2x0的值.寒假作业三答案1.【解答】解:cos120°=cos(180°﹣60°)=﹣cos60°=﹣,故选:A.2.【解答】解:集合A={x|x2﹣x﹣6<0}={x|﹣2<x<3}=(﹣2,3),集合B =={x|1<x<2}=(1,2),则A∪B=(﹣2,3).故选:B.3.【解答】解:函数f(x)=log2x+x﹣5在(0,+∞)上连续,f(3)=log23+3﹣5<0;f(4)=2+4﹣5>0;故函数f(x)=log2x+x﹣5的零点所在的区间是(3,4);故选:C.4.【解答】解:a=log20.2<log21=0,b=20.2>20=1,∵0<0.20.3<0.20=1,∴c=0.20.3∈(0,1),∴a<c<b,故选:B.5.【解答】解:∵tan x =﹣,x∈[,π],∴cos(﹣x)=cos x =﹣=﹣=﹣.故选:C.6.【解答】解:∵lna>lnb⇒a>b>0⇒>,是必要条件,而>,如a=1,b=0则lna>lnb不成立,不是充分条件,故选:B.7.【解答】解:根据周期为π=,∴ω=2,故排除C、D.再根据函数为偶函数,而=﹣sin (﹣2x)=﹣cos2x,故函数是偶函数,故满足条件.而=cos (﹣2x)=sin2x,为奇函数,不满足条件,故排除.故选:A.8.【解答】解:由图象知A=3,函数的周期T =﹣(﹣)=π,即=π,即ω=2,则f(x)=3sin(2x+φ),由五点对应法得2×(﹣)+φ=0,即φ=,则f(x)=3sin (2x +),故选:B.9.【解答】解:依题意,,解得0≤a <,故选:B.10.【解答】解:由题意,可画出f(x)函数的图象大致如下:∵存在三个不同实数a,b,c,使得f(a)=f(b)=f(c),可假设a<b<c,∴根据函数图象,可知:﹣2<a≤0,0<b<1,c>1.又∵f(b)=f(c),∴|log2019b|=|log2019c|,即:﹣log2019b=log2019c.∴log2019b+log2019c=0.∴log2019bc=0,即bc=1.∴abc=a.∵﹣2<a≤0,∴﹣2<abc≤0.故选:C.11.解析:选BD对于B,y=cos(-x)=cos x,y=cos|x|=cos x,故其图象相同;对于D,y=cos(-x)=cos x,故这两个函数图象相同,作图(图略)可知A、C均是假命题12.解析:选AB令x∈⎝⎛⎭⎪⎫0,π2,则x2∈⎝⎛⎭⎪⎫0,π4,所以y=tanx2在⎝⎛⎭⎪⎫0,π2上单调递增,所以A正确;tan⎝⎛⎭⎪⎫-x2=-tanx2,故y =tanx2为奇函数,所以B正确;T=πω=2π,所以C不正确;由x2≠π2+kπ,k∈Z,得{x|x≠π+2kπ,k ∈Z},所以D不正确.二.填空题:13.【解答】解:因为特称命题的否定是全称命题,所以命题:“∃x>0,x2+x ﹣1>0”的否定是:∀x>0,x2+x﹣1≤0.故答案为:∀x>0,x2+x ﹣1≤0.14.【解答】解:∵∴=当且仅当时,取等号.故答案为16.15.【解答】解:()>1⇔x2﹣2x﹣3<0⇔﹣1<x<3.故答案为:(﹣1,3)16.【解答】解:原式=2﹣3+1﹣=﹣.故答案为:﹣.17.【解答】解:由复合函数的单调性可知,一次函数y=ax+2为减函数,则a<0,且当x∈(1,3)时,y=ax+2>0恒成立,则只需3a+2≥0,即,∴.故答案为:.三.解答题18.【解答】解:(1)∵α,β均为锐角,∴cosα==,sinβ==,∴sin(α﹣β)=sinαcosβ﹣cosαsinβ=×﹣×=﹣,(2)∵α,β均为锐角,∴﹣<α﹣β<,∵sin(α﹣β)=﹣,∴α﹣β=﹣19.【解答】解:(1)∵=2,可得=2,∴解得tan x=﹣3;(2)∵tan=tan(π+)=tan=1,∴===﹣.20.【解答】解:(Ⅰ)函数f(x)=cos(2x ﹣)﹣2sin2x+a,=cos2x +sin2x﹣2•+a,=sin(2x +)+a﹣1,又f ()=0.可得sin(2×+)+a﹣1=0,解得:a=1.(Ⅱ)由题意可得:f(x )=sin(2x +).由x∈[0,],可得2x +∈[,],可得sin(2x +)∈[﹣,1],可得f(x )=sin(2x +)∈[﹣,].21.【解答】解:(1)根据题意,函数f(x )=是定义域(﹣1,1)上的奇函数,则有f(0)==0,则b=0;此时f(x )=,为奇函数,符合题意,故f(x )=,(2)证明:设﹣1<x1<x2<1,f(x1)﹣f(x2)=﹣=﹣又由﹣1<x1<x2<1,则(x1﹣x2)<0,x1x2+1>0,则有f(x1)﹣f(x2)>0,即函数f(x)在(﹣1,1)上为减函数;(3)根据题意,f(t﹣1)+f(t)<0⇒f(t﹣1)<﹣f(t)⇒f(t﹣1)<f(﹣t)⇒,解可得:<t<1,即不等式的解集为(,1).22.【解答】解:(Ⅰ)函数f(x)=2sin x cos x+2cos2x ==.令(k∈Z ),解得(k∈Z),所以函数的单调增区间为:[](k∈Z).(Ⅱ)将f(x )的图象向右平移个单位,得到g(x)=2sin(2x ﹣)+1的图象,由于g(x0)=,即,整理得.由于x0∈[,],所以.故.则==.。
2019高一数学必修一作业本【答案】
答案与提示仅供参考
第一章集合与函数概念
1.1集合
111集合的含义与表示
1.D.
2.A.
3.C.
4.{1,-1}.
5.{x|x=3n+1,n∈N}.
6.{2,0,-2}.
7.A={(1,5),(2,4),(3,3),(4,2),(5,1)}.8.1.9.1,2,3,6.
10.列举法表示为{(-1,1),(2,4)},描述法的表示方法不,如可表示为(x,y)|y=x+2,
y=x2.
11.-1,12,2.
112集合间的基本关系
1.D.
2.A.
3.D.
4.,{-1},{1},{-1,1}.
5..
6.①③⑤.
7.A=B.8.15,13.9.a≥4.10.A={,{1},{2},{1,2}},B∈A.
11.a=b=1.
113集合的基本运算(一)
1.C.
2.A.
3.C.
4.4.
5.{x|-2≤x≤1}.
6.4.
7.{-3}.
8.A∪B={x|x<3,或x≥5}.9.A∪B={-8,-7,-4,4,9}.10.1.
11.{a|a=3,或-22<a<22}.提示:∵A∪B=A,∴BA.而A={1,2},对B实行讨论:①当B=时,x2-ax+2=0无实数解,此时Δ=a2-8<
0,∴-22<a<22.②当B≠时,B={1,2}或B={1}或B={2};当B={1,2}时,a=3;当B={1}或B={2}时,
Δ=a2-8=0,a=±22,但当a=±22时,方程x2-ax+2=0的解为
x=±2,不合题意.113集合的基本运算(二)
1.A.
2.C.
3.B.
4.{x|x≥2,或x≤1}.
5.2或8.
6.x|x=n+12,n∈Z.
7.{-2}.8.{x|x>6,或x≤2}.9.A={2,3,5,7},B={2,4,6,8}.
10.A,B的可能情形
有:
A={1,2,3},B={3,4};A={1,2,4},B={3,4};A={1,2,3,4},B={3,4}.
11.a=4,b=2.提示:∵A∩綂UB={2},∴2∈A,∴4+2a-12=0a=4,
∴A={x|x2+4x-12=0}={2,-6},∵A∩綂UB={2},∴-6綂UB,∴-6∈B,将x=-6代入B,得b2-6b+8=0b=2,或b=4.①当b=2
时,B={x|x2+2x-24=0}={-6,4},∴-6綂UB,而2∈綂UB,满足条件A∩綂UB={2}.②当b=4时,B={x|x2+4x-12=0}={-6,2},
∴2綂UB,与条件A∩綂UB={2}矛盾.
1.2函数及其表示
121函数的概念(一)
1.C.
2.C.
3.D.
4.22.
5.-2,32∪32,+∞.
6.[1,+∞).
7.(1)12,34.(2){x|x≠-1,且x≠-3}.8.-34.9.1.
10.(1)略.(2)72.11.-12,234.
121函数的概念(二)
1.C.
2.A.
3.D.
4.{x∈R|x≠0,且x≠-1}.
5.[0,+∞).
6.0.
7.-15,-13,-12,13.8.(1)y|y≠25.(2)[-2,+∞).
9.(0,1].10.A∩B=-2,12;A∪B=[-2,+∞).11.[-1,0).
122函数的表示法(一)1.A.2.B.3.A.4.y=x100.5.y=x2-
2x+2.6.1x.7.略.
8.
x1234y828589889.略.10.1.11.c=-3.
122函数的表示法(二)
1.C.
2.D.
3.B.
4.1.
5.3.
6.6.
7.略.
8.f(x)=2x(-1≤x<0),
-2x+2(0≤x≤1).
9.f(x)=x2-x+1.提示:设f(x)=ax2+bx+c,由f(0)=1,得c=1,又f(x+1)-f(x)=2x,即a(x+1)2+b(x+1)+c-(ax2+bx+c)=2x,展开得
2ax+(a+b)=2x,所以2a=2,a+b=0,解得a=1,b=-1.
10.y=1.2(0<x≤20),
2.4(20<x≤40),
3.6(40<x≤60),
4.8(60<x≤80).11.略.
1.3函数的基本性质
131单调性与(小)值(一)
1.C.
2.D.
3.C.
4.[-2,0),[0,1),[1,2].
5.-∞,32.
6.k<12.
7.略.8.单调递减区间为(-∞,1),单调递增区间为[1,+∞).9.略.10.a≥-1.
11.设-1<x1<x2<1,则f(x1)-f(x2)=x1x21-1-x2x22-1=。