对数函数求值域的方法
- 格式:doc
- 大小:12.65 KB
- 文档页数:2
对数函数知识点及典型例题讲解1.对数:(1) 定义:如果N a b =)1,0(≠>a a 且,那么称 为 ,记作 ,其中a 称为对数的底,N 称为真数.① 以10为底的对数称为常用对数,N 10log 记作___________.② 以无理数)71828.2( =e e 为底的对数称为自然对数,N e log 记作_________. (2) 基本性质:① 真数N 为 (负数和零无对数);② 01log =a ;③ 1log =a a ; ④ 对数恒等式:N a N a =log . (3) 运算性质:① log a (MN)=___________________________; ② log a NM =____________________________;③ log a M n= (n ∈R).④ 换底公式:log a N = (a >0,a ≠1,m >0,m ≠1,N>0)⑤ log m na a nb b m = .2.对数函数:① 定义:函数 称为对数函数,1) 函数的定义域为( ;2) 函数的值域为 ;3) 当______时,函数为减函数,当______时为增函数;4) 函数x y a log =与函数)1,0(≠>=a a a y x且互为反函数. ② 1) 图象经过点( ),图象在 ;2) 对数函数以 为渐近线(当10<<a 时,图象向上无限接近y 轴;当1>a 时,图象向下无限接近y 轴); 4) 函数y =log a x 与 的图象关于x 轴对称. ③ 函数值的变化特征:例1 计算:(1))32(log32-+(2)2(lg 2)2+lg 2·lg5+12lg )2(lg 2+-;(3)21lg4932-34lg 8+lg 245. 解:(1)方法一设)32(log32-+=x,(2+3)x=2-3=321+=(2+3)-1,∴x=-1.方法二)32(log 32-+=32log +321+=32log+(2+3)-1=-1.(2)原式=lg 2(2lg 2+lg5)+12lg 2)2(lg 2+-=lg 2(lg2+lg5)+|lg 2-1| =lg 2+(1-lg 2)=1.(3)原式=21(lg32-lg49)-34lg821+21lg245=21(5lg2-2lg7)-34×2lg 23+21 (2lg7+lg5)=25lg2-lg7-2lg2+lg7+21lg5=21lg2+21lg5=21lg(2×5)= 21lg10=21.变式训练1:化简求值. (1)log 2487+log 212-21log 242-1;(2)(lg2)2+lg2·lg50+lg25; (3)(log 32+log 92)·(log 43+log 83).解:(1)原式=log 2487+log 212-log 242-log 22=log 2.232log 221log 242481272322-===⨯⨯⨯-(2)原式=lg2(lg2+lg50)+lg25=2lg2+lg25=lg100=2. (3)原式=(.452lg 63lg 5·3lg 22lg 3)2lg 33lg 2lg 23lg (·)3lg 22lg 3lg 2lg ==++ 例2 比较下列各组数的大小. (1)log 332与log 556;2)log 1.10.7与log 1.20.7;(3)已知log 21b <log 21a <log 21c,比较2b,2a,2c的大小关系.解:(1)∵log 332<log 31=0,而log 556>log 51=0,∴log 332<log 556.(2)方法一 ∵0<0.7<1,1.1<1.2,∴0>2.1log 1.1log 7.00.7>,∴2.1log 11.1log 17.07.0<,即由换底公式可得log 1.10.7<log 1.20.7.方法二 作出y=log 1.1x 与y=log 1.2x 的图象.如图所示两图象与x=0.7相交可知log 1.10.7<log 1.20.7. (3)∵y=x 21log 为减函数,且c a b 212121log log log <<,∴b >a >c,而y=2x 是增函数,∴2b >2a >2c.变式训练2:已知0<a <1,b >1,ab >1,则log a bb bba1log ,log ,1的大小关系是 ( )A.log a bb bba1log log 1<< B.bbb baa 1log 1log log <<C.b b b a ba1log 1loglog << D.b bb a a b log 1log 1log << 解: C例3已知函数f(x)=log a x(a >0,a ≠1),如果对于任意x ∈[3,+∞)都有|f(x)|≥1成立, 试求a 的取值范围.解:当a >1时,对于任意x ∈[3,+∞),都有f(x)>0. 所以,|f(x)|=f(x),而f(x)=log a x 在[3,+∞)上为增函数, ∴对于任意x ∈[3,+∞),有f(x)≥log a 3.因此,要使|f(x)|≥1对于任意x ∈[3,+∞)都成立. 只要log a 3≥1=log a a 即可,∴1<a ≤3.当0<a <1时,对于x ∈[3,+∞),有f(x)<0, ∴|f(x)|=-f(x). ∵f (x )=log a x 在[3,+∴-f (x )在[3,+∞)上为增函数. ∴对于任意x ∈[3,+|f(x)|=-f(x)≥-log a 3.因此,要使|f(x)|≥1对于任意x ∈[3,+只要-log a 3≥1∴log a 3≤-1=log a a1,即a 1≤3,∴31≤a < 1.综上,使|f(x)|≥1对任意x ∈[3,+∞)都成立的a 的取值范围是:(1,3]∪[31,1). 变式训练3:已知函数f (x )=log 2(x 2-ax-a)在区间(-∞,1-3]上是单调递减函数.求实数a 的取值范围.解:令g(x)=x 2-ax-a,则g(x)=(x-2a )2-a-42a ,由以上知g(x )的图象关于直线x=2a对称且此抛物线开口向上.因为函数f(x)=log 2g(x)的底数2>1, 在区间(-∞,1-3]上是减函数,所以g(x)=x 2-ax-a 在区间(-∞,1-3]上也是单调减函数,且g(x)>0.∴⎪⎩⎪⎨⎧>-----≥⎪⎩⎪⎨⎧>-≤-0)31()31(3220)31(2312a a a g a ,即解得2-23≤a <2.故a 的取值范围是{a|2-23≤a <2}.例4 已知过原点O 的一条直线与函数y=log 8x 的图象交于A 、B 两点,分别过A 、B 作y 轴的平行与函数y=log 2x 的图象交于C 、D 两点. (1)证明:点C 、D 和原点O(2)当BC 平行于x 轴时,求点A 的坐标. (1)证明 设点A 、B 的横坐标分别为x 1、x 2,由题设知x 1>1,x 2>1,则点A 、B 的纵坐标分别为log 8x 1、log 8x 2. 因为A 、B 在过点O 的直线上,所以228118log log x x x x =点C 、D 的坐标分别为(x 1,log 2x 1)、(x 2,log 2x 2), 由于log 2x 1=2log log 818x =3log 8x 1,log 2x 2=3log 8x 2,OC 的斜率为k 1=118112log 3log x x x x =,OD 的斜率为,log 3log 2282222x x x x k ==由此可知k 1=k 2,即O 、C 、D 在同一直线上.(2)解: 由于BC 平行于x 轴,知log 2x 1=log 8x 2,即得log 2x 1=31log 2x 2,x 2=x 31,代入x 2log 8x 1=x 1log 8x 2,得x 31log 8x 1=3x 1log 8x 1,由于x 1>1,知log 8x 1≠0,故x 31=3x 1, 又因x 1>1,解得x 1=3,于是点A 的坐标为(3,log 83).1.处理对数函数的有关问题,要紧密联系函数图象,运用数形结合的思想进行求解.2.对数函数值的变化特点是解决含对数式问题时使用频繁的关键知识,要达到熟练、运用自如的水平,使用时常常要结合对数的特殊值共同分析.3.含有参数的指对数函数的讨论问题是重点题型,解决这类问题最基本的分类方案是以“底”大于1或小于1分类.4.含有指数、对数的较复杂的函数问题大多数都以综合形式出现,与其它函数(特别是二次函数)形成的函数问题,与方程、不等式、数列等内容形成的各类综合问题等等,因此要注意知识的相互渗透或综合.。
精心整理求函数值域的 7 类题型和 16 种方法一、函数值域基本知识1.定义:在函数 yf (x) 中,与自变量 x 的值对应的因变量 y 的值叫做函数值,函数值的集合叫做函数的值域(或函数值的会集) 。
2.确定函数的值域的原则①当函数yf ( x) 用表格给出时,函数的值域是指表格中实数y 的会集;②当函数yf ( x)用图象给出时,函数的值域是指图象在y 轴上的投影所覆盖的实数y 的集合;③当函数 y f ( x) 用解析式给出时,函数的值域由函数的定义域及其对应法规唯一确定; ④当函数 yf ( x) 由实责问题给出时,函数的值域由问题的实质意义确定。
二、常有函数的值域,这是求其他复杂函数值域的基础。
函数的值域取决于定义域和对应法规,不论采用什么方法球函数的值域均应试虑其定义域。
一般地,常有函数的值域:1.一次函数 y kx b k 0 的值域为 R.二次函数 y ax 2 bx c a 0 ,当 a 0 时的值域为 4ac b 2 , ,当 a 0 时的值域为 2.4a, 4acb 2 .,4a3.反比率函数 yk k 0 的值域为 yR y0 .x4.指数函数 y a x a 0且a 1 的值域为 y y 0 .5.对数函数 ylog a x a 0且a 1 的值域为 R.6.正,余弦函数的值域为 1,1 ,正,余切函数的值域为 R.三、求解函数值域的 7 种题型题型一:一次函数 y ax b a 0 的值域(最值)1、一次函数: yax b a0 当其定义域为 R ,其值域为 R ;2、一次函数 y ax b a 0 在区间 m, n 上的最值,只需分别求出 f m , f n ,并比较它们的大小即可。
若区间的形式为, n 或 m, 等时,需结合函数图像来确定函数的值域。
题型二:二次函数 f (x)ax 2bx c(a 0) 的值域(最值)精心整理1、二次函数2、二次函数4ac b 2 0yaf (x)ax 2bx c(a0),当其定义域为 R 时,其值域为 4a b 24ac 0y a4af (x) ax 2 bx c(a 0) 在区间 m, n 上的值域 (最值 )第一判断其对称轴 xb与区间 m, n 的地址关系2a(1)若 bm, n ,则当 a 0 时, f (b ) 是函数的最小值,最大值为 f (m), f (n) 中较大者;2a2a当 a 0时, f (b) 是函数的最大值,最大值为 f (m), f ( n) 中较小者。
函数值域求法基本初等函数的值域:1、一次函数y=kx+b (k ≠0)的值域为R ;2、二次函数y=ax 2+bx+c (a ≠0)的值域:当a >0时,值域为[ab ac 442-,﹢∞);当a <0时,值域为(-∞,ab ac 442-]。
3、反比列函数y=xk(k ≠0,x ≠0)的值域为:{y|y ≠0,y ∈R} 4、指数函数y=a x(a >0且a ≠1)的值域为:R +5、对数函数y=㏒a x (a >0,且a ≠1)的值域R6、正、余弦函数的值域为:[-1,+1],正、余切函数的值域为R函数值域求法观察法对于一些比较简单的函数,其值域可结合不等式的性质、图象通过观察得到。
如利用|x|≥0,2x ≥0,x ≥0等,直接得出它的值域.例1、 求下列函数的值域⑴ y =1x . ⑵ y =25x +. 解:⑴ 由x ∈R ,且x ≠0,易知y ∈R 且x ≠0.所以函数的值域为{ y|y ∈R 且y ≠0}.⑵ ∵ x2≥0,∴25x +≥5.∴ 函数的值域为{ y| y ≥5}.例2、求函数x3y -=的值域。
解:∵x≥0 ∴- x ≤0 3—x ≤3。
故函数的值域是:( —∞,3 ]例3、求函数[]2,1,211∈-=x xy 的值域。
解:由21≤≤x 得1213-≤-≤-x ,312111-≤-≤-x ,故函数的值域是⎥⎦⎤⎢⎣⎡--31,1.例4、求函数111y x =++的值域。
分析:首先由1x +≥0,得1x ++1≥1,然后在求其倒数即得答案。
解:1x +≥0∴1x ++1≥1,∴0<111x ++≤1,∴函数的值域为(0,1].例5、求242-+-=x y 的值域。
由绝对值函数知识及二次函数值域的求法易得:)[)[∞+-∈∞+∈-+-=,2,,024)(2y x x g 所以 例6、求函数y =211x +的值域 解:Θ 22111,011x x +≥∴<≤+ 显然函数的值域是:(]0,1配方法当所给函数是二次函数或可化为二次函数的复合函数时,可利用配方法求值域 例1、求下列函数的值域:⑴ y =-2x -4x +1,x ∈[-3,3];⑵y =4x +41x -1.解:⑴配方,得y =-(x +2)2+5,又x ∈[-3,3],结合图象,知 函数的值域是{ y │-20≤y <5}⑵ ∵y =4x +41x -1=2221x x ⎛⎫- ⎪⎝⎭+1≥1, 当且仅当221x x -=0,即x =±1时取等号,∴ 函数y =x4+41x -1的值域为[1,+∞).例2、求函数y=2x —2x+5,x ∈[-1,2]的值域。
关于函数值域的求法作者:戈秀英来源:《中学生数理化·教研版》2008年第05期函数的值域就是函数值的取值范围,求函数值域是重点,更是难点.学生对函数值域的问题常感到头疼.下面通过典型例题说明求函数值域的几种方法.一、常见函数的值域一次函数y=kx+b(k≠0)的值域为R.二次函数y=ax2+bx+c(a≠0),当a>0时,值域是[4ac-b2,+∞);当a指数函数y=ax(a>0且a≠1)的值域为R.对数函数y=logax(a>0且a≠1)的值域为R.正余弦函数的值域为[-1,1],余切函数的值域为R.二、求函数值域的方法1.逆求法.主要适用于形如y=(c不为0)的函数,通过求函数反函数的定义域来确定函数的值域.例1求y=的值域.解:由y=解出x,得x=. ∵ 2y+1≠0,故函数的值域为y≠且y∈R.2.分离常数法.主要适用于具有分式形式的函数解析式,通过变形将函数化成y=a+的形式.例2求函数y=的值域.解:由y=得y=1+. ∵ -1≤sinx≤1 ,∴ -≤y≤-,即函数的值域是[-,-].评注:此题也可把函数转化为sinx=f(y)的形式,则-1≤f(y)≤1确定值域.3.判别式法.能转化为a(y)x2+b(y)x+c(y)=0的函数常用判别式法.主要适用于形如y=(a,d不同为零)的函数.例3求函数y=的值域.解:由 y=去分母得(y-1)x2+(1-y)x+y=0. (*)∵y=1时,方程(*)无解,∴ y≠1.又∵ x∈R ∴方程(*)的判别式?驻=(1-y)2-4y (y-1)≥0(y≠1),解得函数的值域是[-,1).评注:在由?驻≥0且a(y)≠0求出y的最值后,要检验这个最值在定义域内是否有相应的x 值.4.配方法.形如二次函数或 y=af2(x)+bf(x)+c (a≠0)的函数常用配方法.例4求函数y=sin2x+4cosx+1的值域.解: y=-cos2x+4cosx+2=-(cos2x- 4cosx+4)+6=-(cosx-2)2+6当cosx=-1时,ymin=-3; 当cosx=1时,ymax=5.所以函数的值域是[-3,5].评注:利用配方法时,注意f(x)的取值范围.5.均值不等式法.利用基本不等式求出函数的最值进而确定函数的值域,要注意满足“一正、二定、三等”.例5求函数y=x (-3<x<0)的值域.解: y=x=-≥-[]=-.当且仅当x2=9-x2,即x=-时取等号,所以函数的值域是[-,+∞).评注:利用均值不等式求最值应验证等号成立的条件.6.换元法.通过整体换元法(形如y=ax+b+的函数)或三角换元法(形如y=ax+的函数)把无理函数、指数函数等超越函数转化为代数函数求函数值域的方法.例6求函数y=x-的值域.解:令t=(t≥0),则x=t2+1,y=t2-t+1=(t-)2+.当t=时,ymin=,y没有最大值,所以函数的值域是[,+∞).评注:应用换元法时,须注意新元的范围.此外,还有数形结合法和导数法等.遇到求函数值域的问题,应首先考虑有哪几种基本方法,有的题目可用几种方法求解,在多种方法中选出最优方法.注:本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。
求函数值域的解题方法总结(16种)一、 观察法:通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。
例:求函数()x 323y -+=的值域。
点拨:根据算术平方根的性质,先求出()x 3-2的值域。
解:由算术平方根的性质知()0x 3-2≥,故()3x 3-23≥+。
点评:算术平方根具有双重非负性,即:(1)、被开方数的非负性,(2)、值的非负性。
本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧发。
练习:求函数()5x 0x y ≤≤=的值域。
(答案:{}5,4,3,2,1,0)二、反函数法:当函数的反函数存在时,则其反函数的定义域就是原函数的值域。
例:求函数2x 1x y ++=的值域。
点拨:先求出原函数的反函数,再求出其定义域。
解:显然函数2x 1x y ++=的反函数为:y y --=112x ,其定义域为1y ≠的实数,故函数y 的值域为{}R y 1,y |y ∈≠。
点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。
这种方法体现逆向思维的思想,是数学解题的重要方法之一。
练习:求函数x-x -xx 10101010y ++=的值域。
(答案:{}1y 1-y |y 或)。
三、配方法:当所给函数是二次函数或可化为二次函数的复合函数时,可利用配方法求函数的值域。
例:求函数()2x x-y 2++=的值域。
点拨:将被开方数配方成平方数,利用二次函数的值求。
解:由02x x -2≥++可知函数的定义域为{}2x 1-|x ≤≤。
此时2x x -2++=4921-x -2+⎪⎭⎫ ⎝⎛()232x x-02≤++≤∴,即原函数的值域为⎭⎬⎫⎩⎨⎧≤23y 0|y点评:求函数的值域的不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。
配方法是数学的一种重要的思想方法。
练习:x 4-155-x 2y +=的值域。
(答案:{}3y |y ≤)四、判别式法:若可化为关于某变量的二次方程的分式函数或无理数,可用判别式法求函数的值域。
函数定义域、值域求法总结一、定义域是函数y=f(x)中的自变量x 的范围。
求函数的定义域需要从这几个方面入手: (1)分母不为零(2)偶次根式的被开方数非负。
(3)对数中的真数部分大于0。
(4)y=tanx 中x ≠k π+π/2; ( 5 )0x 中x 0≠二、值域是函数y=f(x)中y 的取值范围。
常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法(4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆求法)(7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等这些解题思想与方法贯穿了高中数学的始终。
三、典例解析 1、定义域问题例1 求下列函数的定义域:① 21)(-=x x f ;② 23)(+=x x f ;③ xx x f -++=211)( 例2 求下列函数的定义域:①14)(2--=x x f ②2143)(2-+--=x x x x f③=)(x f x11111++④xx x x f -+=0)1()(⑤373132+++-=x x y例3 若函数aax ax y 12+-=的定义域是R ,求实数a 的取值范围 例4 若函数)(x f y =的定义域为[-1,1],求函数)41(+=x f y )41(-⋅x f 的定义域例5 已知f(x)的定义域为[-1,1],求f(2x -1)的定义域。
例6已知已知f(x)的定义域为[-1,1],求f(x 2)的定义域。
2、求值域问题利用常见函数的值域来求(直接法)一次函数y=ax+b(a ≠0)的定义域为R ,值域为R ; 反比例函数)0(≠=k xky 的定义域为{x|x ≠0},值域为{y|y ≠0}; 二次函数)0()(2≠++=a c bx ax x f 的定义域为R ,当a>0时,值域为{a b ac y y 4)4(|2-≥};当a<0时,值域为{ab ac y y 4)4(|2-≤}. 例1 求下列函数的值域① y=3x+2(-1≤x ≤1) ②)(3x 1x32)(≤≤-=x f ③ xx y 1+=(记住图像) 二次函数在区间上的值域(最值):例2 求下列函数的最大值、最小值与值域:①142+-=x x y ; ②;]4,3[,142∈+-=x x x y ③]1,0[,142∈+-=x x x y ; ④]5,0[,142∈+-=x x x y ;练习:1、求函数[]5,0,522∈+-=x x x y 的值域 法二:换元法(下题讲)例4 求函数x x y -+=12 的值域例7 求13+--=x x y 的值域例8 求函数[])1,0(239∈+-=x y x x 的值域例9求函数xx y 2231+-⎪⎭⎫⎝⎛= 的值域例10 求函数 )0(2≤=x y x 的值域 例11 求函数21+-=x x y 的值域小结:已知分式函数)0(≠++=c dcx bax y ,如果在其自然定义域(代数式自身对变量的要求)内,值域为⎭⎬⎫⎩⎨⎧≠c a y y ; 例12 求函数133+=x xy 的值域例14 求函数34252+-=x x y 的值域 例15 函数11++=xx y 的值域复合函数单调性一、 函数的单调区间1.一次函数y=kx+b(k ≠0).2.反比例函数y=x k(k ≠0). 3.二次函数y=ax 2+bx+c(a ≠0). 4.指数函数y=ax(a >0,a ≠1). 5.对数函数y=log a x(a >0,a ≠1). 三、复合函数单调性相关定理规律:当两个函数的单调性相同时,其复合函数是增函数;当两个函数的单调性不同时,其复合函数为减函数。
对数函数求值域的方法
在数学中,对数(logarithm)函数是一类特殊的函数,用来把乘法问题转换成加法问题。
它有一个别名叫“对数关系”,指的是一个数是另一个数的多少次方。
它可以用来求 log N,即以 N 为底数的对数值。
此外,它还可以用来求值域,即在特定的区间内的值的范围。
一般来说,求值域的方法可以分两类:一类是给定对数函数的值,求对数函数的定义域;另一类是给定对数函数的定义域,求对数函数的值。
具体来说,求一个对数函数的值域,可以用下面四步简单的步骤来实现:
第一步:设定一个想要求的值域x,它的区间为[a, b](a < b)。
第二步:把x的定义域映射到定义域中x的取值,使得对数函数取值y在[a, b]之间。
第三步:求出x的定义域中x的取值集合。
第四步:将x的取值集合映射到值域[a, b]之间,即求出x的值域。
具体来说,假如给定一个值域x,它的区间为[a, b],且已知原函数可以表示成y=f(x),那么根据上面的定义,对数函数可以表示成y=logf(x),因此,只要把x的定义域映射成适当的取值集合,便可以求出x的值域。
例如,已知f(x)=2^x,值域x的定义域为[0,3],则可以将[0,3]映射到x的取值集合{0,1,2,3};这四个取值都可以被2^x映射,因
此,x的值域可以表示成[log2^0, log2^3],即[0,3]。
这样,我们就可以求出x值域为[0,3]的对数函数求值域的方法了。
此外,还有另一种求值域的方法,即给定对数函数的定义域,求对数函数的值。
具体来说,假如给定一个定义域[a, b],且已知函数可以表示成y=f(x),那么根据上面的定义,对数函数可以表示成
y=logf(x),则可以求出定义域[a, b]之间的对数函数值。
例如,已知f(x)=2^x,定义域x的定义域为[1,4],则可以将[1,4]映射到x的取值集合{1,2,3,4};这四个取值都可以被2^x映射,因此,x的值域可以表示成[log2^1, log2^4],即[1,4]。
这样,我们就可以求出了定义域[1,4]之间的对数函数值。
综上所述,求对数函数的值域其实是一个简单的步骤,主要是把定义域和值域进行映射,从而找出满足要求的对数函数值。
只要掌握了基本的求解方法,就可以解决各种对数函数求值域的问题。