金属轴向拉压和扭转实验报告_工程力学
- 格式:doc
- 大小:525.00 KB
- 文档页数:8
金属扭转实验报告金属扭转实验报告引言:金属材料是工业生产中最常用的材料之一,其力学性能对于产品的质量和可靠性至关重要。
在金属材料力学性能研究中,扭转实验是一种常用的实验方法,通过对金属试样进行扭转加载,可以获取材料的扭转强度、塑性变形能力和疲劳性能等重要参数。
本实验旨在通过对不同金属试样的扭转实验,探究金属材料的力学性能特点。
实验方法:1. 实验材料选择:本次实验选用了三种不同类型的金属材料,分别为铝合金、钢材和铜材。
这三种材料在工业中应用广泛,具有不同的力学性能特点。
每种材料都制备了10个相同尺寸的试样。
2. 实验装置:扭转实验使用扭转试验机进行,试验机具有精确的力和位移测量系统,能够准确记录试样在加载过程中的力学性能变化。
试样通过夹具固定在试验机上,然后扭转加载。
3. 实验步骤:(1) 将试样固定在夹具上,确保试样的中心轴与扭转试验机的转轴一致。
(2) 设置试验机的加载速度和加载范围,确保实验过程的可控性。
(3) 开始加载,记录试样的扭转力和位移数据。
(4) 当试样发生破坏或达到预设的加载条件时,停止加载,并记录试样的破坏形态。
实验结果与分析:1. 铝合金试样的扭转强度较低,破坏形态为断裂。
铝合金具有较好的塑性变形能力,在扭转过程中能够发生较大的变形,但其强度较低,容易发生断裂。
2. 钢材试样的扭转强度较高,破坏形态为塑性变形。
钢材具有较高的强度和较好的塑性变形能力,在扭转过程中能够承受较大的载荷而不发生断裂。
3. 铜材试样的扭转强度介于铝合金和钢材之间,破坏形态为塑性变形。
铜材具有较好的强度和塑性变形能力,但相对于钢材而言,其强度较低。
结论:通过本次实验,我们对铝合金、钢材和铜材的扭转性能进行了研究。
实验结果表明,不同类型的金属材料具有不同的力学性能特点。
铝合金具有较好的塑性变形能力,但强度较低;钢材具有较高的强度和塑性变形能力;铜材介于两者之间。
这些实验结果对于金属材料的选择和应用具有重要的指导意义,有助于提高产品的质量和可靠性。
材料力学金属扭转实验报告[5篇范例]第一篇:材料力学金属扭转实验报告材料力学金属扭转实验报告【实验目的】1、验证扭转变形公式,测定低碳钢的切变模量G。
;测定低碳钢和铸铁的剪切强度极限bτ握典型塑性材料(低碳钢)和脆性材料(铸铁)的扭转性能;2、绘制扭矩一扭角图;3、观察和分析上述两种材料在扭转过程中的各种力学现象,并比较它们性质的差异;4、了解扭转材料试验机的构造和工作原理,掌握其使用方法。
【实验仪器】仪器名称数量参数游标卡尺1 0-150mm,精度CTT502 微机控制电液伺服扭转试验机 1 最大扭矩500N·m,最大功率低碳钢、铸铁各 1 标准【实验原理和方法】1..测定低碳钢扭转时的强度性能指标试样在外力偶矩的作用下,其上任意一点处于纯剪切应力状态。
随着外力偶矩的增加,当达到某一值时,测矩盘上的指针会出现停顿,这时指针所指示的外力偶矩的数值即为屈服力偶矩esM,低碳钢的扭转屈服应力为 pess43WM=τ式中:/3pd W π=为试样在标距内的抗扭截面系数。
在测出屈服扭矩sT 后,改用电动快速加载,直到试样被扭断为止。
这时测矩盘上的从动指针所指示的外力偶矩数值即为最大力偶矩ebM,低碳钢的抗扭强度为 pebb43WM=τ对上述两公式的来源说明如下:低碳钢试样在扭转变形过程中,利用扭转试验机上的自动绘图装置绘出的ϕ-eM 图如图1-3-2 所示。
当达到图中 A 点时,eM 与ϕ成正比的关系开始破坏,这时,试样表面处的切应力达到了材料的扭转屈服应力sτ,如能测得此时相应的外力偶矩epM,如图1-3-3a 所示,则扭转屈服应力为 pepsWM=τ经过A 点后,横截面上出现了一个环状的塑性区,如图1-3-3b 所示。
若材料的塑性很好,且当塑性区扩展到接近中心时,横截面周边上各点的切应力仍未超过扭转屈服应力,此时的切应力分布可简化成图 1-7c 所示的情况,对应的扭矩sT 为 OϕM eABCM epM esM eb 图 1-3-2低碳钢的扭转图τ sTτ sTτ sT(a)pT T =(b)s pT T T <<(c)sT T =图 1-3-3低碳钢圆柱形试样扭转时横截面上的切应力分布s p s3d/22sd/2s s3412d 2 d 2 ττπρρπτρπρρτ WdT ====⎰⎰由于es sM T =,因此,由上式可以得到 pess43WM=τ无论从测矩盘上指针前进的情况,还是从自动绘图装置所绘出的曲线来看,A 点的位置不易精确判定,而B 点的位置则较为明显。
金属材料扭转实验报告小组成员:谭晓霞张丽丽张贺郭超凡一、实验目的:扭转实验是了解材料抗剪能力的一项基本实验,本实验着重了解塑性材料(低碳钢)和脆性材料(铸铁)受扭转时的机械性能,测定sτ 、bτ 绘制φ−T 图,并比较两种材料的破坏情况及原因。
二、实验原理:圆轴扭转时横截面上的剪应力为最大剪应力产生在试件的横截面的边缘处,其值等于式中: T—截面上的扭矩pI—圆截面的极惯性矩pW—圆截面的抗扭截面模量由理论可知,圆轴扭转时其横截面上任意一点处于平面应力状态,沿与轴线夹角成45°的方向上的最大拉应力大小为由于各种材料抵抗剪切与抵抗拉伸的能力不同,因此不同材料的扭转破坏方式也不同,如图4.2所示。
低碳钢圆试件扭转到破坏时,已超过屈服阶段。
如对材料作理想塑性考虑(图4.3),此时截面上的剪应力的分布随着扭矩的增大趋于均匀,如图4.3(c)所示,假设应力为sτ(屈服极限),则这时截面上应力sτ与相应扭矩的Ts的关系为同理可计算塑性材料在扭转时的剪切强度极限对于铸铁等脆性材料在扭转至破坏时,因其变形较小无屈服现象,故可近似地用弹性应力公式进行计算,若破坏时的扭矩为Tb,则得到剪切强度极限为三、实验仪器1、扭转测试机2、游标卡尺四、试样NDW31000扭转试验机的试样夹持直径在8~40mm。
本试验使用标距L=100mm,标距部分直径d=10mm 的圆形截面标准试件五、实验步骤1、试样准备在试样标距段的两端及中间截面处,沿两相互垂直方向测量直径各一次,并计算各截面直径的算术平均值。
选用三个截面中平均直径的最小值计算试样截面的扭转截面系数。
2、实验机准备①估计载荷,确定载荷在试验机量程范围之内。
②打开试验机开关;打开计算机主机及显示屏。
③打开控制主程序,联机。
3、装夹试样①将试样轻夹于两夹头上,使试样的纵轴线与试验机夹头的轴线要重合。
②松开被动夹头,拧紧主动夹头。
在控制程序的试验界面中选“扭矩清零”。
工程力学实验报告学生姓名:学号:专业班级:南昌大学工程力学实验中心目录实验一金属材料的拉伸及弹性模量测定试验 2 实验二金属材料的压缩试验 6 实验三复合材料拉伸实验9 实验四金属扭转破坏实验、剪切弹性模量测定12 实验五电阻应变片的粘贴技术及测试桥路变换实验16 实验六弯曲正应力电测实验19 实验七叠(组)合梁弯曲的应力分析实验23 实验八弯扭组合变形的主应力测定32实验九偏心拉伸实验37 实验十偏心压缩实验41 实验十二金属轴件的高低周拉、扭疲劳演示实验45 实验十三冲击实验47 实验十四压杆稳定实验49 实验十五组合压杆的稳定性分析实验53 实验十六光弹性实验59 实验十七单转子动力学实验62 实验十八单自由度系统固有频率和阻尼比实验65实验一金属材料的拉伸及弹性模量测定试验实验时间:设备编号:温度:湿度:一、实验目的二、实验设备和仪器三、实验数据及处理引伸仪标距l = mm实验前低碳钢弹性模量测定()F lE l Aδ∆⋅=∆⋅ =实验后屈服载荷和强度极限载荷载荷―变形曲线(F―Δl曲线)及结果四、问题讨论(1)比较低碳钢与铸铁在拉伸时的力学性能;(2)试从不同的断口特征说明金属的两种基本破坏形式。
金属材料的拉伸及弹性模量测定原始试验数据记录实验二金属材料的压缩试验实验时间:设备编号:温度:湿度:一、实验目的二、实验设备和仪器三、实验数据及处理载荷―变形曲线(F―Δl曲线)及结果四、问题讨论(1)观察铸铁试样的破坏断口,分析破坏原因;(2)分析比较两种材料拉伸和压缩性质的异同。
金属材料的压缩试验原始试验数据记录实验三复合材料拉伸实验实验时间:设备编号:温度:湿度:一、实验目的二、实验设备和仪器三、实验数据及处理试件尺寸电阻应变片数据载荷和应变四、问题讨论复合材料拉伸实验原始试验数据记录实验四金属扭转破坏实验、剪切弹性模量测定实验时间:设备编号:温度:湿度:一、实验目的二、实验设备和仪器三、实验数据及处理弹性模量E= 泊松比 =实验前低碳钢剪切弹性模量测定PI l T G ⋅⋅=ϕ∆∆0=理论值)1(2μ+=EG = ;相对误差(%)==⨯-%100理实理G G G 载荷―变形曲线(F ―Δl 曲线)及结果四、问题讨论(1)为什么低碳钢试样扭转破坏断面与横截面重合,而铸铁试样是与试样轴线成45o 螺旋断裂面?(2)根据低碳钢和铸铁拉伸、压缩、扭转试验的强度指标和断口形貌,分析总结两类材料的抗拉、抗压、抗剪能力。
一、实验目的1. 通过金属扭转试验,了解金属在扭转过程中的力学性能变化。
2. 测定金属材料的剪切屈服极限、剪切强度极限和切变模量。
3. 比较不同金属材料的扭转性能,分析其差异。
二、实验原理金属扭转试验是研究金属材料扭转性能的重要方法。
在扭转过程中,试样受到一对大小相等、方向相反的力矩作用,使试样产生扭转变形。
根据胡克定律和剪切应力与切变应力的关系,可以推导出金属材料的扭转力学性能指标。
三、实验设备与材料1. 实验设备:扭转试验机、游标卡尺、扭矩传感器、计算机等。
2. 实验材料:低碳钢、灰铸铁、铝等金属材料。
四、实验步骤1. 准备工作:检查实验设备是否完好,准备实验材料。
2. 试样制备:按照国家标准GB10128-2007《金属室温扭转试验方法》,制备圆形截面试样。
3. 试样测量:使用游标卡尺测量试样直径,计算试样抗扭截面系数。
4. 实验操作:a. 将试样安装在扭转试验机上,调整扭矩传感器,连接计算机。
b. 输入实验参数,如试样直径、材料类型等。
c. 启动实验,缓慢加载扭矩,观察试样变形情况。
d. 记录扭矩、扭转角等数据。
5. 实验结束:试样扭断后,取下试样,测量断口尺寸,计算剪切强度极限。
五、实验数据与处理1. 实验数据:记录扭矩、扭转角、试样直径、抗扭截面系数等数据。
2. 数据处理:a. 绘制扭矩-扭转角曲线,分析金属材料的扭转性能。
b. 计算剪切屈服极限、剪切强度极限和切变模量。
c. 比较不同金属材料的扭转性能,分析其差异。
六、实验结果与分析1. 实验结果:a. 低碳钢的剪切屈服极限为XXX MPa,剪切强度极限为XXX MPa,切变模量为XXX GPa。
b. 灰铸铁的剪切屈服极限为XXX MPa,剪切强度极限为XXX MPa,切变模量为XXX GPa。
c. 铝的剪切屈服极限为XXX MPa,剪切强度极限为XXX MPa,切变模量为XXX GPa。
2. 分析:a. 低碳钢的扭转性能较好,剪切屈服极限和剪切强度极限较高,切变模量较大。
轴向拉伸实验报告书(共9篇)报告一:轴向拉伸实验报告一、实验目的1.掌握轴向拉伸试验的基本原理和步骤。
2.通过实验,了解材料的拉伸性能数据,如抗拉强度、屈服强度和伸长率等。
二、实验原理轴向拉伸试验是一种常见的材料力学试验方法。
它将试样放置在拉伸试验机上,通过拉伸试验机施加一个慢速的恒定力,使试样开始拉伸,并在逐渐递增的力的作用下一直拉伸到破断。
实验中所需要的材料和试样应该具有以下特点:1.材料的性能必须具有可靠性和代表性。
2.试样的尺寸必须符合标准的要求。
3.在测试温度下,试样的畸变应尽可能小。
在轴向拉伸试验中,一般采用的是标准试验方法。
标准试验方法是国家颁布的实验规程和标准测试方法。
标准测试是为了获得所需数据而进行的一系列措施,包括样品的处理、测试设备的标准化、测量和数据处理。
三、实验步骤1.根据所选材料的类型和所需测试数据选择相应的标准试验方法,并详细描述试验过程。
2.按照标准方法的描述准备所需的测试设备和试样。
3.材料标准化和试样的预处理。
4.测试设备校准和校准。
5.测量并记录实验室条件下的试样尺寸。
6.试样的放置与加载。
7.对试样施加稳定的拉力。
8.记录相关数据并进行曲线拟合和计算。
9.拆除试样并清洁测试设备。
四、实验数据处理和分析1.根据试验过程的数据计算试样的实际应力和应变。
2.根据应力-应变曲线可以评估测试材料的机械特性,如弹性模量、屈服强度、抗拉强度、断裂延伸率等。
3.分析实验结果并得出结论。
五、实验结果我们进行了轴向拉伸试验,并得出不同材料的应力-应变曲线。
通过实验,我们可以得到所需的数据,如抗拉强度、屈服强度和伸长率等。
以不锈钢材料为例,做下图,可以看出随着应力的增加,应变也随之增加。
当应力大到一定程度后,材料出现屈服现象,强度值略有下降。
当应力继续增加时,材料的应变继续增加,直到达到极限状态,破断。
我们可以根据应力-应变曲线中的数据计算出材料的力学特性。
六、实验结论与意义1.轴向拉伸试验是一种非常重要的材料力学测试方法,可以评估材料的机械特性,如弹性模量、屈服强度、抗拉强度、断裂延伸率等。
轴向拉伸压缩实验报告轴向拉伸压缩实验报告引言轴向拉伸压缩实验是材料力学中常用的一种实验方法,通过施加轴向拉伸或压缩力来研究材料的力学性能。
本实验旨在探究不同材料在拉伸和压缩过程中的变形行为及其对应的应力-应变关系。
实验装置和方法本实验采用了一台万能试验机来进行轴向拉伸压缩实验。
首先,我们选择了三种不同的材料样品:钢材、铜材和铝材。
每种材料的样品长度均为10cm,直径为1cm。
我们将这些样品分别放置在试验机的夹具中,确保样品的轴线与试验机的轴线重合。
实验开始时,我们通过调整试验机的速度控制器,使拉伸或压缩的速度保持恒定。
接下来,我们开始施加拉伸或压缩力,直到样品发生破坏或达到预设的应变值。
在实验过程中,我们记录了试验机的读数,包括施加的力和样品的应变。
实验结果与分析通过对实验数据的分析,我们得到了不同材料在拉伸和压缩过程中的应力-应变曲线。
下面,我们将分别对钢材、铜材和铝材的实验结果进行讨论。
钢材的应力-应变曲线呈现出明显的弹性阶段和塑性阶段。
在弹性阶段,应变随着施加的拉伸力线性增加,而应力与应变成正比。
当施加的拉伸力超过材料的屈服强度时,钢材进入了塑性阶段。
在这个阶段,应变增加的速度远快于应力的增加速度,材料开始发生塑性变形。
当拉伸力继续增加,钢材最终达到了破坏点,应变迅速增加,而应力急剧下降。
铜材的应力-应变曲线与钢材有所不同。
铜材在拉伸过程中表现出较高的弹性模量和屈服强度。
在弹性阶段,铜材的应变增加速度相对较慢,而应力与应变成正比。
然而,当施加的拉伸力超过铜材的屈服强度时,铜材开始发生塑性变形。
与钢材不同的是,铜材的塑性阶段较为短暂,应变迅速增加,而应力下降较为缓慢。
最终,铜材达到了破坏点,应变急剧增加,应力迅速下降。
铝材的应力-应变曲线与铜材相似,但在塑性阶段表现出了更高的延展性。
在弹性阶段,铝材的应变增加速度较慢,而应力与应变成正比。
当施加的拉伸力超过铝材的屈服强度时,铝材开始发生塑性变形。
金属材料的扭转实验报告金属材料的扭转实验报告引言金属材料是工程领域中广泛应用的一类材料,其力学性能对于工程设计和材料选择具有重要的意义。
本实验旨在通过扭转实验来研究金属材料的力学行为和材料性能,为工程实践提供参考。
一、实验目的本实验的主要目的是通过扭转实验,研究金属材料在扭转加载下的力学行为和材料性能,包括材料的刚度、强度、塑性变形等方面的特性。
二、实验原理扭转实验是通过施加扭矩来加载金属材料,使其发生扭转变形。
扭转实验中,材料受到的扭矩与扭角之间的关系可以用扭转弹性模量和剪切应力来描述。
扭转弹性模量是材料在弹性阶段扭转变形时的比例系数,剪切应力则是材料受到的扭矩与截面积之比。
三、实验步骤1. 准备工作:选择一块金属样品,将其加工成圆柱形,并测量其长度和直径,计算出截面积。
2. 搭建实验装置:将金属样品固定在扭转试验机上,确保其能够自由扭转。
3. 施加加载:通过扭矩传感器施加扭矩,同时记录下扭矩和扭角的变化。
4. 数据处理:根据实验数据计算出扭转弹性模量和剪切应力,并绘制相应的应力-应变曲线。
四、实验结果与讨论通过实验得到的数据可以得出金属材料的扭转弹性模量和剪切应力。
扭转弹性模量是材料在弹性阶段扭转变形时的比例系数,可以反映材料的刚度。
剪切应力则是材料受到的扭矩与截面积之比,可以反映材料的强度。
根据实验结果,我们可以观察到金属材料在扭转加载下的力学行为。
在加载初期,材料的扭转弹性模量较高,表现出较大的刚度,扭转变形较小。
随着加载的增加,材料逐渐进入塑性变形阶段,扭转弹性模量下降,塑性变形增加。
当达到一定扭矩时,材料会发生破坏,出现断裂现象。
五、结论通过本实验,我们研究了金属材料在扭转加载下的力学行为和材料性能。
实验结果表明,金属材料在扭转加载下具有一定的刚度和强度,同时也具有一定的塑性变形能力。
这些性能对于工程设计和材料选择具有重要的意义。
六、实验总结本实验通过扭转实验研究了金属材料的力学行为和材料性能,为工程实践提供了参考。
轴向拉伸实验报告一、实验目的本次实验旨在了解和掌握轴向拉伸试验的原理、方法及结果处理方法,通过实验掌握金属材料的拉伸性能。
二、实验原理轴向拉伸试验是一种常见的金属材料力学性能试验方法,通常用于测试材料的拉伸强度、屈服强度、伸长率等力学性能参数。
实验时,将试样置于试验机的拉伸机械装置中,通过施加拉力使得试样逐渐拉伸,记录下试样的载荷和位移数据,最终得出试样的力学性能指标。
三、实验过程1.准备实验样品,制作试样。
根据实验要求制作试样,并注意试样的尺寸和形状符合要求。
2.安装试样,调整试验机。
将试样装入试验机中,调整试验机的参数和仪器设备,确保实验过程中的安全和准确性。
3.开始实验。
利用试验机施加轴向拉伸载荷,同步记录试样的载荷和位移数据。
在实验过程中,应注意试样的状态和试验机的操作规范。
4.结束实验,处理数据。
试验结束后,将试样取出,记录试样的破坏形态和最终的载荷-位移数据。
根据数据计算出试样的力学性能指标。
四、实验结果通过本次实验,我们得到了以下的结果:试样编号|断口形态|屈服强度(MPa)|极限强度(MPa)|伸长率(%)-|-|-|-|-1|颈缩断|260|300|202|穿孔|310|330|153|减径|290|310|18五、实验分析1.试样的断口形态在本次实验中,试样的断口形态有颈缩断、穿孔和减径等。
颈缩断是指材料发生塑性变形后,断口呈现出缩颈现象的状态;穿孔是指材料的断口出现一个或多个穿孔的状态;减径是指材料在受到外力拉伸作用时,直径逐渐减小的状态。
通过观察试样的断口形态,可以初步判断试样的力学性能状态。
2.试样的屈服强度屈服强度是指材料在受到外力拉伸作用时,材料开始发生塑性变形的最大应力值。
在本次实验中,三个试样的屈服强度分别为260MPa、310MPa和290MPa。
可以看出,试样的屈服强度与试样的形状和尺寸有关,但也受到材料的物理性质等因素的影响。
3.试样的极限强度极限强度是指材料在受到外力拉伸作用时,试样发生破坏的最大应力值。
金属材料轴向拉伸、压缩实验预习要求:1、 复习教材中有关材料在拉伸、压缩时力学性能的内容;2、 预习本实验内容及微控电子万能试验机的原理和使用方法;一、实验目的1、观察低碳钢在拉伸时的各种现象,并测定低碳钢在拉伸时的屈服极限s σ,强度极限b σ,延伸率δ和断面收缩率; 2、 观察铸铁在轴向拉伸时的各种现象;3、 观察低碳钢和铸铁在轴向压缩过程中的各种现象;4、 掌握微控电子万能试验机的操作方法。
二、实验设备与仪器1、 微控电子万能试验机;2、 游标卡尺。
三、试件试验表明,试件的尺寸和形状对试验结果有影响。
为了便于比较各种材料的机械性能,国家标准中对试件的尺寸和形状有统一规定。
根据国家标准(GB6397—86),将金属拉伸比例试件的尺寸列表如下:d 0=10mm ,标距l 0=100mm.。
本实验的压缩试件采用国家标准(GB7314-87d 0=2, d 0=10mm, h =20mm (图二)。
图二图一四、实验原理和方法(一)低碳钢的拉伸试验实验时,首先将试件安装在试验机的上、下夹头内,并在实验段的标记处安装引伸仪,以测量试验段的变形。
然后开动试验机,缓慢加载,同时,与试验机相联的微机会自动绘制出载荷—变形曲线(F —l 曲线,见图三)或应力—应变曲线(—曲线,见图四)。
随着载荷的逐渐增大,材料呈现出不同的力学性能:1、线性阶段在拉伸的初始阶段,—曲线为一直线,说明应力与应变成正比,即满足胡克定律。
线性段的最高点称为材料的比例极限(p ),线性段的直线斜率即为材料的弹性模量E 。
若在此阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。
卸载后变形能完全消失的应力最大点称为材料的弹性极限(e )。
一般对于钢等许多材料,其弹性极限与比例极限非常接近。
2、屈服阶段超过比例极限之后,应力与应变不再成正比,当载荷增加到一定值时,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象称为屈服。
使材料发生屈服的应力称为屈服应力或屈服极限(s )。
实验曲线在屈服阶段有两个特征点,上屈服点B 和下屈服点B’(见图五),上屈服点对应于实验曲线上应力波动的起始点,下屈服点对应于实验曲线上应力完成首次波动之后的最低点。
上屈服点受加载速率以及试件形状等的影响较大,而下屈服点B’则比较稳定,故工程上以B’点对应的应力作为材料的屈服极限s 。
当材料屈服时,如果用砂纸将试件表面打磨,会发现试件表面呈现出与轴线成45o 的斜纹。
这是由于试件的45o 斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。
3、硬化阶段经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能bs p图四lF图三力又增强了,这种现象称为应变硬化。
若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线,其斜率与比例阶段的直线段斜率大致相等。
当载荷卸到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。
卸载完之后,立即再加载,则加载时的应力应变关系基本上沿卸载时的直线变化。
因此,如果将卸载后已有塑性变形的试样重新进行拉伸试验,其比例极限或弹性极限将得到提高,这一现象称为冷作硬化。
在硬化阶段应力应变曲线存在一最高点,该最高点对应的应力称为材料的强度极限(b )。
强度极限所对应的载荷为试件所能承受的最大载荷P b 。
4、缩颈阶段试样拉伸达到强度极限b 之前,在标距范围内的变形是均匀的。
当应力增大至强度极限b 之后,试样出现局部显着收缩,这一现象称为缩颈。
缩颈出现后,使试件继续变形所需载荷减小,故应力应变曲线呈现下降趋势,直至最后在E 点断裂。
试样的断裂位置处于缩颈处,断口形状呈杯状,这说明引起试样破坏的原因不仅有拉应力,还有切应力,这是由于缩颈处附近试件截面形状的改变使横截面上各点的应力状态发生了变化。
(二)铸铁的拉伸试验铸铁的拉伸实验方法与低碳钢的拉伸实验相同,但是铸铁在拉伸时的力学性能明显不同于低碳钢,其应力——应变曲线如图五所示。
铸铁从开始受力直至断裂,变形始终很小,既不存在屈服阶段,也无颈缩现象。
断口垂直于试样轴线,这说明引起试样破坏的原因是最大拉应力。
(三)低碳钢和铸铁的压缩实验实验时,首先将试件放置于试验机的平台上,然后开动试验机,缓慢加载,同时,与试验机相联的数据采集系统会自动绘制出载荷—变形曲线(F —l 曲线)或应力—应变曲线(—曲线),低碳钢和铸铁受压缩时的应力应变曲线分别见图六和图七。
图五低碳钢试件在压缩过程中,在加载开始段,从应力应变曲线可以看出,应力与应变成正比,即满足虎克定律。
当载荷达到一定程度时,低碳钢试件发生明显的屈服现象。
过了屈服阶段后,试件越压越扁,最终被压成腰鼓形,而不会发生断裂破坏。
铸铁试件在压缩过程中,没有明显的线性阶段,也没有明显的屈服阶段。
铸铁的压缩强度极限约为拉伸强度极限的3~4倍。
铸铁试件断裂时断口方向与试件轴线约成55o 。
一般认为是由于切应力与摩擦力共同作用的结果。
五、实验步骤1.试件准备用划线机在标距l 0范围内每隔10毫米刻划一根圆周线,将标距分成十等分。
2.测量试件尺寸用游标卡尺测量标距两端及中间三个横截面处的直径,每一横截面分别沿两个互垂方向各测一次取平均值。
取所测得三个横截面直径中的最小值作为实验值。
3.试验机准备根据低碳钢强度极限бb 的估计值和横截面面积A 0估算实验的最大载荷。
以此来选择合适的测力量程。
4.安装试件 5.安装引伸仪 6.检查及试车检查以上步骤的完成情况后,开动试验机,预加少量载荷(应力不应超过材料的比例极限)然后卸载至零点,以检查试验机工作是否正常。
7.进行试验 ① 开动试验机使之缓慢匀速加载。
注意观察应力—应变曲线,以了解材料在拉伸时不同阶段的力学性能。
②在比例极限以下卸载,观察试件的弹性变形情况。
图七s p图六③ 继续加载,在屈服阶段观察试件表面的滑移线。
④ 进入强化阶段后。
卸载至零,再加载,观察冷作硬化现象。
⑤ 继续加载,当达到强度极限后,观察缩颈现象。
⑥ 加载直至试件断裂。
⑦取下试件,用游标卡尺测量断裂后的标距l 1,测量断口(颈缩)处的直径d 1。
8.整理各种仪器设备,结束实验。
六、 实验结果处理1.低碳钢的拉伸屈服极限和强度极限可由实验报表计算出。
σπσπ--⨯==≈⨯⨯⨯==≈⨯⨯3320332023.62710300.831010()236.0010458.361010()2s s b b P NMPa A m P N MPaA m 2.低碳钢的压缩屈服强度σπ-⨯==≈⨯⨯332025.50210324.701010()2s s F N MPa A m 3.铸铁的压缩极限强度σπ-⨯==≈⨯⨯332058.03710738.951010()2b b F NMPa A m 4.测量试件断裂后的标距长度和最小横截面直径,以计算延伸率δ和断面收缩率Ψ。
δ-=⨯=⨯≈10017.26100%100%34.52%50l l mm l mmψ⎛⎫-=⨯=-= ⎪⎝⎭201102100%168.64%A A d A d断裂后,试件的最小横截面即位于缩颈处,将断裂试件的两段对齐并尽量挤 紧,用游标卡尺测量断口处直径。
若断口到最邻近标距端点的距离大于1/3 l 0,则直接测量标距端点的距离l 1,若小于或等于1/3 l 0,则需按下述方法进行断口移中测定l 1:在长段上从断口o 处取基本等于短段的格数得B 点,若所余格数为偶数(图8-1)则取其一半得C 点。
此时:l1= AB + 2BC若所余格数为奇数(图8-2),则分别取所余格数减一的1/2得C点和所余格数加一的1/2得Cˊ点。
此时l1= AB + BC + B C’若断口在标距以外时,则此次实验结果无效。
图8-1图8-2金属材料扭转实验预习要求:1.复习教材中有关材料在扭转时力学性能的内容;2.预习本实验内容及扭转试验机的原理和使用方法;一、实验目的a)观察低碳钢和铸铁在扭转时的各种现象;b)掌握扭转试验机的操作方法。
二、实验设备与仪器1.扭转试验机2.游标卡尺三、试件试验表明,试件的尺寸和形状对试验结果有影响。
为了便于比较各种材料的机械性能,国家标准中对试件的尺寸和形状有统一规定。
根据国家标准(GB6397—86),将金属拉伸比例试件的尺寸列表如下:图一四、实验原理和方法实验时,首先将试件安装在试验机的左、右夹头内,并在试件实验段表面沿轴线方向划一条直线,以观察试验段的变形。
然后开动试验机,缓慢加载,同时,自动绘图装置绘制出扭矩—转角曲线(T—曲线)。
低碳钢试件受扭时,在加载开始段,从T —曲线可以看出,扭矩与转角成正比,即满足扭转虎克定律。
当载荷达到一定程度时,低碳钢试件发生明显的屈服现象,即扭矩不增加,而转角不断增大。
过了屈服阶段后,试件抵抗变形的能力又有所加强,到最后试件被连续扭转几圈后才沿着与轴线方向垂直的截面被剪断,这说明,导致低碳钢试件破坏的原因是扭转切应力。
铸铁试件受扭时,整个过程变形不明显,启动扭转试验机后不久,试件就发生断裂破坏,断口为沿着与轴线成45o 方向的螺旋面,这说明导致铸铁试件扭转破坏的原因是拉应力。
五、实验结果处理1. 低碳钢扭转极限强度:τππ-⋅===≈⨯⨯333135.60690.61(1010)1616b b b T T T N mMPa W D m 2. 铸铁扭转极限强度:τππ-⋅===≈⨯⨯33359.298302.00(1010)1616b b b T T T N mMPa W D m。