(2E, 4Z, 6E)-2, 4, 6-辛三烯属于有 6 个π电子的共轭体系,其热电环化反应在基态进行, 因 HOMO 的对称性是 S,故对旋关环成键,生成顺-5, 6-二甲基-1, 3-环己二烯,是轨道对称 性允许的,顺旋则是禁阻的;光电环化反应在激发态进行,其 HOMO 的对称性是 A,故顺 旋关环成键,生成反-5, 6-二甲基-1, 3-环己二烯,是轨道对称性允许的,对旋则是禁阻的。
+
环状过渡态
在周环反应中,旧键的断裂与新键的形成是同时进行的,反应不经过自由基或离子等活 性中间体阶段;周环反应一般受反应条件加热或光照的制约,而且加热和光照所产生的结果 也是不同的;此外,周环反应还具有高度的立体专一性的特点。
1965 年 R.B.Woodward 和 R.Hoffmann 在总结了大量反应规律的基础上,把分子轨道理 论引入周环反应的机理研究中,提出了分子轨道对称守恒原理,并推导出一系列选择规律, 用以推测协同反应能否进行及其立体化学过程,这是近代有机化学最大成就之一。
顺旋
H
H
H Me H Me
Me
Me
顺旋 Me
Me
H Me H Me
H
H
顺,反-2, 4-己二烯
顺-3, 4-二甲基环丁烯
如果 C2—C3 和 C4—C5 键是对旋,则 C2 上 p 轨道或 sp3 轨道的一叶能够只能与 C5 上 p 轨道 或 sp3 轨道相位相反的一叶接近,故不能重叠成键而生成反-3, 4-二甲基环丁烯:
分子轨道对称守恒原理把分子轨道理论用于研究化学反应的动态过程,能够很好的解 释和预测周环反应的立体化学过程以及反应进行的条件,其具体表述方法有前线轨道理论、 能级相关理论等,其中前线轨道理论最为简单而且形象,已被普遍接受。下面以共轭二烯和 共轭三烯为例,介绍这一重要原理。