算法设计与分析之优先队列
- 格式:pptx
- 大小:2.45 MB
- 文档页数:54
算法设计与分析知到章节测试答案智慧树2023年最新天津大学第一章测试1.下列关于效率的说法正确的是()。
参考答案:提高程序效率的根本途径在于选择良好的设计方法,数据结构与算法;效率主要指处理机时间和存储器容量两个方面;效率是一个性能要求,其目标应该在需求分析时给出2.算法的时间复杂度取决于()。
参考答案:问题的规模;待处理数据的初态3.计算机算法指的是()。
参考答案:解决问题的有限运算序列4.归并排序法的时间复杂度和空间复杂度分别是()。
参考答案:O(nlog2n);O(n)5.将长度分别为m,n的两个单链表合并为一个单链表的时间复杂度为O(m+n)。
()参考答案:错6.用渐进表示法分析算法复杂度的增长趋势。
()参考答案:对7.算法分析的两个主要方面是时间复杂度和空间复杂度的分析。
()参考答案:对8.某算法所需时间由以下方程表示,求出该算法时间复杂度()。
参考答案:O(nlog2n)9.下列代码的时间复杂度是()。
参考答案:O(log2N)10.下列算法为在数组A[0,...,n-1]中找出最大值和最小值的元素,其平均比较次数为()。
参考答案:3n/2-3/2第二章测试1.可用Master方法求解的递归方程的形式为()。
参考答案:T(n)=aT(n/b)+f(n) , a≥1, b>1, 为整数, f(n)>0.2.参考答案:对3.假定,, 递归方程的解是. ( )参考答案:对4.假设数组A包含n个不同的元素,需要从数组A中找出n/2个元素,要求所找的n/2个元素的中点元素也是数组A的中点元素。
针对该问题的任何算法需要的时间复杂度的下限必为。
( )参考答案:错5.使用Master方法求解递归方程的解为().参考答案:6.考虑包含n个二维坐标点的集合S,其中n为偶数,且所有坐标点中的均不相同。
一条竖直的直线若能把S集合分成左右两部分坐标点个数相同的子集合,则称直线L为集合S的一条分界线。
若给定集合S,则可在时间内找到这条分界线L。
《算法设计与分析》实验指导书本书是为配合《算法分析与设计实验教学大纲》而编写的上机指导,其目的是使学生消化理论知识,加深对讲授内容的理解,尤其是一些算法的实现及其应用,培养学生独立编程和调试程序的能力,使学生对算法的分析与设计有更深刻的认识。
上机实验一般应包括以下几个步骤:(1)、准备好上机所需的程序。
手编程序应书写整齐,并经人工检查无误后才能上机。
(2)、上机输入和调试自己所编的程序。
一人一组,独立上机调试,上机时出现的问题,最好独立解决。
(3)、上机结束后,整理出实验报告。
实验报告应包括:题目、程序清单、运行结果、对运行情况所作的分析。
本书共分阶段4个实验,每个实验有基本题和提高题。
基本题必须完成,提高题根据自己实际情况进行取舍。
题目不限定如下题目,可根据自己兴趣爱好做一些与实验内容相关的其他题目,如动态规划法中的图象压缩,回溯法中的人机对弈等。
其具体要求和步骤如下:实验一分治与递归(4学时)一、实验目的与要求1、熟悉C/C++语言的集成开发环境;2、通过本实验加深对递归过程的理解二、实验内容:掌握递归算法的概念和基本思想,分析并掌握“整数划分”问题的递归算法。
三、实验题任意输入一个整数,输出结果能够用递归方法实现整数的划分。
四、实验步骤1.理解算法思想和问题要求;2.编程实现题目要求;3.上机输入和调试自己所编的程序;4.验证分析实验结果;5.整理出实验报告。
一、实验目的与要求1、掌握棋盘覆盖问题的算法;2、初步掌握分治算法二、实验题:盘覆盖问题:在一个2k×2k个方格组成的棋盘中,恰有一个方格与其它方格不同,称该方格为一特殊方格,且称该棋盘为一特殊棋盘。
在棋盘覆盖问题中,要用图示的4种不同形态的L型骨牌覆盖给定的特殊棋盘上除特殊方格以外的所有方格,且任何2个L型骨牌不得重叠覆盖。
三、实验提示void chessBoard(int tr, int tc, int dr, int dc, int size) {if (size == 1) return;int t = tile++, // L型骨牌号s = size/2; // 分割棋盘// 覆盖左上角子棋盘if (dr < tr + s && dc < tc + s)// 特殊方格在此棋盘中chessBoard(tr, tc, dr, dc, s);else {// 此棋盘中无特殊方格// 用t 号L型骨牌覆盖右下角board[tr + s - 1][tc + s - 1] = t;// 覆盖其余方格chessBoard(tr, tc, tr+s-1, tc+s-1, s);}// 覆盖右上角子棋盘if (dr < tr + s && dc >= tc + s)// 特殊方格在此棋盘中chessBoard(tr, tc+s, dr, dc, s);else {// 此棋盘中无特殊方格// 用t 号L型骨牌覆盖左下角board[tr + s - 1][tc + s] = t;// 覆盖其余方格chessBoard(tr, tc+s, tr+s-1, tc+s, s);}// 覆盖左下角子棋盘if (dr >= tr + s && dc < tc + s)// 特殊方格在此棋盘中chessBoard(tr+s, tc, dr, dc, s);else {// 用t 号L型骨牌覆盖右上角board[tr + s][tc + s - 1] = t;// 覆盖其余方格chessBoard(tr+s, tc, tr+s, tc+s-1, s);}// 覆盖右下角子棋盘if (dr >= tr + s && dc >= tc + s)// 特殊方格在此棋盘中chessBoard(tr+s, tc+s, dr, dc, s);else {// 用t 号L型骨牌覆盖左上角board[tr + s][tc + s] = t;// 覆盖其余方格chessBoard(tr+s, tc+s, tr+s, tc+s, s);}}一、实验目的与要求1、熟悉二分搜索算法;2、初步掌握分治算法;二、实验题1、设a[0:n-1]是一个已排好序的数组。
《算法设计与分析》考试题目及答案(DOC)D. 预排序与递归调用7. 回溯法在问题的解空间树中,按(D)策略,从根结点出发搜索解空间树。
A.广度优先B. 活结点优先 C.扩展结点优先 D. 深度优先8. 分支限界法在问题的解空间树中,按(A)策略,从根结点出发搜索解空间树。
A.广度优先B. 活结点优先 C.扩展结点优先 D. 深度优先9. 程序块(A)是回溯法中遍历排列树的算法框架程序。
A.B.C.D. void backtrack (int t){if (t>n) output(x);elsefor (int i=t;i<=n;i++) {swap(x[t], x[i]);if (legal(t)) backtrack(t+1); swap(x[t], x[i]);}}void backtrack (int t){if (t>n) output(x);elsefor (int i=0;i<=1;i++) {x[t]=i;if (legal(t)) backtrack(t+1); }}10. 回溯法的效率不依赖于以下哪一个因素?(C )A.产生x[k]的时间;B.满足显约束的x[k]值的个数;C.问题的解空间的形式;D.计算上界函数bound的时间;E.满足约束函数和上界函数约束的所有x[k]的个数。
F.计算约束函数constraint的时间;11. 常见的两种分支限界法为(D)A. 广度优先分支限界法与深度优先分支限界法;B. 队列式(FIFO)分支限界法与堆栈式分支限界法;C. 排列树法与子集树法;D. 队列式(FIFO)分支限界法与优先队列式分支限界法;12. k带图灵机的空间复杂性S(n)是指(B)A.k带图灵机处理所有长度为n的输入时,在某条带上所使用过的最大方格数。
B.k带图灵机处理所有长度为n的输入时,在k条带上所使用过的方格数的总和。
C.k带图灵机处理所有长度为n的输入时,在k条带上所使用过的平均方格数。
数的顺序技巧数的顺序技巧是指在进行数字排列或排序时,使用一些方法和技巧来使得数字的顺序更加有条理和合理。
这些技巧可以应用于不同领域和情境中,包括数学、编程、数据分析等等。
在数学领域中,常见的数的顺序技巧有以下几种:1. 升序和降序排列:升序指数字从小到大排列,降序指数字从大到小排列。
这是最基本的数的顺序技巧,通常可以通过比较数字的大小来实现。
2. 递增和递减排列:递增指数字按照一定的间隔逐渐增加,递减指数字按照一定的间隔逐渐减小。
例如,从1开始,每次加2排列得到的序列就是递增的。
递增和递减排列常常用于问题求解和模式发现。
3. 素数排列:素数是只能被1和自身整除的数,素数排列指将一组数字按照素数的大小进行排序。
由于素数的特殊性,素数排列可以帮助人们更好地理解素数的规律和性质。
4. 斐波那契数列排列:斐波那契数列是指从1、1开始,后面的每个数都是前面两个数之和的数列。
将一组数字按照斐波那契数列的规则进行排列,可以帮助人们更好地理解和应用斐波那契数列的性质。
在编程领域中,数的顺序技巧可以应用于算法和数据结构的设计和优化中。
以下是一些常见的数的顺序技巧在编程中的应用:1. 排序算法:排序算法是指将一组数字按照一定的规则进行排序的算法。
常见的排序算法有冒泡排序、插入排序、选择排序、快速排序等等。
通过选择合适的排序算法,可以使得数字的顺序更加有序,提高程序的效率。
2. 优先队列:优先队列是一种特殊的数据结构,它能够根据元素的优先级进行排序和访问。
通常优先队列使用堆这种数据结构来实现。
通过使用优先队列,可以使得数字按照一定的规则进行排序,提高程序的效率和准确性。
3. 二分查找:二分查找是一种高效的查找算法,它可以在有序数组中快速地找到某个元素的位置。
通过使用二分查找,可以使得数字按照一定的顺序进行查找,提高程序的效率。
在数据分析领域中,数的顺序技巧可以应用于对数据的整理和分析中。
以下是一些常见的数的顺序技巧在数据分析中的应用:1. 数据排序:将大量数据按照某个指标进行排序,可以帮助人们更好地理解数据的分布和规律。
一、填空题(20分)1.一个算法就是一个有穷规则的集合,其中之规则规定了解决某一特殊类型问题的一系列运算,此外,算法还应具有以下五个重要特性:_________,________,________,__________,__________。
2.算法的困难性有_____________和___________之分,衡量一个算法好坏的标准是______________________。
3.某一问题可用动态规划算法求解的显著特征是____________________________________。
4.若序列X={B,C,A,D,B,C,D},Y={A,C,B,A,B,D,C,D},请给出序列X和Y的一个最长公共子序列_____________________________。
5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至少应包含___________。
6.动态规划算法的基本思想是将待求解问题分解成若干____________,先求解___________,然后从这些____________的解得到原问题的解。
7.以深度优先方式系统搜寻问题解的算法称为_____________。
8.0-1背包问题的回溯算法所需的计算时间为_____________,用动态规划算法所需的计算时间为____________。
9.动态规划算法的两个基本要素是___________和___________。
10.二分搜寻算法是利用_______________实现的算法。
二、综合题(50分)1.写出设计动态规划算法的主要步骤。
2.流水作业调度问题的johnson算法的思想。
3.若n=4,在机器M1和M2上加工作业i所需的时间分别为a i和b i,且(a1,a2,a3,a4)=(4,5,12,10),(b1,b2,b3,b4)=(8,2,15,9)求4个作业的最优调度方案,并计算最优值。
4.运用回溯法解0/1背包问题:n=3,C=9,V={6,10,3},W={3,4,4},其解空间有长度为3的0-1向量组成,要求用一棵完全二叉树表示其解空间(从根动身,左1右0),并画出其解空间树,计算其最优值及最优解。
算法分析与设计实验报告第7 次实验}1、测试自己输入的小规模数据2、测试随机生成1003、随机生成1000数据4、随机生成1000数据附录:完整代码#include <iostream>#include<time.h>#include<algorithm>#include<fstream>using namespace std;ifstream in("input.txt");ofstream out("output.txt");typedef int Typew;typedef int Typep;//物品类class Object{friend Typep Knapsack(Typew *, Typep *, Typew, int, int *); public:int operator <= (Object a) const{return (d >= a.d);}private:int ID; //物品编号float d; //单位重量价值};//树结点类class bbnode{friend class Knap;friend Typep Knapsack(Typew *, Typep *, Typew, int, int *); private:bbnode *parent; //指向父节点的指针int LChild;};//堆结点类class HeapNode{friend class Knap;friend class MaxHeap;public:operator Typep()const{return uprofit;};private:Typep uprofit, //结点的价值上界profit; //结点所相应的价值Typew weight; //结点所相应的重量int level; //活结点在子集树中所处的层序号bbnode *elemPtr; //指向该活结点在子集树中相应结点的指针};//最大堆类class MaxHeap{public:MaxHeap(int maxElem){HeapElem = new HeapNode* [maxElem+1]; //下标为0的保留capacity = maxElem;size = 0;}void InsertMax(HeapNode *newNode);HeapNode DeleteMax(HeapNode* &N);private:int capacity;int size;HeapNode **HeapElem;};//0-1背包问题的主类class Knap{friend Typep Knapsack(Typew *, Typep *, Typew, int, int *); public:Typep MaxKnapsack();private:MaxHeap *H;Typep Bound(int i);void AddLiveNode(Typep up, Typep cp, Typew cw, int ch, int level);bbnode *E; //指向扩展结点的指针Typew c; //背包容量int n; //物品总数Typew *w; //物品重量数组(以单位重量价值降序)Typep *p; //物品价值数组(以单位重量价值降序)Typew cw; //当前装包重量Typep cp; //当前装包价值int *bestx; //最优解};void MaxHeap::InsertMax(HeapNode *newNode){int i = 1;for (i = ++size; i/2 > 0 && HeapElem[i/2]->uprofit < newNode->uprofit; i /= 2){HeapElem[i] = HeapElem[i/2];}HeapElem[i] = newNode;}HeapNode MaxHeap::DeleteMax(HeapNode *&N){if(size >0 ){N = HeapElem[1];int i = 1;while(i < size){if(((i*2 +1) <= size) && HeapElem[i*2]->uprofit > HeapElem[i*2 +1]->uprofit){HeapElem[i] = HeapElem[i*2];i = i*2;}else{if(i*2 <= size){HeapElem[i] = HeapElem[i*2];i = i*2;}elsebreak;}}if(i < size)HeapElem[i] = HeapElem[size];}size--;return *N;}Typep Knap::MaxKnapsack(){H = new MaxHeap(10000);bestx = new int [n+1];int i = 1;E = 0;cw = 0;cp = 0;Typep bestp = 0;Typep up = Bound(1);while (i != n+1){Typew wt = cw + w[i];if(wt <= c) {if(cp + p[i] > bestp)bestp = cp + p[i];AddLiveNode(up, cp + p[i], cw + w[i], 1, i);}up = Bound(i + 1);if(up >= bestp)AddLiveNode(up, cp, cw, 0, i);HeapNode* N;H->DeleteMax(N);E = N->elemPtr;cw = N->weight;cp = N->profit;up = N->uprofit;i = N->level + 1;}for (int i = n; i > 0; i--){bestx[i] = E->LChild;E = E->parent;}return cp;}Typep Knap::Bound(int i){Typew cleft = c - cw;Typep b = cp;while (i<=n && w[i] <= cleft){cleft -= w[i];b += p[i];i++;}if(i<=n) b += p[i]/w[i] * cleft;return b;}void Knap::AddLiveNode(Typep up, Typep cp, Typew cw, int ch, int level) {bbnode *b=new bbnode;b->parent=E;b->LChild=ch;HeapNode *N = new HeapNode;N->uprofit=up;N->profit=cp;N->weight=cw;N->level=level;N->elemPtr=b;H->InsertMax(N);}//Knapsack返回最大价值,最优值保存在bestxTypep Knapsack(Typew *w, Typep *p, Typew c, int n, int *bestx){Typew W = 0;Typep P = 0;Object *Q = new Object[n];for(int i =1; i<=n; i++){Q[i-1].ID = i;Q[i-1].d = 1.0*p[i]/w[i];P += p[i];W += w[i];}if (W <= c){for(int i =1; i<=n; i++){bestx[i] = p[i];}return P;}for(int i = 1; i<n; i++)for(int j = 1; j<= n-i; j++){if(Q[j-1].d < Q[j].d){Object temp = Q[j-1];Q[j-1] = Q[j];Q[j] = temp;}}Knap K;K.p = new Typep [n+1];K.w = new Typew [n+1];for(int i = 1; i<=n; i++){K.p[i] = p[Q[i-1].ID];K.w[i] = w[Q[i-1].ID];}K.cp = 0;K.cw = 0;K.c = c;K.n = n;Typep bestp = K.MaxKnapsack();for(int i = 1; i<=n; i++){bestx[Q[i-1].ID] = K.bestx[i];}delete [] Q;delete [] K.w;delete [] K.p;delete [] K.bestx;delete [] K.H;return bestp;}int main(){cout<<"请在input.txt文件中输入物品数量、背包容量"<<endl;int N ;in>>N;Typew c; //背包容量in>>c;int bestx[N+1]; //最优解int bestp; //最优值Typep p[N+1];//物品价值Typew w[N+1];//物品重量cout<<"在input.txt文件中读取的物品总数N = "<< N<<",背包容量C = "<< c<<endl; cout<<"请选择生成数据的规模大小:200请输入1,2000请输入2,20000请输入3"<<endl; int x;cin>>x;if(x==1){ofstream in1("input1.txt");srand(time(NULL));int n=200;int *a=new int[n];for(int i=0;i<n;i++){a[i]=rand()%91;in1<<a[i]<<" ";}cout<<"随机数已请生成到input1文件中,请将数据添加到input.txt文件中"<<endl; }else if(x==2){ofstream in1("input1.txt");srand(time(NULL));int n=2000;int *a=new int[n];for(int i=0;i<n;i++){a[i]=rand()%91;in1<<a[i]<<" ";}cout<<"随机数已请生成到input1文件中,请将数据添加到input.txt文件中"<<endl; }else if(x==3){ofstream in1("input1.txt");srand(time(NULL));int n=20000;int *a=new int[n];for(int i=0;i<n;i++){a[i]=rand()%91;in1<<a[i]<<" ";}cout<<"随机数已请生成到input1文件中,请将数据添加到input.txt文件中"<<endl;}cout<<"添加完毕后请输入1"<<endl;int m;cin>>m;clock_t start,finish;start=clock();for (int i = 1; i <= N; i++){in>>w[i];}for (int i = 1; i <= N; i++){in>>p[i];}cout<<"已在input文件中读取物品重量和价值。
分治法1、二分搜索算法是利用(分治策略)实现的算法。
9. 实现循环赛日程表利用的算法是(分治策略)27、Strassen矩阵乘法是利用(分治策略)实现的算法。
34.实现合并排序利用的算法是(分治策略)。
实现大整数的乘法是利用的算法(分治策略)。
17.实现棋盘覆盖算法利用的算法是(分治法)。
29、使用分治法求解不需要满足的条件是(子问题必须是一样的)。
不可以使用分治法求解的是(0/1背包问题)。
动态规划下列不是动态规划算法基本步骤的是(构造最优解)下列是动态规划算法基本要素的是(子问题重叠性质)。
下列算法中通常以自底向上的方式求解最优解的是(动态规划法)备忘录方法是那种算法的变形。
(动态规划法)最长公共子序列算法利用的算法是(动态规划法)。
矩阵连乘问题的算法可由(动态规划算法B)设计实现。
实现最大子段和利用的算法是(动态规划法)。
贪心算法能解决的问题:单源最短路径问题,最小花费生成树问题,背包问题,活动安排问题,不能解决的问题:N皇后问题,0/1背包问题是贪心算法的基本要素的是(贪心选择性质和最优子结构性质)。
回溯法回溯法解旅行售货员问题时的解空间树是(排列树)。
剪枝函数是回溯法中为避免无效搜索采取的策略回溯法的效率不依赖于下列哪些因素(确定解空间的时间)分支限界法最大效益优先是(分支界限法)的一搜索方式。
分支限界法解最大团问题时,活结点表的组织形式是(最大堆)。
分支限界法解旅行售货员问题时,活结点表的组织形式是(最小堆)优先队列式分支限界法选取扩展结点的原则是(结点的优先级)在对问题的解空间树进行搜索的方法中,一个活结点最多有一次机会成为活结点的是( 分支限界法).从活结点表中选择下一个扩展结点的不同方式将导致不同的分支限界法,以下除( 栈式分支限界法)之外都是最常见的方式.(1)队列式(FIFO)分支限界法:按照队列先进先出(FIFO)原则选取下一个节点为扩展节点。
(2)优先队列式分支限界法:按照优先队列中规定的优先级选取优先级最高的节点成为当前扩展节点。
《算法及其分析》课后选择题答案及详解第1 章——概论1.下列关于算法的说法中正确的有()。
Ⅰ.求解某一类问题的算法是唯一的Ⅱ.算法必须在有限步操作之后停止Ⅲ.算法的每一步操作必须是明确的,不能有歧义或含义模糊Ⅳ.算法执行后一定产生确定的结果A.1个B.2个C.3个D.4个2.T(n)表示当输入规模为n时的算法效率,以下算法效率最优的是()。
A.T(n)=T(n-1)+1,T(1)=1B.T(n)=2nC.T(n)= T(n/2)+1,T(1)=1D.T(n)=3nlog2n答案解析:1.答:由于算法具有有穷性、确定性和输出性,因而Ⅱ、Ⅲ、Ⅳ正确,而解决某一类问题的算法不一定是唯一的。
答案为C。
2.答:选项A的时间复杂度为O(n)。
选项B的时间复杂度为O(n)。
选项C 的时间复杂度为O(log2n)。
选项D的时间复杂度为O(nlog2n)。
答案为C。
第3 章─分治法1.分治法的设计思想是将一个难以直接解决的大问题分割成规模较小的子问题,分别解决子问题,最后将子问题的解组合起来形成原问题的解。
这要求原问题和子问题()。
A.问题规模相同,问题性质相同B.问题规模相同,问题性质不同C.问题规模不同,问题性质相同D.问题规模不同,问题性质不同2.在寻找n个元素中第k小元素问题中,如快速排序算法思想,运用分治算法对n个元素进行划分,如何选择划分基准?下面()答案解释最合理。
A.随机选择一个元素作为划分基准B.取子序列的第一个元素作为划分基准C.用中位数的中位数方法寻找划分基准D.以上皆可行。
但不同方法,算法复杂度上界可能不同3.对于下列二分查找算法,以下正确的是()。
A.intbinarySearch(inta[],intn,int x){intlow=0,high=n-1;while(low<=high){intmid=(low+high)/2;if(x==a[mid])returnmid;if(x>a[mid])low=mid;elsehigh=mid;}return –1;}B.intbinarySearch(inta[],intn,int x) { intlow=0,high=n-1;while(low+1!=high){intmid=(low+high)/2;if(x>=a[mid])low=mid;elsehigh=mid;}if(x==a[low])returnlow;elsereturn –1;}C.intbinarySearch(inta[],intn,intx) { intlow=0,high=n-1;while(low<high-1){intmid=(low+high)/2;if(x<a[mid])high=mid;elselow=mid;}if(x==a[low])returnlow;elsereturn –1;}D.intbinarySearch(inta[],intn,int x) {if(n>0&&x>=a[0]){intlow= 0,high=n-1;while(low<high){intmid=(low+high+1)/2;if(x<a[mid])high=mid-1;elselow=mid;}if(x==a[low])returnlow;}return –1;}答案解析:1.答:C。
分治法1、二分搜索算法是利用(分治策略)实现的算法。
9. 实现循环赛日程表利用的算法是(分治策略)27、Strassen矩阵乘法是利用(分治策略)实现的算法。
34.实现合并排序利用的算法是(分治策略)。
实现大整数的乘法是利用的算法(分治策略)。
17.实现棋盘覆盖算法利用的算法是(分治法)。
29、使用分治法求解不需要满足的条件是(子问题必须是一样的)。
不可以使用分治法求解的是(0/1背包问题)。
动态规划下列不是动态规划算法基本步骤的是(构造最优解)下列是动态规划算法基本要素的是(子问题重叠性质)。
下列算法中通常以自底向上的方式求解最优解的是(动态规划法)备忘录方法是那种算法的变形。
(动态规划法)最长公共子序列算法利用的算法是(动态规划法)。
矩阵连乘问题的算法可由(动态规划算法B)设计实现。
实现最大子段和利用的算法是(动态规划法)。
贪心算法能解决的问题:单源最短路径问题,最小花费生成树问题,背包问题,活动安排问题,不能解决的问题:N皇后问题,0/1背包问题是贪心算法的基本要素的是(贪心选择性质和最优子结构性质)。
回溯法回溯法解旅行售货员问题时的解空间树是(排列树)。
剪枝函数是回溯法中为避免无效搜索采取的策略回溯法的效率不依赖于下列哪些因素(确定解空间的时间)分支限界法最大效益优先是(分支界限法)的一搜索方式。
分支限界法解最大团问题时,活结点表的组织形式是(最大堆)。
分支限界法解旅行售货员问题时,活结点表的组织形式是(最小堆)优先队列式分支限界法选取扩展结点的原则是(结点的优先级)在对问题的解空间树进行搜索的方法中,一个活结点最多有一次机会成为活结点的是( 分支限界法).从活结点表中选择下一个扩展结点的不同方式将导致不同的分支限界法,以下除( 栈式分支限界法)之外都是最常见的方式.(1)队列式(FIFO)分支限界法:按照队列先进先出(FIFO)原则选取下一个节点为扩展节点。
(2)优先队列式分支限界法:按照优先队列中规定的优先级选取优先级最高的节点成为当前扩展节点。
一、选择题(20分)1.最长公共子序列算法利用的算法是(B )。
A、分支界限法B、动态规划法C、贪心法D、回溯法2.实现棋盘覆盖算法利用的算法是(A )。
A、分治法B、动态规划法C、贪心法D、回溯法3.下面是贪心算法的基本要素的是(C )。
A、重叠子问题B、构造最优解C、贪心选择性质D、定义最优解4.回溯法的效率不依赖于下列哪些因素( D )A.满足显约束的值的个数B. 计算约束函数的时间C. 计算限界函数的时间D. 确定解空间的时间5.下面哪种函数是回溯法中为避免无效搜索采取的策略(B )A.递归函数 B.剪枝函数C。
随机数函数 D.搜索函数6.采用最大效益优先搜索方式的算法是(A )。
A、分支界限法B、动态规划法C、贪心法D、回溯法7.贪心算法与动态规划算法的主要区别是(B )。
A、最优子结构B、贪心选择性质C、构造最优解D、定义最优解8. 实现最大子段和利用的算法是(B )。
A、分治策略B、动态规划法C、贪心法D、回溯法9.优先队列式分支限界法选取扩展结点的原则是(C )。
A、先进先出B、后进先出C、结点的优先级D、随机10.下列算法中通常以广度优先方式系统搜索问题解的是(A)。
A、分支限界法B、动态规划法C、贪心法D、回溯法二、填空题(22分每空2分)1.算法是由若干条指令组成的有穷序列,且要满足输入、输出、确定性和有限性四条性质。
2、大整数乘积算法是用分治法来设计的。
3、以广度优先或以最小耗费方式搜索问题解的算法称为分支限界法。
4、舍伍德算法总能求得问题的一个解。
5、贪心选择性质是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法的主要区别。
6.快速排序template<class Type>void QuickSort (Type a[], int p, int r){if (p<r) {int q=Partition(a,p,r);QuickSort (a,p,q-1); 哈密顿环问题的算法可由回溯法设计实现。
优先队列式分支限界法求单源最短路径在图论中,求解单源最短路径是一个经典问题,它在实际生活和工程中有着广泛的应用。
在这篇文章中,我将介绍一种优先队列式分支限界法来解决这个问题。
通过深度和广度的全面评估,我将逐步探讨这个算法的原理、应用和优缺点,帮助你更深入地理解这一主题。
1. 优先队列式分支限界法的原理优先队列式分支限界法是一种用于解决最优化问题的算法。
在求解单源最短路径的问题中,该算法通过维护一个优先队列来选择下一个扩展节点,并利用分支限界技术来减少搜索空间,从而高效地找到最短路径。
2. 应用优先队列式分支限界法在实际应用中有着广泛的应用。
在网络路由中,通过这种方法可以快速找到数据包的最短路径,从而提高网络的传输效率。
该算法还被应用于地理信息系统、交通规划等领域。
3. 优缺点优先队列式分支限界法的优点在于能够快速找到最优解,并且在处理大规模问题时具有较高的效率。
然而,该算法也存在一定的局限性,例如在图中存在负权边时,可能无法得到正确的最短路径。
总结和回顾通过本文的介绍,我相信你对优先队列式分支限界法求单源最短路径有了更深入的了解。
在实际应用中,该算法虽然存在一定的局限性,但其高效性和广泛应用性使其成为求解单源最短路径问题的一个重要工具。
个人观点和理解作为我的文章写手,我对优先队列式分支限界法求单源最短路径有着深刻的认识。
我认为,该算法的高效性和应用广泛性使其在实际工程和科研中有着重要的地位,但在使用时也需要注意其局限性,结合具体问题进行合理选择。
希望通过本文的阐述,你能对优先队列式分支限界法求单源最短路径有更深入的了解,并在实际应用中做出明智的决策。
以上是针对"优先队列式分支限界法求单源最短路径"主题的有价值文章,希望能够满足你的要求。
优先队列式分支限界法是一种用于解决最优化问题的算法。
在求解单源最短路径的问题中,该算法通过维护一个优先队列来选择下一个扩展节点,并利用分支限界技术来减少搜索空间,从而高效地找到最短路径。
《算法设计与分析》期末必考复习及答案题整理1、分治法的基本思想:是将一个规模为N的问题分解为K个规模较小的子问题,这些子问题互相独立且与原问题相同。
递归地解这些子问题,然后将各子问题的解合并得到原问题的解。
2、贪心选择性质:指所求问题的整体最优解可以通过一系列局部最优的选择,3、 Prim算法:设G=(V,E)是连通带权图,V={1,2,…,n}。
构造G的最小生成树的Prim算法的基本思想是:首先置S={1},然后,只要S是V的真子集,就作如下的贪心选择:选取满足条件i?S,j?V-S,且c[j]最小的边,将顶点j添加到S 中。
这个过程一直进行到S=V时为止。
4、什么是剪枝函数:回溯法搜索解空间树时,通常采用两种策略避免无效搜索,提高回溯法的搜索效率。
其一是用约束函数在扩展结点处剪去不满足约束的子树;其二是用限界函数剪去得不到最优解的子树。
这两类函数统称为剪枝函数。
6、分支限界法的基本思想:(1)分支限界法常以广度优先或以最小耗费(最大效益)优先的方式搜索问题的解空间树。
(2)在分支限界法中,每一个活结点只有一次机会成为扩展结点。
活结点一旦成为扩展结点,就一次性产生其所有儿子结点。
在这些儿子结点中,导致不可行解或导致非最优解的儿子结点被舍弃,其余儿子结点被加入活结点表中。
(3)此后,从活结点表中取下一结点成为当前扩展结点,并重复上述结点扩展过程,这个过程一直持续到找到所需的解或活结点表这空时为止。
5、什么是算法的复杂性:是该算法所需要的计算机资源的多少,它包括时间和空间资源。
6、最优子结构性质:该问题的最优解包含着其子问题的最优解。
7、回溯法:是一个既带有系统性又带有跳跃性的搜索算法。
这在问题的解空间树中,按深度优先策略,从根结点出发搜索解空间树。
算法搜索至解空间树的任一结点时,先判断该结点是否包含问题的解。
如果肯定不包含,则跳过对以该结点为根的子树的搜索,逐层向其祖先结点回溯;否则,进入该子树,继续按深度优先策略搜索。
第一章测试1.算法就是一组有穷的规则,它们规定了解决某一特定类型问题的一系列运算。
()A:对B:错答案:A2.计算机的资源最重要的是内存和运算资源。
因而,算法的复杂性有时间和空间之分。
()A:对B:错答案:A3.时间复杂度是指算法最坏情况下的运行时间。
()A:对B:错答案:B4.下面关于算法的说法中正确的是。
(1)求解某一问题的算法是唯一的。
(2)算法中每条指令的执行次数是有限的,执行每条指令的时间也是有限的。
(3)算法的每一条指令是清晰无歧义的。
(4)算法可以用某种程序设计语言具体实现,所以算法和程序是等价的。
()A:(2)(3)B:(1)(3)C:(1)(2)D:(2)(4)答案:A5.描述算法的基本方法有。
(1)自然语言(2)流程图(3)伪代码(4)程序设计语言()A:(1)(2)(3)B:(1)(3)(4)C:(1)(2)(3)(4)D:(2)(3)(4)答案:C6.算法分析是()A:将算法用某种程序设计语言恰当地表示出来B:证明算法对所有可能的合法出入都能算出正确的答案C:对算法需要多少计算时间和存储空间作定量分析D:在抽象数据数据集合上执行程序,以确定是否产生错误结果答案:C7.算法是由若干条指令组成的有穷序列,而且满足以下叙述中的性质。
(1)输入:有0个或多个输入(2)输出:至少有一个输出(3)确定性:指令清晰、无歧义(4)有限性:指令执行次数有限,而且执行时间有限()A:(1)(2)(3)B:(1)(2)(4)C:(1)(2)(3)(4)D:(1)(3)(4)答案:C8.下面函数中增长率最低的是()A:n2B:log2nC:nD:2n答案:B9.下面属于算法的特性有( )。
A:有限性:算法中每条指令的执行次数是有限的,执行每条指令的时间也是有限的。
B:输入:有0个或多个外部量作为算法的输入。
C:确定性:组成算法的每条指令是清晰,无歧义的。
D:输出:算法产生至少一个量作为输出。
答案:ABCD10.当m为24,n为60时,使用欧几里得算法求m和n的最大公约数,需要进行()次除法运算。
【关键字】分析《算法分析与设计》作业参考答案作业一一、名词解释:1.递归算法:直接或间接地调用自身的算法称为递归算法。
2.程序:程序是算法用某种程序设计语言的具体实现。
2、简答题:1.算法需要满足哪些性质?简述之。
算法是若干指令的有穷序列,满足性质:1)输入:有零个或多个外部量作为算法的输入。
2)输出:算法产生至少一个量作为输出。
3)确定性:组成算法的每条指令清晰、无歧义。
4)有限性:算法中每条指令的执行次数有限,执行每条指令的时间也有限。
2.简要分析分治法能解决的问题具有的特征。
分析分治法能解决的问题主要具有如下特征:1)该问题的规模缩小到一定的程度就可以容易地解决;2)该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质;3)利用该问题分解出的子问题的解可以合并为该问题的解;4)该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题。
3.简要分析在递归算法中消除递归调用,将递归算法转化为非递归算法的方法。
将递归算法转化为非递归算法的方法主要有:1)采用一个用户定义的栈来模拟系统的递归调用工作栈。
该方法通用性强,但本质上还是递归,只不过人工做了本来由编译器做的事情,优化效果不明显。
2)用递推来实现递归函数。
3)通过Cooper变换、反演变换能将一些递归转化为尾递归,从而迭代求出结果。
后两种方法在时空复杂度上均有较大改善,但其适用范围有限。
三、算法编写及算法应用分析题:1.冒泡排序算法的基本运算如下:for i ←1 to n-1 dofor j ←1 to n-i doif a[j]<a[j+1] then交换a[j]、a[j+1];分析该算法的时间复杂性。
解答:排序算法的基本运算步为元素比较,冒泡排序算法的时间复杂性就是求比较次数与n的关系。
1)设比较一次花时间1;2)内循环次数为:n-i次,(i=1,…n),花时间为:3)外循环次数为:n-1,花时间为:2.设计一个分治算法计算一棵二叉树的高度。
《算法设计与分析》教案算法设计与分析是计算机科学与技术专业的一门核心课程,旨在培养学生具备算法设计、分析和优化的能力。
本课程通常包括算法基础、算法设计方法、高级数据结构以及算法分析等内容。
本教案主要介绍了《算法设计与分析》课程的教学目标、教学内容、教学方法和评价方法等方面。
一、教学目标本课程的教学目标主要包括以下几个方面:1.掌握算法设计的基本思想和方法。
2.熟悉常见的算法设计模式和技巧。
3.理解高级数据结构的原理和应用。
4.能够进行算法的时间复杂度和空间复杂度分析。
5.能够使用常见的工具和软件进行算法设计和分析。
二、教学内容本课程的主要教学内容包括以下几个方面:1.算法基础:算法的定义、性质和分类,时间复杂度和空间复杂度的概念和分析方法。
2.算法设计方法:贪心算法、分治算法、动态规划算法、回溯算法等算法设计思想和方法。
3.高级数据结构:堆、树、图等高级数据结构的原理、实现和应用。
4.算法分析:渐进分析法、均摊分析法、递归方程求解等算法分析方法。
5. 算法设计与分析工具:常见的算法设计和分析工具,如C++、Java、Python和MATLAB等。
三、教学方法本课程采用多种教学方法结合的方式,包括讲授、实践和讨论等。
1.讲授:通过教师讲解理论知识,引导学生掌握算法的基本思想和方法。
2.实践:通过课堂上的编程实验和课后作业,培养学生动手实践的能力。
3.讨论:通过小组讨论和学生报告,促进学生之间的交流和合作,提高学习效果。
四、评价方法为了全面评价学生的学习情况,本课程采用多种评价方法,包括考试、作业和实验报告等。
1.考试:通过期中考试和期末考试,检验学生对算法设计和分析的理解和掌握程度。
2.作业:通过课后作业,检验学生对算法设计和分析的实践能力。
3.实验报告:通过编程实验和实验报告,检验学生对算法设计和分析工具的应用能力。
五、教学资源为了支持教学工作,我们为学生准备了如下教学资源:1.课件:编写了详细的教学课件,包括理论知识的讲解和案例分析。
优先队列算法题优先队列是一种抽象的数据类型,它把元素添加到集合中,并允许以某种优先级顺序从集合中删除元素。
优先队列可以使用不同的数据结构来实现,如数组、链表、堆等。
下面我们将介绍优先队列的常见操作:建立优先队列、插入元素、删除元素、查看元素以及合并多个队列。
1.建立优先队列在建立优先队列时,我们需要确定优先级的排序方式。
常见的优先级排序方式包括最大优先级和最小优先级。
最大优先级表示元素的值越大,优先级越高;最小优先级表示元素的值越小,优先级越高。
在实现优先队列时,我们可以使用堆(Heap)这种数据结构,因为它可以在O(logN) 的时间复杂度内实现插入元素和删除元素的操作。
2.插入元素插入元素是指将一个新元素添加到优先队列中。
在堆的实现中,我们可以通过“上浮”操作来维持堆的性质。
具体来说,如果新添加的元素比其父节点的值小(最大优先级)或大(最小优先级),则将其与父节点交换,直到找到合适的插入位置。
这个过程的时间复杂度是 O(logN)。
3.删除元素删除元素是指从优先队列中移除具有最高优先级的元素。
在堆的实现中,我们可以通过“下沉”操作来维持堆的性质。
具体来说,如果根节点比其子节点的值小(最大优先级)或大(最小优先级),则将其与其中一个子节点交换,然后对被交换的子节点重复进行“上浮”操作,直到找到合适的插入位置。
这个过程的时间复杂度是 O(logN)。
4.查看元素查看元素是指获取优先队列中的最高优先级元素,但不从队列中删除它。
在堆的实现中,我们通常直接返回根节点作为最高优先级元素。
由于堆的性质,根节点始终是最大的(最大优先级)或最小的(最小优先级)。
因此,查看元素的操作时间复杂度为 O(1)。
5.合并多个队列合并多个队列是指将多个优先队列合并成一个新的优先队列。
如果每个队列都采用堆实现,那么我们可以通过简单地将所有队列的根节点连接起来形成一个新的堆来实现合并。
这个过程的时间复杂度为O(N),其中N 是所有队列中元素的总数。