(完整版)空间大地测量思考题答案
- 格式:doc
- 大小:54.01 KB
- 文档页数:6
时,则应加垂线偏差改正和标高改正,这就是说,在特殊情况下,应该根据测m H 2000>区的实际情况作具体分析,然后再作出加还是不加入改正的规定。
5、简述大地主题解算直接解法的基本思想。
要点: 直接解算极三角形P 1NP 2。
比如正算问题时,已知数据是边长S,P 1N 及角A 12,有三角形解算可得到另外的元素l,β及P 2N ,进而求得未知量β-=-=+=021********,90,A N P B l L L )常用的直接解法是白塞尔解法。
6、试述控制测量对地图投影的基本要求。
要点:首先应当采用等角投影;其次,在所采用的正形投影中,还要求长度和面积变形不大,并能够应用简单公式计算由于这些变形而带来的改正数。
最后,要求投影能够方便的按照分带进行,并能按高精度的、简单的、同样的计算公式和用表把各带连成整体。
7、什么是高斯投影?为何采用分带投影?要点:高斯投影又称横轴椭圆柱等角投影。
它是想象有一个椭圆柱面横套在地球椭球体外面,并与某一条子午线(此子午线称为中央子午线或轴子午线)相切,椭圆柱的中心轴通过椭圆柱体中心,然后用一定投影方式,将中央子午线两侧各一定经度范围内的地区投影到椭球柱面上,再将此柱面展开即成为投影面。
由于采用了同样法则的分带投影,这既限制了长度变形,又保证了在不同投影带中采用相同的简便公式和数表进行由于变形引起的各项改正的计算,并且带与带间的互相换算也能采用相同的公式和方法进行。
P408、简述正形投影区别于其它投影的特殊性质。
要点:在正形投影中,长度比与方向无关,这就成为推倒正形投影一般条件的基本出发点。
9、叙述高斯投影正算公式中应满足的三个条件。
要点:中央子午线投影后为直线;中央子午线投影后长度不变;投影具有正形性质,即正形投影条件。
10、叙述高斯投影反算公式中应满足的三个条件。
要点:x 坐标轴投影成中央子午线,是投影的对称轴;x 轴上的长度投影保持不变;正形投影条件,即高斯面上的角度投影到椭球面上后角度没有变形,仍然相等。
大地测量学基础习题及答案一、单项选择题1.地球重力扁率β与地球椭球扁率α之间的关系是( C )。
A.βγγγα-=-=25qeepB.αγγγβ-=-=23qeepC.αγγγβ-=-=25qeepD.αγγγβ-=-=23qee2.子午圈、卯酉圈、平均半径关系正确的是(A )。
A.M<R<NB.M>R>NC.R<M<ND.M<N<R3.将地面观测元素归算至椭球面,应以椭球面的(D )为基准。
A.经线B.纬线C.垂线D.法线4.水准测量中采取偶数站观测方法,可以消除(B)的影响。
A.水准尺和仪器垂直位移B.水准尺零点差C.ϕ角误差 D.水准尺每米长度误差5.大地纬度、地心纬度、归化纬度关系正确的是( D )。
A.B<u<φB.B<φ<uC.φ<B<uD.φ<u<B6.下述水准测量误差中,偶然误差的是(A )。
A.水准管居中误差 B.水准尺倾斜C.水准管轴不平行视准轴的误差D.地球曲率的影响7.城市测量规范中规定一级导线测量方位角闭合差是(B)。
A.±9 B.±5 C.±13 D.±108.光电测距仪乘常数产生的原因是(C)。
A.光波测尺不准确. B.仪器内部固定的串扰信号.C.测距频率偏移标准频率.D.光波传播不稳定.9.离心力位等于(A)。
A.)(2222yxQ+=ωB.⎰⋅=rdmfQC.222zyxgggQ++=D.)331(qaafMQ++=10.我国所采用的统一高程系统为(B)。
A.大地高B.正常高C.正高D.力高11.地面上任一点沿铅垂线的方向到似大地水准面上的距离称为(A)。
A.正常高B.正高C.大地高D.力高12.大地测量学中,确定地面点空间位置的基准面是( B )。
A.水准面B.参考椭球面C.大地水准面D.水平面13.高斯投影正算应满足的条件为( A ) 。
第一章思考题参考答案1. 答:大地测量学是关于测量和描绘地球形状及其重力场并监测其变化,为人类活动提供关于地球的空间信息。
2.答:大地测量学是一切测绘科学技术的基础,在国民经济建设和社会发展中发挥着决定性的基础保证作用;在防灾,减灾,救灾及环境监测、评价与保护中发挥着独具风貌的特殊作用;是发展空间技术和国防建设的重要保障;在当代地球科学研究中的地位显得越来越重要。
3.答:大地测量学的基本体系由三个基本分支构成:几何大地测量学、物理大地测量学及空间大地测量学。
基本内容为:1.确定地球形状及外部重力场及其随时间的变化,建立统一的大地测量坐标系,研究地壳形变(包括地壳垂直升降及水平位移),测定极移以及海洋水面地形及其变化等;2.研究月球及太阳系行星的形状及重力场;3.建立和维持具有高科技水平的国家和全球的天文大地水平控制网、工程控制网和精密水准网以及海洋大地控制网,以满足国民经济和国防建设的需要;4.研究为获得高精度测量成果的仪器和方法等;5.研究地球表面向椭球面或平面的投影数学变换及有关的大地测量计算;6.研究大规模、高精度和多类别的地面网、空间网及其联合网的数据处理的理论和方法,测量数据库建立及应用等。
4.答:大地测量学的发展经历了四个阶段:地球圆球阶段、地球椭球阶段、大地水准面阶段和现代大地测量新时期。
5.答:有:长度单位的建立;最小二乘法的提出;椭球大地测量学的形成,解决了椭球数学性质,椭球面上测量计算,以及将椭球面投影到平面的正形投影方法;弧度测量大规模展开;推算了不同的地球椭球参数。
6.答:有:克莱罗定理的提出;重力位函数的提出;地壳均衡学说的提出;重力测量有了进展,设计和生产了用于绝对重力测量的可倒摆以及用于相对重力测量的便携式摆仪。
极大地推动了重力测量的发展。
7.答:主要体现在:(1)全球卫星定位系统(GPS),激光测卫(SLR)以及甚长基线干涉测量(VLBI),惯性测量统(INS)是主导本学科发展的主要的空间大地测量技术;(2)用卫星测量、激光测卫及甚长基线干涉测量等空间大地测量技术建立大规模、高精度、多用途的空间大地测量控制网,是确定地球基本参数及其重力场,建立大地基准参考框架,监测地壳形变,保证空间技术及战略武器发展的地面基准等科技任务的基本技术方案;(3)精化地球重力场模型是大地测量学的重要发展目标。
大地测量学思考题集及答案(2014)大地测量学思考题集1.解释大地测量学,现代大地测量学由哪几部分组成?谈谈其基本任务和作用?大地测量学----是测绘学科的分支,是测绘学科的各学科的基础科学,是研究地球的形状、大小及地球重力场的理论、技术和方法的学科。
大地测量学由以下三个分支构成:几何大地测量学,物理大地测量学及空间大地测量学。
几何大地测量学的基本任务是确定地球的形状和大小及确定地面点的几何位置。
作用:可以用来精密的测量角度,距离,水准测量,地球椭球数学性质,椭球面上测量计算,椭球数学投影变换以及地球椭球几何参数的数学模型物理大地测量学的基本任务是用物理方法确定地球形状及其外部重力场。
主要内容包括位理论,地球重力场,重力测量及其归算,推求地球形状及外部重力场的理论与方法等。
空间大地测量学主要研究以人造地球卫星及其他空间探测器为代表的空间大地测量的理论、技术与方法。
2、大地测量学的发展经历了哪些简短,简述各阶段的主要贡献和特点。
分为一下几个阶段:地球圆球阶段,地球椭球阶段,大地水准面阶段,现代大地测量新时期地球圆球阶段,首次用子午圈弧长测量法来估算地球半径。
这是人类应用弧度测量概念对地球大小的第一次估算。
地球椭球阶段,在这阶段,几何大地测量在验证了牛顿的万有引力定律和证实地球为椭球学说之后,开始走向成熟发展的道路,取得的成绩主要体现在一下几个方面: 1)长度单位的建立 2)最小二乘法的提出 3)椭球大地测量学的形成 4)弧度测量大规模展开 5)推算了不同的地球椭球参数这个阶段为物理大地测量学奠定了基础理论。
大地水准面阶段,几何大地测量学的发展:1)天文大地网的布设有了重大发展,2)因瓦基线尺出现物理大地测量学的发展 1)大地测量边值问题理论的提出 2)提出了新的椭球参数现代大地测量新时期:以地磁波测距、人造地球卫星定位系统及其长基线干涉测量等为代表的新的测量技术的出现,使大地测量定位、确定地球参数及重力场,构筑数字地球等基本测绘任务都以崭新的理论和方法来进行。
GPS思考题及参考答案1.L1载波上没有P码信息。
(³)L1载波上有P码信息,用于捕获P码2.精密星历可以用于实时导航之中。
(³)精密星历是后处理星历,不能用于实时导航中3.WGS-84是一种协议坐标系。
(√)4.GPS相对定位中至少需要两台接收机。
(√)5.LADGPS是局部区域差分系统的简称。
(√)6.天球坐标系与地球坐标系无关,因此常用天球坐标系描述卫星的位置。
(√)7.从时间系统的实质来说,GPS时间系统是一种原子时。
(√)8.GPS载波相位观测值在接收机间求差可以消除接收机的钟差。
(³)GPS载波相位观测值在星站二次差分可以消除接收机的钟差。
9.在平面控制中,地方坐标系与WGS84存在着一定的关系,一般是先进行旋转后平移,实现两坐标的转换。
(³)在平面控制中,地方坐标系与WGS84存在着一定的关系,一般是先进行平移后旋转,实现两坐标的转换。
10、在观测中要求卫星高度角的目的主要是减弱电磁波在大气层传播的误差。
(√)11、地球自转轴长周期变化,引起黄道缓慢变化,称为岁差。
(√)12.升交点的赤径,轨道的倾角,唯一的确定了卫星轨道平面与地球体的相对定位。
(√)13.GPS中定位中获得的是大地高,可以直接纳入我国高程系统。
(³)GPS中定位中获得的是大地高,不可以直接纳入我国高程系统。
14.地球瞬时自转轴在天球上随时间而变,称极移。
(³)地球瞬时自转轴在地球上随时间而变,称极移。
15.GPS定位结果的转换可以在约束平差过程中实现。
(√)16.WGS84坐标系是一种理论坐标系。
(³)WGS84坐标系是一种协议坐标系。
17. 实时导航中可以使用精密星历。
(³)实时导航中使用广播星历。
18. GPS网平差是以野外原始观测数据值为基本观测量。
(³)GPS网平差是以基线解算后获得的基线向量为基本观测量。
19.不同的坐标系之间一般存在着平移与旋转关系。
大地测量考试题库及答案大地测量学是一门研究地球形状、大小以及地球表面点位置的科学。
以下是一份大地测量考试题库及答案,供学生复习和练习使用。
一、选择题1. 大地测量学的主要研究对象是什么?A. 地球的物理特性B. 地球的化学成分C. 地球的形状和大小D. 地球的气候条件答案:C2. 地球的形状通常被描述为什么?A. 完美的球体B. 扁球体C. 椭球体D. 立方体答案:C3. 下列哪项不是大地测量学中常用的测量方法?A. 卫星定位B. 重力测量C. 磁力测量D. 水准测量答案:C4. 地球的赤道半径大约是多少?A. 6357 kmB. 6378 kmC. 6371 kmD. 6436 km答案:B5. 什么是大地水准面?A. 地球表面的一个理想平面B. 地球表面的平均海平面C. 地球表面的一个真实平面D. 地球表面的一个虚拟平面答案:C二、填空题1. 地球的极半径大约是______ km。
答案:63572. 地球的平均半径大约是______ km。
答案:63713. 地球的赤道周长大约是______ km。
答案:400754. 地球的表面积大约是______ km²。
答案:5105. 大地测量学中,______是用来描述地球表面点位置的坐标系统。
答案:地理坐标系统三、简答题1. 简述大地测量学在现代科技中的应用。
答案:大地测量学在现代科技中有广泛的应用,包括但不限于:导航定位、地图制作、城市规划、土地管理、环境监测、灾害预防与评估等。
通过大地测量技术,可以精确地确定地球表面点的位置,为各种科技活动提供基础数据。
2. 解释什么是大地水准面,并说明其在大地测量中的重要性。
答案:大地水准面是地球表面的平均海平面,是一个假想的重力等势面。
在大地测量中,大地水准面是确定地面点高程的基准面,对于测量地球表面的地形起伏、水文地质研究以及工程建设等具有重要意义。
四、计算题1. 假设地球是一个完美的椭球体,其赤道半径为6378 km,极半径为6357 km。
【大地测量学基础】第四部分习题与思考题第四部分习题与思考题一绪论1.试述您对大地测量学的理解?2.大地测量的定义、作用与基本内容是什么?3.简述大地测量学的发展概况?大地测量学各发展阶段的主要特点有哪些?4.简述全球定位系统(GPS)、激光测卫(SLR)、甚长基线干涉测量(VIBL)、惯性测量系统(INS)的基本概念?二坐标系统与时间系统1.简述是开普勒三大行星定律?2.什么是岁差与章动?什么是极移?3.什么是国际协议原点 CIO?4.时间的计量包含哪两大元素?作为计量时间的方法应该具备什么条件?5.恒星时、世界时、历书时与协调时是如何定义的?其关系如何?6.什么是大地测量基准?7.什么是天球?天轴、天极、天球赤道、天球赤道面与天球子午面是如何定义的?8.什么是时圈、黄道与春分点?什么是天球坐标系的基准点与基准面?9.如何理解大地测量坐标参考框架?10.什么是椭球的定位与定向?椭球的定向一般应该满足那些条件?11.什么是参考椭球?什么是总地球椭球?12.什么是惯性坐标系?什么协议天球坐标系、瞬时平天球坐标系、瞬时真天球坐标系?13.试写出协议天球坐标系与瞬时平天球坐标系之间,瞬时平天球坐标系与瞬时真天球坐标系的转换数学关系式。
14.什么是地固坐标系、地心地固坐标系与参心地固坐标系?15.什么协议地球坐标系与瞬时地球坐标系?如何表达两者之间的关系?16.如何建立协议地球坐标系与协议天球坐标系之间的转换关系,写出其详细的数学关系式。
17.简述一点定与多点定位的基本原理。
18.什么是大地原点?大地起算数据是如何描述的? 19.简述1954年北京坐标系、1980年国家大地坐标系、 新北京54坐标系的特点以及它们之间存在相互关系。
20.什么是国际地球自传服务(IERS )、国际地球参考系统(ITRS) 、国际地球参考框架(ITRF)? ITRS 的建立包含了那些大地测量技术,请加以简要说明? 21. 站心坐标系如何定义的?试导出站心坐标系与地心坐标系之间的关系? 22.试写出不同平面直角坐标换算、不同空间直角坐标换算的关系式?试写出上述两种坐标转换的误差方程式? 23.什么是广义大地坐标微分方程(或广义椭球变换微分方程)?该式有何作用?三 地球重力场及地球形状的基本理论1.简述地球大气中平流层、对流层与电离层的概念。
大地测量学基础思考题集1、解释大地测量学,现代大地测量学由哪几部分组成?谈谈其基本任务和作用?2、大地测量学的发展经历了哪些阶段,简述各阶段的主要贡献和特点。
3、大地测量学如何控制地形测图的,大地测量未来发展方向如何?4、简述物理大地测量的主要任务和内容?5、解释重力、引力、离心力、引力位、离心力位、重力位、地球重力场、正常重力、正常重力位、扰动位等概念,简述其相互关系。
6、简述引力、离心力方向及其决定因素如何?地球引力位公式一般有可以哪几种方式表达?7、如何理解引力位几何意义及其物理学意义?8、引力位、离心力位、重力位是否调和函数,为什么?9、研究重力位有何意义?为何要研究正常重力位?10、解释大地水准面、大地体、总椭球、参考椭球、大地天文学、拉普拉斯点、黄道面、春分点11、重力扁率同椭球扁率之间的关系如何?(克莱罗定理)12、地球大地基准常数有哪些?简述地球重力场与大地测量学的关系?13、分析地球不同高度处的正常重力有何不同?14、解释水准面的含义及性质,为什么说水准面有多个?15、解释大地水准面含义及性质,为什么各国的大地水准面实际上不一致?16、解释似大地水准面含义及性质,简述水准面、大地水准面、似大地水准面的异同点。
17、解释总椭球、参考椭球及正常椭球的含义、性质和作用,分析它们异同点。
28、简述我国的高程基准面、原点高程及确定方法。
19、简述大地测量常用坐标系的定义、建立及相互关系。
20、简述地球椭球基本参数、相互关系及经验结论,绘图说明地球椭球辅助函数W、V的几何意义。
21、什么是椭球中心三角形,其边长大小如何?22、为什么说椭球面上的点(两极及赤道除外)的法线一般不通过椭球中心?23、简述大地纬度、地心纬度、归化纬度的概念,其相互关系如何?24、解释垂线偏差,造成地面各点垂线偏差不等的原因有哪些?,简述研究垂线偏差有何意义?25、何为拉普拉斯方程,简述大地坐标系与天文坐标系的关系。
《大地测量学》试题参考答案.doc读书破万卷下笔如有神《大地测量学》试题参考答案一、名词解释:1、子午圈:过椭球面上一点的子午面同椭球面相截形成的闭合圈。
2、卯酉圈:过椭球面上一点的一个与该点子午面相垂直的法截面同椭球面相截形成的闭合的圈。
3、椭园偏心率:第一偏心率 e a2 b2 第二偏心率 e a 2 b2a b4 、大地坐标系:以大地经度、大地纬度和大地高来表示点的位置的坐标系。
P35、空间坐标系:以椭球体中心为原点,起始子午面与赤道面交线为X 轴,在赤道面上与 X 轴正交的方向为 Y 轴,椭球体的旋转轴为 Z 轴,构成右手坐标系 O-XYZ 。
P46、法截线:过椭球面上一点的法线所作的法截面与椭球面相截形成圈。
P97、相对法截线:设在椭球面上任意取两点A 和 B,过A 点的法线所作通过 B 点的法截线和过 B 点的法线所作通过 A 点的法截线,称为 AB 两点的相对法截线。
P158、大地线:椭球面上两点之间的最短线。
9、垂线偏差改正:将以垂线为依据的地面观测的水平方向观测值归算到以法线为依据的方向值应加的改正。
P1810、标高差改正:由于照准点高度而引起的方向偏差改正。
P1911、截面差改正:将法截弧方向化为大地线方向所加的改正。
P2012、起始方位角的归算:将天文方位角以测站垂线为依据归算到椭球面以法线为依据的大地方位角。
P2213、勒让德尔定理:如果平面三角形和球面三角形对应边相等,则平面角等于对应球面角减去三分之一球面角超。
P2714、大地元素:椭球面上点的大地经度、大地纬度,两点之间的大地线长度及其正、反大地方位角。
P2815、大地主题解算:如果知道某些大地元素推求另外一些大地元素,这样的计算称为大地主题解算。
P2816、大地主题正算:已知P1点的大地坐标, P1至 P2的大地线长及其大地方位角,计算P2点的大地坐标和大地线在P2点的反方位角。
17、大地主题反算:如果已知两点的大地坐标,计算期间的大地线长度及其正反方位角。
大地/控制测量复习题1.大地测量的基本体系如何大地测量的基本体系分为:几何大地测量学,物理大地测量学及空间大地测量学(1)现代大地测量的测量范围大,它可在国家、国际、洲际、海洋及陆上、全球,乃至月球及太阳行星系等广大宇宙空间进行的(2)研究的对象和范围不断地深入、全面和精细,从静态测量发展到动态测量,从地球表面测绘发展到地球内部构造及动力过程的研究。
(3)观测的精度高。
(4)观测周期短。
2.野外测量的基准面、基准线各是什么测量计算的基准面、基准线各是什么为什么野外作业和内业计算要采取不同的基准面野外测量的基准面是大地水准面、基准线是铅垂线。
测量计算的基准面是参考椭球面、基准线是法线。
【由于地球内部质量分布不均匀及地壳有高低起伏,所以重力方向有局部变化,致使处处与重力方向垂直的大地水准面也就不规则,即无法用数学公式准确地表达出来,所以它不能作为大地测量计算的基准面。
所以必须寻找一个与大地体相近的,且能用简单的数学模型表示的规则形体代替椭球。
3.名词解释(1)大地水准面:平均海水面是代替海水静止时的水面,是一个特定重力位的水准面。
(2)大地体:大地水准面向陆地延伸形成的封闭曲面所包围的地球实体。
(3)总地球椭球:使其中心和地球质心重合,短轴与地轴重合,起始子午面与起始天文子午面重合,在全球和大地体最为密合的地球椭球。
(4)参考椭球:具有一定几何参数、定位及定向的用以代表某一地区大地水准面的地球椭球叫做参考椭球。
(5)大地水准面差距:从大地水准面沿法线到地球椭球体面的距离(6)水准椭球:4.何谓垂线偏差造成地面各点垂线偏差不等的原因有哪些大地水准面的铅垂线与椭球面的法线之间的夹角称为垂线偏差。
:原因:大地水准面的长波、所采用的椭球参数、地球内部质量密度分布的局部变化。
5.现代大地测量定位技术,除传统的方法以外,主要还有哪些方法简要说明它们的基本原理及特点。
(1)GPS测量全球定位系统GPS可为各位用户提供精密的三维坐标、三维速度和时间信息。
《空间大地测量学》思考题1. 简述天球坐标系与地球坐标系的区别。
答:天球坐标系:不随地球自转的地心坐标系,是空间固定坐标系,用于对卫星位置描述。
地球坐标系:与地球固联的地心坐标系,用于描述用户空间位置。
也就是把地球视为理想球体,以其旋转轴两极的最短球面连线为经线,垂直于经线的是纬线形成的角度坐标系。
二者区别:天球坐标是天文用的,地球坐标是地理用的;天球坐标能描述星体相对于地球的角度位置,地球坐标只描述物体在地球表面的位置。
它们都是角坐标系,但是地球坐标是以地球表面为球面的,是有半径的;而天球坐标半径无关,只要是某一球面即可2. 试述历元天球坐标系到协议地球坐标系的转换过程。
答:(1)岁差旋转变换ZM (t0)表示历元J2000.0年平天球坐标系z 轴指向,ZM (t )表示所论历元时刻t 真天球坐标系z 轴指向。
两个坐标系间的变换式为:)()(0)()()(t M A z A y A z t M z y x R R Z R z y x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡ξθ式中:ζA ,θA ,ZA 为岁差参数。
(2)章动旋转变换类似地有章动旋转变换式: )()()()()(t M x z x t c z y x R R R z y x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡∆-∆--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡εψεε式中:ε为所论历元的平黄赤交角,⊿ψ,⊿ε分别为黄经章动和交角章动参数。
(3)瞬时极天球坐标系与瞬时极地球坐标系的转换关系为:ct G z et z y x R z y x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡)(θ下标et 表示对应t 时刻的瞬时极地球坐标系,ct 表示对应t 时刻的瞬时极天球坐标系。
θG 为对应平格林尼治子午面的真春分点时角。
(4)平地球坐标系与瞬时地球坐标系的转换公式:et p x p y em z y x y R x R z y x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡''''-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡)()( 下标em 表示平地球坐标系,et 表示t 时的瞬时地球坐标系,p p y x '''', 为t 时刻以角度表示的极移值。
3. 简述恒星时、真太阳时与平太阳时的区别。
恒星时是以春分点为参考点,同春分点的周日视运动所确定的时间,春分点两次经过地方上子午圈的时间间隔为一恒星日。
平太阳时——假设一个参考点的视运动速度等于真太阳周年运动平均速度,且其在天球赤道上作周年视运动,这个参考点称为平太阳。
平太阳连续两次经过本地子午圈的时间间隔为一平太阳日,包含24个平太阳时。
真太阳时以真正的太阳为参考点,太阳视圆面中心连续两次上中天的时间间隔叫一个真太阳日,一个真太阳日分为24小时。
由于真太阳的运行速度和时角变化率不均匀,不适于作为计量均匀时间的基准。
一个恒星日=一个平太阳日-3’55.909’’。
真太阳时与平太阳时的时刻之差即为时差。
4. 简述卫星在轨道上运动所受的力的作用。
除地球引力外,还有其他摄动力: ① 地球引力场摄动力 地球体的非球性及其质量分布不均匀而引起的作用力② 日月引力 日月引力引进的卫星位置摄动主要表现为一各长周期摄动③ 太阳光压力 卫星在运行中将直接或间接受太阳光辐射压力的影响而使轨道产生摄动④ 其他摄动力a 固体潮及海洋潮汐摄动 固体潮和海洋潮汐将改变地球重力位对卫星产生摄动加速度b 大气的摄动力 大气阻力对低轨道卫星特别敏感5. 地球引力场摄动力对卫星的运动有那些影响。
主要是与地极扁率有关的二阶谐系数项引起,其对卫星的影响有3点分别为:引起轨道平面在空间旋转,是升交点赤经产生周期性变化、引起近地点在轨道平面内旋转,导致近升角距的变化、引起平近点角的变化6. 日、月引力对卫星的运动有哪些影响。
日月引力对卫星轨道的影响,是由太阳和月亮的质量,对卫星所产生的引力加速度而产生的。
日月引力的影响还会产生潮汐现象,而地球的潮汐现象也将影响卫星的运动。
主要表现为一种长周期摄动;太阳力的影响仅为月球引力影响的46%。
7.试述多普勒测距的基本原理。
8.简述GPS定位时间系统与协调世界时UTC之间的区别。
答: ⑴UTC:原子时虽然是秒长均匀的,稳定度很高的时间系统,但其与地球自转无关。
世界时虽不均匀,但与地球自转紧密相关。
原子时的秒长与世界时的秒长不相等,两者每年相差1秒,如此积累下去两者会愈差愈大。
为了协调原子时与世界时的关系,建立了一种折衷的时间系统称之为协调世界时UTC。
⑵GPS定位时:由GPS主控站的高精度原子钟守时与授时。
长采用原子时秒长。
起点:1980年1月6日0时。
表示方法:GPS周+ 一周内的秒数⑶二者的的关系:GPST = UTC + n×1 – 19 (s)1980年1月6日0时, n =19,GPST与UTC时相一至。
9.简述GPS定位系统的构成,并说明各部分的作用。
(1) 空间星座GPS卫星星座由24颗(3颗备用)卫星组成,分布在6个轨道内,每个轨道4颗。
基本功能:接收和存储由地面监控站发出的导航信息,接收并执行监控站的控制指令;利用卫星的微处理机,对部分必要的数据进行处理;通过星载原子钟提供精密时间标准;向用户发送定位信息;在地面监控站的指令下,通过推进器调整卫星姿态和启用备用卫星。
(2) 地面监控地面监控部分由分布在全球的5个地面站组成,包括5个监测站,1个主控站,3个信息注入站。
监测站:对GPS卫星进行连续观测,进行数据自动采集并监测卫星的工作状况。
主控站:协调和管理地面监控系统,主要任务:根据本站和其它监测站的观测资料,推算编制各卫星星历、卫星钟差和大气修正参数,并将数据传送到注入站;提供全球定位系统时间基准;各监测站和GPS 卫星原子钟,均应与主控站原子钟同步,测出其间的钟差,将钟差信息编入导航电文,送入注入站;调整偏离轨道的卫星,使之沿预定轨道运行;启用备用卫星代替失效工作卫星。
注入站:在主控站控制下,将主控站推算和编制的卫星星历、钟差、导航电文和其它控制指令等,注入到相应卫星的存储系统,并监测注入信息的正确性。
(3) 用户设备由GPS接收机硬件和数据处理软件以及微处理机和终端设备组成。
GPS接收机硬件主要接收GPS卫星发射的信号,以获得必要的导航和定位信息及观测量,并经简单数据处理而实现实时导航和定位。
GPS软件主要对观测数据进行精加工,以便获得精密定位结果。
10.什么是广播星历?什么是精密星历?两者的区别是什么?答广播星历:共有16个星历参数:1个参考历元,6个相应历元下的椭圆轨道参数和9个反映摄动力影响的改正项参数。
每小时发布一组最新星历,即参考历元互相相隔1小时;星历精度在20~40m之间。
精密星历:按一定时间间隔给出卫星在地固坐标系下的三维位置、三维速度和钟差。
精度可达分米级,有偿索取,技术复杂,投资较高。
11.说明C/A码及P码的产生过程及其特点。
C/A码:2个10级反馈移位寄存器相组合产生,码长Nu=1010-1=1023。
P 码:2组各有2个12级反馈移位寄存器构成,码长Nu=2.35X1014。
1) C/A 码特点:码长较短,易于捕获,通过捕获C/A 码所得信息,可以方便捕获P 码(捕获码);码元宽度较大,精度较底(粗捕获码)。
2) P 码特点:多通过C/A 码捕获,码长更短,周期长,精度高,用于较精密导航和定位(精码)。
12. 简述伪随机噪声码测距原理及载波相位测距原理。
伪随机噪声码测距原理:在某一瞬间利用GPS 接收机同时测定至少四颗卫星的伪距,根据已知的卫星位置和伪距观测值,采用距离交会法求出接收机的三维坐标和时钟改正数。
伪距定位法定一次位的精度并不高,但定位速度快,经几小时的定位也可达米级的若再增加观测时间,精度还可以提高。
载波相位测量原理:若卫星S 发出一载波信号,该信号向各处传播。
设某一瞬间,该信号在接收机R 处的相位为?R ,在卫星S 处的相位为?S 。
?R 和?S 为从某一起始点开始计算的包括整周数在内的载波相位,为方便计,均以周数为单位。
但因无法观测?S ,因此该方法无法实施。
13. 试以两个GPS 接收机、两颗卫星和两个时间历元为例,写出单差、双差和三差观测方程,并说各自特点。
单差:在不同观测站同步观测相同卫星所得观测量之差。
双差:在不同观测站同步观测 同一组卫星所得单差之差。
三差:于不同历元同步观测同一组卫星所得观测量的双差之差。
设有a 个测站,观测了b 颗卫星,c 个历元单差:观测方程数(a-1)*b*c,未知参数总数(a-1)(3+b+c)双差:观测方程数(a-1)*(b-1)*(c-1),未知参数总数3(a-1)+(b-1)*(c-1)三差:观测方程数(a-1)(b-1)(c-1),未知参数总数3(a-1)各自的特点:单差:①消除了卫星钟差影响②削弱了电离层折射影响③削弱了对流层折射影响④削弱了卫星轨道误差的影响。
双差:消除了接收机钟差的影响三差:消去了整周未知数参数14. 试述GPS 测量定位中误差的种类,并说明产生的原因。
(1)误差种类:与卫星有关的误差(卫星轨道误差、卫星钟差、相对论效应)、与传播途径有关的误差(电离层延迟、对流层延迟、多路径效应)、与接收设备有关的误差(接收机天线相位中心的偏差和变化、接收机钟差、接收机内部噪声)、其他误差(地球自转)。
(2)产生原因:a.卫星星历误差:由星历所给出的卫星在空间中的位置与其实际位置之差。
b.卫星钟差:卫星钟读数与真实的GPS 时间之差。
c.相对论效应:相对论效应是由于卫星钟和接收机钟所处的状态(运动速度和重力位)不同而引起卫星)()()(12t t t j j j ϕϕϕ-=∆[])()()()()()()(1212t t t t t t t j j k k j k k ϕϕϕϕϕϕϕ+--=∆-∆=∆∇[][])()()()()()()()()()()(111211122122212212t t t t t t t t t t t j j k k j j k k k k k ϕϕϕϕϕϕϕϕϕϕϕδ+---+--=∆∇-∆∇=∆∇钟与接收机钟之间产生相对钟误差的现象。
d.电离层折射:当GPS信号通过电离层时,信号的路径会发生弯曲,传播速度也会发生变化,所以用信号的传播时间乘上真空中光速而得到的距离就会不等于卫星至接收机间的几何距离,这种偏差叫电离层折射误差。
e.对流层折射:当GPS信号通过对流层时,信号的路径会发生弯曲,传播速度也会发生变化,所以用信号的传播时间乘上真空中光速而得到的距离就会不等于卫星至接收机间的几何距离,这种偏差叫对流层折射误差。
f.多路径误差:在GPS测量中,被测站附近的物体所反射的卫星信号(反射波)被接收机天线所接收,与直接来自卫星的信号(直接波)产生干涉,从而使观测值偏离真值产生所谓的“多路径误差”。