新版北师大初三数学九年级(下册)第三章圆练习题(分节练习)【含答案】讲解
- 格式:doc
- 大小:1.40 MB
- 文档页数:23
圆知识点与练习(1)圆是到定点的距离 定长的点的集合;圆的内部可以看作是到圆心的距离半径的点的集合; 圆的外部可以看作是到圆心的距离 半径的点的集合(2) 点和圆的位置关系:若⊙O 的半径为r ,点P 到圆心O 的距离为d ,那么:点P 在圆 d r 点P 在圆 d r 点P 在圆 d r例1:如图已知矩形ABCD 的边AB=3厘米,AD=4厘米,以点A 为圆心,4厘米为半径作圆A ,则点B 、C 、D 与圆A 的位置关系分别为点B 在圆A ,点C 在圆A ,点D 在圆A ,(3)定理: 的三个点确定一个圆(4)垂径定理: 垂直于弦的直径 这条弦并且平分弦所对的推论1 ①平分弦(不是直径)的直径 ,并且(注:运用垂径定理进行证明几何问题时,常需做出的辅助线的方法是 )推论2 圆的两条平行弦所夹的弧例2:如图,将半径为2厘米的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为 例3:在的圆柱形油槽内装入一些油后,截面如图所示,若油面宽AB=800mm ,油的最大深度为200mm ,则油槽截面的直径为 。
(例2图) (例3图)(5)圆是轴对称图形,其对称轴是 ;圆也是中心对称图形,对称中心是(6)定理 在同圆或等圆中,相等的圆心角所对的弧 ,所对的弦 ,所对的弦的弦心距推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都例4:如图,AB 、AC 、BC 都是⊙O 的弦,∠AOC=∠BOC,则∠ABC 与∠BAC 相等吗?为什么?(7) 定理: 一条弧所对的圆周角等于它所对的圆心角的推论1 同弧或等弧所对的圆周角 ;同圆或等圆中,相等的圆周角所对的弧推论2 半圆(或直径)所对的圆周角是 ;90°的圆周角所对的弦是(注:当问题中有直径时,常需做出的辅助线是 )例5:如图,点A 、B 、C 、D 在⊙O 上,点A 与点D 在点B 、C 所在直线的同侧,∠BAC=350 ∠BOC =_______°、∠BDC =_______°⇔⇔⇔例6:如图,AB是⊙O的直径,若AB=AE①BD 和 CD相等吗?为什么?② BD与 CD的大小有什么关系?为什么?(8)圆的内接四边形定理:圆的内接四边形的对角例7:⊙O中,弦长等于半径的弦,所对的圆周角的度数为(9)直线和圆的位置关系:设⊙O的半径为r,点P到圆心的距离为d,直线L和⊙O相交⇔d r ;直线L和⊙O相切⇔d r ;直线L和⊙O相离⇔d r 例8:在△ABC中,AB=5cm,BC=4cm,AC=3cm,①若以C为圆心,2cm长为半径画⊙C,则直线AB与⊙C的位置关系;②若直线AB与半径为r的⊙C相切,则r的值为。
圆章节复习课前测试【题目】课前测试如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.(1)当BC=1时,求线段OD的长;(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;(3)设BD=x,△DOE的面积为y,求y关于x的函数关系式,并写出它的定义域.【答案】;存在,DE=;y=(0<x<).【解析】(1)如图(1),∵OD⊥BC,∴BD=BC=,∴OD==;(2)如图(2),存在,DE是不变的.连接AB,则AB==2,∵D和E分别是线段BC和AC的中点,∴DE=AB=;(3)如图(3),连接OC,∵BD=x,∴OD=,∵∠1=∠2,∠3=∠4,∴∠2+∠3=45°,过D作DF⊥OE.∴DF==,由(2)已知DE=,∴在Rt△DEF中,EF==,∴OE=OF+EF=+=∴y=DF•OE=••=(0<x<).总结:本题考查的是垂径定理、勾股定理、三角形的性质,综合性较强,难度中等.【难度】4【题目】课前测试如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=.(1)求⊙O的半径OD;(2)求证:AE是⊙O的切线;(3)求图中两部分阴影面积的和.【答案】OD=3;AE是⊙O的切线;【解析】(1)∵AB与圆O相切,∴OD⊥AB,在Rt△BDO中,BD=2,tan∠BOD==,∴OD=3;(2)连接OE,∵AE=OD=3,AE∥OD,∴四边形AEOD为平行四边形,∴AD∥EO,∵DA⊥AE,∴OE⊥AC,又∵OE为圆的半径,∴AE为圆O的切线;(3)∵OD∥AC,∴=,即=,∴AC=7.5,∴EC=AC﹣AE=7.5﹣3=4.5,∴S阴影=S△BDO+S△OEC﹣S扇形FOD﹣S扇形EOG=×2×3+×3×4.5﹣=3+﹣=.总结:此题考查了切线的判定与性质,扇形的面积,锐角三角函数定义,平行四边形的判定与性质,以及平行线的性质,熟练掌握切线的判定与性质是解本题的关键.【难度】4知识定位适用范围:北师大版,初三年级,成绩中等以及中等以下知识点概述:圆是九年级下册的内容,是初中几何三大模块(三角形、四边形、圆)之一,也是中考几何必考内容,包含与园有关的圆性质、与圆有关的位置关系及与圆有关的计算三部分,相比三角形与四边形,圆部分的知识点更多,需要记忆的概念和公式也就更多,另外它还要跟三角形和四边形结合,综合考查几何知识,难度骤然提升,解题思维更要灵活。
北师大版九年级下册数学第三章圆含答案一、单选题(共15题,共计45分)1、如图,C,D是以线段AB为直径的⊙O上两点,若CA=CD,且∠ACD=30°,则∠CAB=()A.15°B.20°C.25°D.30°2、如图,在矩形ABCD中,AB=3,AD=4,若以顶点A为圆心、r为半径作圆,若点B、C、D只有一点在圆内,则r的取值范围为()A.3<r≤5B.r>3C.3≤r<4D.3<r≤43、已知⊙O1和⊙O2外切于M,AB是⊙O1和⊙O2的外公切线,A,B为切点,若MA=4cm,MB=3cm,则M到AB的距离是()A. cmB. cmC. cmD. cm4、如图,已知点A,B,C在⊙O上,若∠ABC=130°,则∠AOC的度数是()A.50°B.60°C.80°D.100°5、如图,已知△ABC中,AB=2,BC=3,∠B=90°,以点B为圆心作半径为r的⊙B,要使点A,C在⊙B外,则r的取值范围是()A.0<r<2B.0<r<3C.2<r<3D.r>36、如图,四边形ABCD是⊙O的内接四边形,直径AB=10,点D平分,DE⊥AB交⊙O于点E,∠EDC=99°,则的长是()A. B. C.3π D.7、以正方形ABCD的BC边为直径作半圆O,过点D作直线切半圆于点F,交AB 边于点E.则三角形ADE和直角梯形EBCD周长之比为()A.4:5B.5:6C.6:7D.7:88、三角形外心具有的性质是()A.到三个顶点距离相等B.到三边距离相等C.外心必在三角形外 D.到顶点的距离等于它到对边中点的距离的两倍9、如图,P为⊙O外一点,PA、PB分别切⊙O于A、B两点,OP交⊙O于点C,连接BO并延长交⊙O于点D,交PA的延长线于点E,连接AD、BC.下列结论:①AD∥PO;②△ADE∽△PCB;③tan∠EAD=;④BD2=2AD•OP.其中一定正确的是()A.①③④B.②④C.①②③D.①②③④10、如图,AB是⊙O的直径,∠CDB=40°,则∠ABC=()A.40°B.50 °C.60 °D.80 °11、已知⊙O的半径为5,直线l是⊙O的切线,则点O到直线l的距离是()A.2.5B.3C.5D.1012、△ABC中,∠A=30°,∠B=60°,AC=6,则△ABC外接圆的半径为()A. B. C. D.313、下列说法正确的是()A.弦是直径B.平分弦的直径垂直弦C.过三点A,B,C的圆有且只有一个D.三角形的外心是三角形三边中垂线的交点14、如图,⊙O的直径BC=12cm,AC是⊙O的切线,切点为C,AC=BC,AB与⊙O 交于点D,则的长是()A.πcmB.3πcmC.4πcmD.5πcm15、如图,⊙O的半径为5,弦AB=8,P是弦AB上的一个动点(不与A、B重合),下列不符合条件的OP的值是()A.4B.3C.3.5D.2.5二、填空题(共10题,共计30分)16、如图,一下水管道横截面为圆形,直径为100cm,下雨前水面宽为60cm,一场大雨过后,水面宽为80cm,则水位上升________cm.17、边长为4的正六边形内接于,则的半径是________.18、如图,AB为⊙O的直径,C、D为⊙O上的点,= .若∠CAB=40°,则∠CAD=________.19、正方形ABCD内接于⊙O,E是的中点,连接BE、CE,则∠ABE=________°.20、如图,的半径为5,点在上,点在内,且,过点作的垂线交于点、.设,,则与的函数表达式为________.21、已知AB,AC分别是同一圆的内接正方形和内接正六边形的边,那么∠ACB 度数为________.22、如图,⊙O内有一条弦BC,A为⊙O内一点、其中OA=3,AB=4,∠A=∠B=60°,则弦BC的长为________.23、如图,AB为半圆的直径,且AB=6,将半圆绕点A顺时针旋转45°,点B 旋转到点C的位置,则图中阴影部分的面积为________ .24、如图,AB是半圆的直径,点D是的中点,且AB=4,∠BAC=50°,则AD的长度为________ cm(结果保留π).25、一个扇形的圆心角为120°,它所对的弧长为6πcm,则此扇形的半径为________cm.三、解答题(共5题,共计25分)26、如图,AB、CD是⊙O的直径,弦CE∥AB,弧的度数为50°,求∠AOC 的度数.27、如图,公路 MN 和公路 PQ 在点 P 处交会,且∠QPN=30°.点 A 处有一所中学,AP=160m,一辆拖拉机从 P 沿公路 MN 前行,假设拖拉机行驶时周围100m 以内会受到噪声影响,那么该所中学是否会受到噪声影响,请说明理由,若受影响,已知拖拉机的速度为 18km/h,那么学校受影响的时间为多长?28、如图,AB是⊙O的直径,PA,PC分别与⊙O相切于点A,点C,若∠P=60°,PA= ,求AB的长.29、如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D是⊙O上一点,OD⊥AC,垂足为E,连接BD.(1)求证:BD平分∠ABC;(2)当∠ODB=30°时,求证:BC=OD.30、如图,在△ABC中,以AB为直径的⊙O交BC于点D,连结AD,请你添加一个条件,使△ABD≌△ACD,并说明全等的理由.你添加的条件是▲参考答案一、单选题(共15题,共计45分)1、A2、D3、B4、D5、A6、C7、C8、A9、A10、B11、C12、A13、D14、B15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、29、。
一、选择题1.如图,在半径为6的O 中,点A 是劣弧BC 的中点,点D 是优弧BC 上一点,33tanD =,下列结论正确的个数有:( ) ①63BC =; ②3sin 2AOB ∠=; ③四边形ABOC 是菱形;④劣弧BC 的长度为4π.A .4个B .3个C .2个D .1个 2.如图,ABC ∆是O 的内接三角形,AB BC =,30BAC ∠=︒,AD 是直径,8AD =,则AC 的长为( )A .4B .43C .83D .23.如图,AB 是⊙O 的直径,∠BOD =120°,点C 为弧BD 的中点,AC 交OD 于点E ,DE =1,则AE 的长为( )A 3B 5C .23D .254.已知△ABC 是半径为2的圆内接三角形,若BC =23∠A 的度数( )A .30°B .60°C .120°D .60°或120° 5.如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,则PC 的长为( )A .6B .25C .210D .214 6.如图,AB 是O 的直径,CD 是O 的弦,30,3ACD AD ∠=︒=,下列说法错误的是( )A .30B ∠=︒ B .60BAD ∠=︒C .23BD = D .23AB = 7.如图,AB 为半圆O 的直径,C 是半圆上一点,且60COA ∠=º,设扇形AOC 、COB △、弓形BmC 的面积为1S 、2S 、3S ,则他们之间的关系是( )A .123S S S <<B .213S S S <<C .132S S S <<D .321S S S << 8.如图,ABC 中,10,8,4AB AC BC ===,以点A 为圆心,AB 为半径作圆,交BC 的延长线于点D ,则CD 长为( )A .10B .9C .45D .89.如图,在ABC 中,5AB AC ==,6BC =,D ,E 分别为线段AB ,AC 上一点,且AD AE =,连接BE 、CD 交于点G ,延长AG 交BC 于点F .以下四个结论正确的是( )①BF CF =;②若BE AC ⊥,则CF DF =;③若BE 平分ABC ∠,则32FG =; ④连结EF ,若BE AC ⊥,则2DFE ABE ∠=∠. A .①②③ B .③④C .①②④D .①②③④ 10.如图,有一块半径为1m ,圆心角为120︒扇形铁皮,要把它做成一个圆锥体容器(接缝忽略不计),那么这个圆锥体容器的高为( )A .13mB .23mC .223mD .43m 11.如图,AB 是O 的直径,C 、D 分别是O 上的两点.若33BAC ∠=︒,则D∠的度数等于( )A .57︒B .60︒C .66︒D .67︒12.4.如图,AD 是ABC ∆的外接圆O 的直径,若50BCA ︒∠=,则BAD ∠=( )A .30︒B .40︒C .50︒D .60︒二、填空题13.如图,四边形OABC 是菱形,点B ,C 在以点O 为圆心的弧EF 上,且∠1=∠2,若菱形边OA=3,则扇形OEF 的面积为___________14.如图,在矩形ABCD 中,∠DBC=30º,DC=2,E 为AD 上一点,以点D 为圆心,以DE 为半径画弧,交BC 于点F ,若CF=CD ,则图中的阴影部分面积为______________.(结果保留π)15.如图,点P 为⊙O 外一点,PA ,PB 分别与⊙O 相切于点A ,B ,∠APB =90°.若⊙O 的半径为2,则图中阴影部分的面积为_____(结果保留π).16.如图,是由一个大圆和四个相同的小圆组成的图案,若大圆的半径为2,则阴影部分的面积为______.17.如图,菱形ABCD 中,已知2AB =,60DAB ∠=︒将它绕着点A 逆时针旋转得到菱形ADEF ,使AB 与AD 重合,则点C 运动的路线CE 的长为________.18.如图,从一块直径为2m 的圆形铁皮上画出一个圆心角为90的扇形.若随机在圆及其内部投针,则针孔扎在扇形(阴影部分)的概率为____.19.已知扇形的弧长为4π,半径为9,则此扇形的圆心角为_______度.20.如图,已知⊙O 的两条弦AC ,BD 相交于点E ,70A ∠=,50C ∠=,那么tan AEB ∠=___________.三、解答题21.在下列网格图中,每个小正方形的边长均为1个单位.Rt ABC 中,∠C =90°,AC =3,BC =4(1)试在图中作出ABC 绕A 顺时针方向旋转90°后的图形11AB C △;(2)求1BB 的长.22.如图,⊙O 是△ABC 的外接圆,AB 是⊙O 的直径,D 为⊙O 上一点,OD ⊥AC ,垂足为E ,连接BD .(1)求证:BD 平分∠ABC ;(2)若OE =3,AO =5,求AC 的长.23.如图,AB 是O 的弦,AC 是O 的直径,将AB 沿着AB 弦翻折.恰好经过圆心O .若O 的半径为6,求图中阴影部分的面积.24.如图,已知AB 是O 的直径,BC AB ,连接OC ,弦//AD OC ,直线CD 交BA 的延长线于点E .(1)求证:CD 是O 的切线; (2)若2DE BC =,O 的半径为2,求线段EA 的长.25.如图所示,AC 与O 相切于点C ,线段AO 交O 于点B .过点B 作//BD AC 交O 于点D ,连结,CD OC ,且OC 交DB 于点E .若30,53cm ∠=︒=CDB DB .(1)求COB ∠的大小和O 的半径长.(2)求由弦,CD BD 与弧BC 所围成的阴影部分的面积(结果保留π).26.如图,某零件的截面为弓形.(1)请用直尺和圆规作出该弓形的圆心.(2)若23AB =,弓形的高为1.①求弓形的半径②求AB 的长【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】利用特殊角的三角函数值求得∠D=30°,由点A 是劣弧BC 的中点,根据圆周角定理得到∠AOC=∠AOB=2∠D=60°,可对②进行判断;证得△OAC 、△OAB 都为等边三角形,根据等边三角形的性质和垂径定理可计算出BC ,可对①进行判断;利用AB=AC=OA=OC=OB 可对③进行判断;利用弧长公式,可对④进行判断.【详解】∵3tanD =, ∴∠D=30°,∵点A 是劣弧BC 的中点,∴OA ⊥BC ,∴∠AOC=∠AOB=2∠D=60°,∴sin AOB sin 60∠=︒=,所以②正确; 而OA=OC=OB=6,∴△OAC 、△OAB 都为等边三角形,∴BC26=⨯=①正确; ∵△OAC 、△OAB 都为等边三角形,∴AB=AC=OA=OC=OB ,∴四边形ABOC 是菱形,所以③正确;∵△OAC 、△OAB 都为等边三角形,∴∠COB=120°,∴劣弧BC 的长度为12064180ππ⨯=,所以④正确. 综上,正确的个数有4个,故选:A .【点睛】 本题考查了圆周角定理,弧长公式,菱形的判定和性质,解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.2.B解析:B【分析】连接CD ,根据圆周角定理,可以得到30CAD ∠=︒,在Rt ACD △中,利用锐角三角函数求出AC 的长即可.【详解】解:如图,连接CD ,∵AB BC =,30BAC ∠=︒,∴AB 和BC 所对的圆心角都是60︒,∵AD 是直径,∴CD 所对的圆心角也是60︒,∴30CAD ∠=︒,在Rt ACD △中,3cos308432AC AD =⋅︒=⨯=. 故选:B .【点睛】本题考查圆周角定理和锐角三角函数,解题的关键是掌握圆周角定理,以及利用锐角三角函数解直角三角形的方法. 3.A解析:A【分析】连接AD ,可证∠ODA=∠OAD=∠AOD=60°,根据弧中点,得出∠DAC=30°,△ADE 是直角三角形,用勾股定理求AE 即可.【详解】解:连接AD ,∵∠BOD =120°,AB 是⊙O 的直径,∴∠AOD =60°,∵OA=OD ,∴∠OAD =∠ODA =60°,∵点C 为弧BD 的中点,∴∠CAD =∠BAC =30°,∴∠AED =90°,∵DE =1,∴AD=2DE=2,AE 2222213AD DE -=-=故选:A .【点睛】本题考查了圆周角的性质、勾股定理,解题关键是通过连接弦构造直角三角形,并通过弧相等导出30°角.4.D解析:D【分析】首先根据题意画出图形,然后由圆周角定理与含30°角的直角三角形的性质,求得答案.【详解】解:如图,作直径BD,连接CD,则∠BCD=90°,∵△ABC是半径为2的圆内接三角形,BC=23∴BD=4,∴22,BD BC∴CD=1BD,2∴∠CBD=30°,∴∠A=∠D=60°,∴∠A′=180°-∠A=120°,∴∠A的度数为:60°或120°.故选:D.【点睛】此题考查了圆周角定理与含30°角的直角三角形的性质.此题难度适中,注意掌握数形结合思想的应用.5.D解析:D【分析】延长AO 交⊙O 于B ,连接AC ,证明△PAC ∽△PCB ,进而得到PC 2=PA•PB 即可求出PC 的长.【详解】解:如下图所示:连接OC ,延长AO 交⊙O 于B ,连接AC ,BC ,∵AB 为直径,∴∠1+∠2=90°,∵OC=OA ,∴∠1=∠3,∵PC 为圆的切线,∴∠3+∠4=90°,∴∠2=∠4,又∠P=∠P ,∴△PCA ∽△PBC , ∴=PC PA PB PC,即24(104)56=⨯=⨯+=PC PA PB , ∴214=PC故选:D .【点睛】本题考查了相似三角形的性质和判定,圆的切线及圆周角定理等,熟练掌握圆的性质及相似三角形的性质和判定是解决本题的关键.6.C解析:C【分析】根据圆周角定理得到∠ADB=90°,∠B=∠ACD=30°,再利用互余可计算出∠BAD 的度数,然后利用含30度的直角三角形三边的关系求出BD 、AB 的长即可.【详解】解:∵AB 是⊙O 的直径,∴∠ADB=90°,∵∠B=∠ACD=30°,∴∠BAD=90°-∠B=90°-30°=60°,故选项A 、B 不符合题意,在Rt △ADB 中,3,3故选项C 符合题意,选项D 不符合题意,故选:C .本题考查了圆周角定理以及含30°角的直角三角形的性质等知识;熟练掌握圆周角定理是解题的关键.7.B解析:B【分析】设出半径,作出△COB 底边BC 上的高,利用扇形的面积公式和三角形的面积公式表示出三个图形面积,比较即可求解.【详解】解:作OD ⊥BC 交BC 与点D ,∵∠COA =60°,∴∠COB =120°,则∠COD =60°.∴S 扇形AOC =22603606ππ=R R ; S 扇形BOC =221203603ππ=R R . 在三角形OCD 中,∠OCD =30°,∴OD =2R ,CD =3R ,BC =3R , ∴S △OBC =23R ,S 弓形=2233R R π-=2(433)π-R , 2(433)12π-R >26πR >234R , ∴S 2<S 1<S 3.故选:B .【点睛】此题考查扇形面积公式及弓形面积公式,解题的关键是算出三个图形的面积,首先利用扇形公式计算出第一个扇形的面积,再利用弓形等于扇形﹣三角形的关系求出弓形的面积,进行比较得出它们的面积关系.8.B解析:B【分析】如图,过点A 作AE ⊥BD 于点E ,连接AD ,可得AD=AB=10,根据垂径定理可得DE=BE ,得CE=BE-BC=DE-4,再根据勾股定理即可求得DE 的长,进而可得CD 的长.解:如图,过点A作AE⊥BD于点E,连接AD,∴AD=AB=10,根据垂径定理,得DE=BE,∴CE=BE-BC=DE-4,根据勾股定理,得AD2-DE2=AC2-CE2,102-DE2=82-(DE-4)2,解得DE=132,∴CD=DE+CE=2DE-4=9,故选:B.【点睛】本题考查了垂径定理,解决本题的关键是掌握垂径定理.9.D解析:D【分析】先证明∆BAE≅ ∆CAD,再证明∆ABG≅ ∆ACG,得AF是∠BAC的平分线,进而即可判断①;先证明BDC=∠CEB=90°,根据直角三角形的性质,即可判断②;根据角平分线的性质,得点G到∆ABC的三边距离都相等,结合“等积法”即可判断③;先证明B,C,D,E在以点F为圆心的圆上,进而即可判断④.【详解】∵AB=AC,∠BAE=∠CAD,AE=AD,∴∆BAE≅ ∆CAD,∴∠ABE=∠ACD,∵AB=AC,∴∠ABC=∠ACB,∴∠ABC-∠ABE=∠ACB-∠ACD,即:∠GBC=∠GCB,∴BG=CG,∴∆ABG≅ ∆ACG,∴∠BAG=∠CAG,即AF是∠BAC的平分线,∴BF CF=,故①正确;∵BE AC⊥,∴∠CEB=90°,由①可知:BD=CE ,∠ABC=∠ACB ,又∵BC=CB ,∴∆BDC ≅∆CEB ,∴∠BDC=∠CEB=90°,∵点F 是BC 的中点,∴CF DF =,故②正确;∵BE 平分ABC ∠,AF 平分∠BAC ,∴点G 是角平分线的交点,∴点G 到∆ABC 的三边距离都相等,且等于FG ,∵5AB AC ==,6BC =,AF ⊥BC ,∴AF=22AB BF -= 22534-=, ∴S ∆ABC =12(AB+AC+BC)∙FG=12×16FG=8FG ,S ∆ABC =12BC∙AF=12, ∴8FG=12,即:32FG =,故③正确; ∵BE AC ⊥,由①可知:CD ⊥AB , ∴B ,C ,D ,E 在以点F 为圆心的圆上,∴2DFE ABE ∠=∠,故④正确. 故选D .【点睛】本题主要考查等腰三角形的性质,全等三角形的判定和性质,直角三角形的性质,勾股定理,角平分线的性质,圆周角定理,熟练掌握“等腰三角形三线合一”,“直角三角形,斜边上的中线等于斜边的一半”,是解题的关键.10.C解析:C【分析】设做成圆锥之后的底面半径为r ,可得12012180r ππ⋅=,再利用勾股定理即可求解. 【详解】 解:设做成圆锥之后的底面半径为r ,则12012180r ππ⋅=, 解得13r =, ∴这个圆锥体容器的高为22122133h ⎛⎫=-= ⎪⎝⎭, 故选:C .【点睛】本题考查圆锥的计算,求出圆锥的底面半径是解题的关键.11.A解析:A【分析】连接OC ,根据圆周角定理计算即可;【详解】连接OC ,∵33BAC ∠=︒,∴266BOC AOC ∠=∠=︒,又∵180DOC AOC ∠+∠=︒,∴180114AOC BOC ∠=︒-∠=︒,∴1572D AOC ∠=∠=︒; 故答案选A .【点睛】本题主要考查了圆周角定理,准确计算是解题的关键.12.B解析:B【分析】根据圆周角定理即可得到结论.【详解】解:∵AD是△ABC的外接圆⊙O的直径,∴∠ABD=90°,∵∠BCA=50°,∴∠ADB=∠BCA=50°,∴BAD∠=90°-50°=40°故选:B.【点睛】本题考查了三角形的外接圆与外心,圆周角定理,熟练掌握圆周角定理是解题的关键.二、填空题13.3π【分析】算出扇形OEF的圆心角即可得到解答【详解】解:如图连结OB由题意可知:OC=OB=BC∴∠COB=60°∠COA=120°∵∠1=∠2∴∠FOE=∠COE+∠1=∠COE+∠2=∠COA解析:3π【分析】算出扇形OEF的圆心角,即可得到解答.【详解】解:如图,连结OB,由题意可知:OC=OB=BC,∴∠COB=60°,∠COA=120°,∵∠1=∠2,∴∠FOE=∠COE+∠1=∠COE+∠2=∠COA=120°,∴扇形OEF的面积=22 12012033360360OAπππ⨯⨯⨯⨯==,故答案为3π .【点睛】本题考查扇形与菱形的综合应用,熟练掌握菱形的性质及扇形面积的计算是解题关键.14.【分析】连接由矩形ABCD分别求解再求解从而可得答案【详解】解:连接矩形ABCD 故答案为:【点睛】本题考查的是矩形的性质等腰直角三角形的性质含的直角三角形的性质勾股定理的应用扇形的面积掌握以上知识是 解析:432.π--【分析】 连接DF ,由矩形ABCD ,30,2,DBC DC CF ∠=︒==分别求解,,,EDF DF BC ∠ 再求解43,,2DFC ABCD DEF S S Sπ===矩形扇形,从而可得答案.【详解】解:连接DF ,矩形ABCD ,30,2,DBC DC CF ∠=︒== 2290,4,45,2222,ADC BD DFC FDC DF ∴∠=︒=∠=∠=︒=+=224223,904545,BC EDF ∴=-=∠=︒-︒=︒(24522123243,,2223602DFC ABCD DEF S S S ππ⨯∴=====⨯⨯=矩形扇形, 432.S π∴=-阴影故答案为:32.π-【点睛】本题考查的是矩形的性质,等腰直角三角形的性质,含30的直角三角形的性质,勾股定理的应用,扇形的面积,掌握以上知识是解题的关键.15.4-π【分析】连接OAOB 由S 阴影=S 正方形OBPA-S 扇形AOB 则可求得结果【详解】解:连接OAOB ∵PAPB 分别与⊙O 相切于点AB ∴OA ⊥APOB ⊥PBPA=PB ∴∠OAP=∠OBP=90°=∠解析:4-π【分析】连接OA ,OB ,由S 阴影=S 正方形OBPA -S 扇形AOB 则可求得结果.【详解】解:连接OA ,OB ,∵PA ,PB 分别与⊙O 相切于点A ,B ,∴OA ⊥AP ,OB ⊥PB ,PA=PB ,∴∠OAP=∠OBP=90°=∠BPA ,∴四边形OBPA 是正方形,∴∠AOB=90°,∴阴影部分的面积=S 正方形OBPA -S 扇形AOB 则=22-904360π⨯⨯=4-π. 故答案为:4-π.【点睛】此题考查了切线长定理,正方形的判定与性质,扇形面积公式等知识.解题关键是连接半径,构造正方形,把阴影部分面积转化为正方形面积与扇形面积差.16.【分析】如图由圆的对称性及割补法可得阴影部分的面积为大圆的面积减去正方形的面积再由勾股定理可得:从而可得答案【详解】解:如图由圆的对称性及割补法可得阴影部分的面积为大圆的面积减去正方形的面积大圆的半 解析:48π-【分析】如图,由圆的对称性及割补法可得阴影部分的面积为大圆的面积减去正方形的面积,再由勾股定理可得:28,AC =从而可得答案.【详解】解:如图,由圆的对称性及割补法可得阴影部分的面积为大圆的面积减去正方形的面积,大圆的半径为2,90,,ACB AC BC ∠=︒=∴ 4,AB =2216,AC BC +=28,AC ∴=22248.S AC ππ∴=⨯-=-故答案为:48.π-【点睛】本题考查的是阴影部分面积的求解,勾股定理的应用,圆的对称性与正方形的性质,扇形面积与弓形面积的理解,正多边形与圆,掌握以上知识是解题的关键.17.【分析】连接ACBD 交于点O 由菱形的性质得出AC 的长由旋转的性质∠EAC=60゜再根据弧长公式求解即可【详解】解:连接ACBD 交于点O 如图∵四边形ABCD 是菱形∴AC ⊥BDOA=OC ∠BAC=∠DA 解析:233π 【分析】连接AC ,BD 交于点O ,由菱形的性质得出AC 的长,由旋转的性质∠EAC=60゜,再根据弧长公式求解即可.【详解】解:连接AC ,BD 交于点O ,如图,∵四边形ABCD 是菱形 ∴AC ⊥BD ,OA=OC ,∠BAC=12∠DAB=30゜ ∴ 112OB AB == 由勾股定理得,3OA =∴23AC =连接AE , 当AB 与AD 重合时,旋转了60゜,则∠EAC=60゜ ∴6023231803CE π== 23 【点睛】此题主要考查了旋转的性质、菱形的性质以及求弧长,运用菱形的性质求出AC 是解答此题的关键.18.【分析】连接AC 根据圆周角定理得出AC 为圆的直径解直角三角形求出AB 求出扇形面积和面积两者的面积比即是针孔扎在扇形(阴影部分)的概率【详解】解:连接AC ∵从一块直径为2m 的圆形铁皮上剪出一个圆心角为 解析:12【分析】连接AC ,根据圆周角定理得出AC 为圆的直径,解直角三角形求出AB ,求出扇形面积和O 面积,两者的面积比,即是针孔扎在扇形(阴影部分)的概率.【详解】解:连接AC ,∵从一块直径为2m 的圆形铁皮上剪出一个圆心角为90︒的扇形,即∠ABC=90︒, ∴AC 为直径,即AC=2m ,AB=BC (扇形的半径相等),∵AB 2+BC 2=22, ∴2m ,∴S 阴影部分=29023602ππ︒⨯=︒(m 2), 则:P 针孔扎在扇形(阴影部分)=212==2OS S OA =阴影部分ππ故答案为:12. 【点睛】 本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.19.80【分析】设此扇形的圆心角为x°代入弧长公式计算得到答案【详解】解:设此扇形的圆心角为x°由题意得解得x=80故答案为:80【点睛】本题考查的是弧长的计算掌握弧长的公式是解题的关键解析:80【分析】设此扇形的圆心角为x°,代入弧长公式计算,得到答案.【详解】解:设此扇形的圆心角为x°,由题意得,94180x ππ=, 解得,x=80,故答案为:80.【点睛】 本题考查的是弧长的计算,掌握弧长的公式180n r l π=是解题的关键. 20.【分析】求出∠AEB 的度数再求三角函数值即可【详解】解:∵∠B=∠C=50°∠A=70°∴∠AEB=180°-∠A-∠B=60°故答案为:【点睛】本题考查了圆周角的性质三角形内角和特殊角的三角函数值解析:3【分析】求出∠AEB 的度数,再求三角函数值即可.【详解】解:∵∠B=∠C=50°,∠A=70°,∴∠AEB=180°-∠A-∠B=60°,tan tan 603AEB ∠=︒=,故答案为:3.【点睛】本题考查了圆周角的性质,三角形内角和,特殊角的三角函数值,解题关键是灵活运用圆中角的关系,把已知条件集中在一个三角形中求角.三、解答题21.(1)见解析;(2)52π. 【分析】(1)根据△ABC 绕A 顺时针方向旋转90°,即可得到△AB 1C 1;(2)根据弧长计算公式,即可得出点B 运动路径的长.【详解】解:(1)如图所示,△AB 1C 1即为所求;(2)Rt ABC 中,∠C =90°,AC =3,BC =4∴AB 5==又∠BAB 1=90°,∴点B 的运动路径的长为:90551802ππ⨯=. 【点睛】本题考查了利用旋转变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键. 22.(1)见解析;(2)8.【分析】(1)先根据垂径定理得出AD =CD ,再利用圆周角定理即可得出结论;(2)先根据垂径定理得出AE =12AC ,在Rt △AOE 中,利用勾股定理即可求出AE 的长,进而得出结论.【详解】(1)证明:∵OD ⊥AC ,∴AD =CD ,∴∠ABD =∠CBD ,即BD 平分∠ABC ;(2)解:∵OD ⊥AC ,∴AE =12AC ,∠OEA =90°, ∵OE =3,OA =5,∴在Rt △AOE 中,AE 2222534OE ,∴AC =2AE =8.【点睛】 本题考查了垂径定理、圆周角性质等知识,熟练掌握垂径定理与圆周角的相关性质是解答此题的关键.23【分析】根据翻折的意义,垂径定理的性质,直径上的圆周角是直角,扇形的面积等,把阴影的面积等量转化为三角形OBC 的面积求解即可.【详解】解:如图,连接OB ,BC .过点O 作OD ⊥AB ,垂足为E ,连接BD ,根据题意,得OE=ED=12OD=12OB , ∴∠ABO=∠OAB=30°,∵AC 是圆的直径,∴∠ABC=90°,∠ACB=60°,∴△OBC 是等边三角形,△OBD 是等边三角形,∴弓形OnB 的面积=弓形BmC 的面积,∴=S S △OBC 阴影=34×26=93.【点睛】本题考查了垂径定理,直径上的圆周角,阴影部分的面积,熟练掌握圆的基本性质,把阴影面积合理转型为三角形的面积是解题的关键.24.(1)见解析;(2)22AE =.【分析】(1)连接OD ,通过证明△COD ≌△COB 得到90CDO CBO ∠=∠=︒即可得到结论; (2)根据全等三角形的性质,在结合平行线分线段成比例的性质,即可求解【详解】(1)如图,连接OD .∵//AD OC ,∴DAO COB ∠=∠,ADO COD ∠=∠.又∵OA OD =,∴DAO ADO ∠=∠,∴COD COB ∠=∠.∵OD OB =,OC OC =,∴在COD △和COB △中OD OB COD COB OC OC =⎧⎪∠=∠⎨⎪=⎩∴()SAS COD COB ≌△△, ∴90CDO CBO ∠=∠=︒.又∵点D 在O 的切线. ∴CD 是O 的切线.(2)∵COD COB ≌△△,∴CD CB =. ∵DE =, ∴ED =.∵//AD OC , ∴DE AE CE OE=. ∵O 的半径为2,∴2AE AE =+, ∴AE =【点睛】本题考查了圆切线的判定,以及平行线分线段成比例的性质,熟练掌握圆切线的判定定理是解题关键.25.(1)60COB ∠=︒,O 的半径长为5cm ;(2)()225cm 6π 【分析】(1)根据切线的性质定理和平行线的性质定理得到OC ⊥BD ,根据垂径定理得到BE 的长,再根据圆周角定理发现∠BOE=60°,从而根据锐角三角函数求得圆的半径;(2)结合(1)中的有关结论证明△DCE ≌△BOE ,则它们的面积相等,故阴影部分的面积就是扇形OBC 的面积.【详解】解:(1)∵AC 与⊙O 相切于点C ,∴∠ACO=90°,∵BD ∥AC ,∴∠BEO=∠ACO=90°,∴DE=EB=12(cm ) ∵∠D=30°,∴∠O=2∠D=60°,在Rt △BEO 中,sin60°=BE OB,∴22OB=, ∴OB=5,即⊙O 的半径长为5cm .(2)由(1)可知,∠O=60°,∠BEO=90°,∴∠EBO=∠D=30°,又∵∠CED=∠BEO ,BE=ED ,∴△CDE ≌△OBE ,∴S 阴=S 扇OBC =60360π•52=256π(cm 2), 答:阴影部分的面积为256πcm 2.【点睛】本题考查扇形面积的计算,全等三角形的判定与性质,圆周角定理,切线的性质,解直角三角形,掌握扇形面积的计算,全等三角形的判定与性质,圆周角定理,切线的性质,解直角三角形是解题关键.26.(1)见解析;(2)①2;②4=3AB π的长 【分析】(1)在弧AB 上取一点C ,连接AC ,分别作出AC 、AB 的垂直平分线即可;(2)①根据垂径定理可得3AE BE ==,再根据勾股定理求解即可;②根据1cos 2OE AOE OA ∠==,求出圆心角,根据公式计算即可; 【详解】 (1)在弧AB 上取一点C ,连接AC ,分别作出AC 、AB 的垂直平分线,如图,点O 即为所求.(2)①如图,过点O 作OE AB ⊥交圆O 与点D ,∵23AB = ∴3AE BE ==设弓形的半径为r ,在Rt △AOE 中,222OA AE OE =+, 即()22231r r =+-, 解得:2r;②∵2OA =,1OE =, ∴1cos 2OE AOE OA ∠==, ∴60AOE =︒∠,∴2120AOB AOE ∠=∠=︒, ∴120241801803n rl πππ⨯⨯===; 【点睛】本题主要考查了尺规作图垂直平分线、垂径定理、锐角三角函数、弧长的计算,准确计算是解题的关键.。
新版北师大初中数学九(下)第三章圆分节练习第1节圆01、【基础题】已知⊙O的面积为25 . (1)若PO=,则点P在_____;(2)若PO=4,则点P 在_____;(3)若PO=_____,则点P在⊙O上.01.1【综合Ⅰ】如左下图,△ABC中,∠ACB=90°,AC=2 cm,BC=4 cm,CM是AB边上的中线,以点C为圆心,5cm为半径作圆,则A、B、C、M四点在圆外的有_______,在圆上的有_______,在圆内的有_______.01.2、【综合Ⅲ】如右上图,菱形ABCD的对角线AC和BD相交于点O,点E、F、G、H分别为AB、BC、CD、DA的中点,那么E、F、G、H是否在同一个圆上?说明理由.01.3、【综合Ⅲ】若⊙A的半径为5,圆心A的坐标是(3,4),点P的坐标是(5,8),则点P的位置是()A、在⊙A内B、在⊙A上C、在⊙A外D、不能确定02、【综合Ⅰ】设AB=3 cm,作图说明满足下列要求的图形:(1)到点A和点B的距离都等于2cm的所有点组成的图形;(2)到点A和点B的距离都小于2 cm的所有点组成的图形;(3)到点A的距离小于2 cm,且到点B的距离大于2 cm的所有点组成的图形.03、【提高】海军部队在某灯塔A的周围进行爆破作业,A的周围3 km的水域为危险水域,有一渔船误入离灯塔A 有2 km远的B处,为了尽快驶离危险区域,该船应往哪个方向航行?请给予证明.03.1【提高】已知点P不在⊙O上,且点P到⊙O上的点的最小距离是5,最大距离是7,求⊙O 的半径.第2节圆的对称性04、【基础题】如左下图,在⊙O中,⌒AC =⌒BD ,∠1=30°,那么∠2=_____.04.1、【基础题】如右上图,在⊙O中,弧AB等于弧AC,∠A=30°,则∠B=_____.05、【综合Ⅰ】如左下图,点A、B、C、D是⊙O上的四点,AB=DC,那么△ABC与△DCB全等吗?为什么?05.1、【基础题】如右上图,在⊙O中,AD=BC,试说明AB与CD相等.05.2【基础】如左下图,AB、DE是⊙O的直径,C是⊙O上的一点,且⌒AD=⌒CE,那么BE和CE的大小有什么关系?为什么?05.3【综合Ⅰ】如右上图,AB是⊙O的直径,OD∥AC,那么⌒CD与⌒BD的大小有什么关系?为什么?06、【综合Ⅰ】如左下图,A、B是⊙O上两点,∠AOB=120°,C是⌒AB的中点,试确定四边形OACB的形状.06.1、【综合Ⅱ】如图,AB是⊙O的直径,BC、CD、DA是⊙O的弦,且BC=CD=DA,则∠BCD=______.* 第3节垂径定理07、【基础题】如左下图,已知⊙O中,OC⊥弦AB于C,AB=8,OC=3,则⊙O的半径等于______.07.1、【基础题】如右上图,已知⊙O 的半径为30 mm ,弦AB =36 mm ,求点O 到AB 的距离及∠OAB 的余弦值.08、【综合Ⅱ】如左下图,有一圆弧形拱桥,拱的跨度AB=16 m ,拱高CD=4 m ,那么拱形的半径是____m.08.1、【综合Ⅱ】“圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问:径几何?”转化为数学语言就是:如右上图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为E ,CE =1寸,AB =10寸,求直径CD 的长.09、【综合Ⅰ】如右图,在⊙O 中,AB 、CD 是两条弦,OE ⊥AB ,OF ⊥CD ,垂足分别为E 、F.(1)如果∠AOB =∠COD ,那么OE 与OF 的大小有什么关系?为什么?(2)如果OE =OF ,那么AB 与CD 的大小有什么关系?为什么?10、【综合Ⅰ】 已知⊙O 的半径为5 cm ,弦AB ∥弦CD ,AB =6 cm ,CD =8 cm ,试求AB 与CD 间的距离.10.1、【综合Ⅱ】 如果圆的两条弦互相平行,那么这两条弦所夹的弧相等吗?为什么?11、【综合Ⅲ】如右图,在⊙O 中,AB 、AC 为互相垂直且相等的两条弦,OD ⊥AB ,OE ⊥AC ,垂足分别为D 、E ,若AC =2 cm ,则⊙O 的半径为______ cm .第4节 圆周角和圆心角的关系(包括圆内接四边形)12、【基础题】如左下图,在⊙O 中,已知∠BOC =100°,则∠BAC 的度数是_____°D C BADC B AO12.1、【基础题】如右上图,在⊙O 中,∠BAC =25°,则∠BOC =_____°12.2、【综合Ⅰ】 如图,∠A 是⊙O 的圆周角,∠A =40°,求∠OBC 的度数.13、【基础题】如图,A 、B 、C 、D 是⊙O 上的四点,且∠BCD =100°,求∠BOD (弧BCD 所对的圆心角)和∠BAD 的大小.13.1、【基础题】左下图,A 、B 、C 三点都在⊙O 上,点D 是AB 延长线上一点,∠AOC=140°, ∠CBD 的度数是_____.13.2【基础题】如右上图,四边形ABCD 是圆内接四边形,E 是BC 延长线上一点,若∠BAD =105°,则∠DCE 是_____°.13.3【综合Ⅰ】在圆内接四边形ABCD 中,对角∠A 与∠C 的度数之比是4:5,求∠C 的度数.13.4、【综合Ⅱ】如左下图,圆内接四边形ABCD 两组对边的延长线分别相交于点E 、F ,且∠E =40°,∠F =60°,求∠A 的度数.14、【基础题】如右上图,⊙O 的直径AB =10 cm ,C 为⊙O 上的一点,∠B =30°,求AC 的长.14.1、【基础题】如左下图,AB 是⊙O 的直径,∠C =15°,求∠BAD 的度数.14.2、【综合Ⅰ】如右上图,⊙O 的弦AB =16,点C 在⊙O 上,且sin C =54,求⊙O 的半径的长.14.3、【中考题】A 、B 是⊙O 上的两个定点,P 是⊙O 上的动点(P 不与A 、B 重合),我们称∠APB 是⊙O 上关于点A 、B 的滑动角.(1)若AB 是⊙O 的直径,则∠APB 是多少度?(2)若⊙O 的半径是1,AB =2,则∠APB 是多少度?15、【基础题】平行四边形的四个顶点在同一圆上,则该平行四边形一定是( )A 、正方形B 、菱形C 、矩形D 、等腰梯形16、【提高题】如右图,AB 是半圆O 的直径,弦AD 、BC 相交于点P ,且CD 、AB 的长是一元二次方程01272=+-x x 的两根,求tan ∠DPB.第5节 确定圆的条件17、【基础题】分别作出下面三个三角形的外接圆,并指出它们外心的位置有什么特点17.1、【基础题】如左下图,MN所在的直线垂直平分线段AB,利用这样的工具,最少使用多少次,就可以找到圆形工件的圆心?为什么?17.2、【基础题】如右上图,A、B、C三点表示三个工厂,要建立一个供水站,使它到这三个工厂的距离相等,求作供水站的位置(尺规作图,不写作法,保留作图痕迹).18、【综合Ⅰ】在△ABC中,AC=10,BC=8,AB=6,求△ABC外接圆的半径18.1、【综合Ⅰ】等边三角形的边长为a,求这个三角形外接圆的面积.第6节直线和圆的位置关系19、【基础题】如右图,已知Rt△ABC的斜边AB=8 cm,AC=4 cm.(1)以点C为圆心作圆,当半径为多长时,AB与⊙C相切?(2)以点C为圆心,分别以2 cm和4 cm的长为半径作两个圆,这两个圆与AB分别有怎样的位置关系?19.1【基础题】直线l与半径为r的⊙O相交,且点O到直线l的距离为5,求r的取值范围.19.2、【综合Ⅰ】在Rt△ABC中,∠C=90°,∠B=30°,O是AB上一点,OA=m,⊙O的半径为r,当r与m满足怎样的关系时,(1)AC与⊙O相交?(2)AC与⊙O相切?(3)AC与⊙O相离?20、【基础题】如左下图,AB是⊙O的直径,点D在AB的延长线上,过点D作⊙O的切线,切点为C,若∠A=25°,则∠D=______.20.1【基础题】如右上图,PA切⊙O于点A,该圆的半径为3,PO=5,则PA的长等于_____.20.2、【综合Ⅰ】如左下图,P A、PB分别与⊙O相切于点A、B,∠P=70°,则∠C=( )°°°°20.3、【综合Ⅱ】如右上图,已知AB是⊙O的直径,AC是弦,CD切⊙O于点C,交AB的延长线于点D,∠ACD=120°,BD=10.(1)求证:CA=CD;(2)求⊙O的半径.20.4【综合Ⅱ】如右图,AB是⊙O的直径,BC是⊙O的切线,切点为点B,点D是⊙O上的一点,且AD∥OC,求证:AD·BC=OB·BD.21、【中考题,2014陕西23题】(本题满分8分)如右下图,⊙O的半径为4,B是⊙⊙O的切线BD,切点为D,延长BO交⊙O于点A,过点A作切线BD的垂线,垂足为C.(1) 求证:AD平分∠BAC(2) 求AC的长22、【基础题】如左下图,已知直线AB经过⊙O上的点C,并且OA=OB,CA=CB,那么直线AB是⊙O的切线吗?为什么?22.1、【中考题,2013年孝感市23题,10分】如右上图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=,求⊙O的直径.23、【基础题】如图,已知锐角三角形、直角三角形和钝角三角形,分别作出它们的内切圆. 请问,三角形的内心是否都在三角形的内部?23.1、【基础题】等边三角形的边长为a,求这个三角形内切圆的面积.23.2、【综合Ⅰ】已知在Rt△ABC中,∠C=90°,AC=6,BC=8,则△ABC的内切圆半径r =__ _ .24、【综合Ⅰ】如左下图,在△ABC中,∠A=68°,点I是内心,求∠I的度数.24.1、【综合Ⅰ】如右上图,在四边形ABCD中,∠B=60°,∠DCB=80°,∠D=100°,若P、Q两点分别为三角形ABC和三角形ACD的内心,那么∠PAQ的度数是多少?24.2、【综合Ⅲ】在Rt△ABC中,∠C=90°,AC=8 cm,BC=6 cm,求其内心和外心之间的距离.*第7节切线长定理25、【基础题】如图,PA、PB是⊙O的两条切线,A、B是切点. 求证:PA=PB25.1、【基础题】已知⊙O的半径为3 cm,点P和圆心O的距离为6 cm,过点P画⊙O的两条切线,求这两条切线的切线长.25.2、【综合Ⅰ】如左下图,PA和PB是⊙O的两条切线,A、B是切点,C是弧AB上任意一点,过点C画⊙O的切线,分别交PA和PB于D、E两点. 已知PA=PB=5 cm,求△PDE的周长.25.3、【综合Ⅲ】如右上图,PA和PB是⊙O的两条切线,A、B为切点,∠P=40°,点D在AB上,点E和点F分别在PB和PA上,且AD=BE,BD=AF,求∠EDF的度数.26、【综合Ⅰ】如左下图,在Rt△ABC中,∠C=90°,AC=10,BC=24,⊙O是△ABC的内切圆,切点分别为D、E、F,求⊙O的半径. (利用切线长定理来解题)26.1、【综合Ⅲ】如右上图,⊙O是△ABC的内切圆,D、E、F为切点,且AB=9 cm,BC=14 cm,CA=13 cm,求AF、BD、CE的长.26.2、【综合Ⅲ】如图,在四边形ABCD中,AB=AD=6 cm,CB=CD=8 cm,且∠B=90°,该四边形存在内切圆吗?如果存在,请计算内切圆的半径.第8节圆内接正多边形27、【基础题】如图,在圆内接正六边形ABCDEF中,半径OC=4,OG⊥BC,垂足为G,求这个正六边形的中心角、边长和边心距.27.1、【综合Ⅱ】有一边长为4的正n边形,它的一个内角为120°,则其外接圆的半径为______.27.2、【综合Ⅱ】如右图,把边长为6的正三角形剪去三个三角形得到一个正六边形DFHKGE,求这个正六边形的面积.27.3、【基础题】请求出半径为6的圆内接正三角形的边长和边心距.28、【基础题】已知正方形的边长是a,其内切圆的半径为r,外接圆的半径为R,则r∶R∶a=______.28.1、【基础题】请利用尺规作一个已知圆的内接正四边形.28.2、【综合Ⅰ】请利用尺规作一个已知圆的内接正八边形.29、【综合Ⅲ】如图,点M、N分别是⊙O的内接正三角形ABC、内接正方形ABCD、内接正五边形ABCDE、……、内接正n边形的边AB、BC上的点,且BM=CN,连接OM、ON. (1)求图1中的∠MON的度数;(2)在图2中,∠MON的大小是______,在图3中,∠MON的大小是______;(3)根据图n,请说明∠MON的度数与正n边形的边数n之间的关系(直接写出答案).第9节 弧长及扇形的面积(含圆锥侧面积题目)30、【中考题,2014年云南省第7题3分】已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为( )A 、B .2πC . 3πD . 12π30.1、【中考题,2014四川自贡第8题4分】 一个扇形的半径为8cm ,弧长为cm ,则扇形的圆心角为( )30.2、【基础题】已知圆上一段弧长为4 cm ,它所对的圆心角为100°,则该圆的半径是_____.31、【中考题,2014成都,3分】在圆心角为120°的扇形AOB 中,半径OA =6 cm ,则扇形AOB 的面积是________2cm .31.1、【中考题,2014山东东营第5题3分】如左下图,已知扇形的圆心角为60°,半径为3,则图中弓形(阴影)面积是_________.31.2、【中考题,2014·浙江金华第10题4分】如右上图,一张圆心角为45°的扇形纸板和圆形纸板按如图方式各剪得一个正方形,两个正方形的边长都为1,则扇形纸板和圆形纸板的面积比是 ( )A .5:4B .5:2C .5:2D .5:232、【中考题,2014杭州第2题3分】左下图,已知一个圆锥体的三视图如图所示,则这个圆锥为______2cm . 的侧面积33、【综合Ⅲ】如右上图,⊙A与⊙B外切于⊙O的圆心O,⊙O的半径为1,则阴影部分的面积是________.33.1、【中考题,2014山东泰安第19题3分】如图,半径为2cm,圆心角为90°的扇形OAB中,cm.分别以OA、OB为直径作半圆,则图中阴影部分的面积为________233.2、【中考题,2014福建泉州第17题4分】如右图,有一直径是米的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC,则:(1)AB的长为_____ 米;(2)用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为______ 米.新版北师大初中数学九(下)第三章圆分节练习答案第1节答案01、【答案】(1)圆外;(2)圆内;(3)501.1、【答案】在圆外的有点B,在圆上的有点M,在圆内的有点A和点C.【答案】E、F、G、H四个点共圆.证明:连接OE、OF、OG、OH∴AB=BC=CD=DA,DB⊥AC∵E、F、G、H分别是各边的中点∴1111,,,2222OE AB OF BC OG CD OH AD====(直角三角形斜边上的中线等于斜边的一半)∴OE OF OG OH===∴E、F、G、H四个点都在以O为圆心、OE长为半径的圆上.【答案】选A02、【答案】(1)如图1,所求图形即P、Q两点;(2)如图2,所求图形为阴影部分(不包括阴影的边界);(3)如图3,所求图形为阴影部分(不包括阴影的边界).03、【答案】往射线AB方向航行【证明】如图,设航线AB交⊙A于点C,在⊙A上任取一点D(不包括C关于A的对称点)连接AD、BD;在△ABD中,∵AB+BD>AD,AD=AC=AB+BC,∴AB+BD>AB+BC,∴BD>BC.答:应沿AB的方向航行.03.1【答案】当点P在圆外时,半径是1;当点P在圆内时,半径是6.第2节答案04、【答案】30°【答案】75°05、【答案】全等,可先证AC=DB.、【提示】证弧CD和弧AB相等.05.2【答案】相等.【提示】先证弧BE和弧AD相等.05.3、【答案】相等【提示】连接OC06、【答案】四边形OACB 是菱形【证明】连接OC∵C 是弧AB 的中点,∠AOB=120°∴∠AOC=60°∴△AOC 是等边三角形∴OA=AC同理可得BC=OB∴OA=OB=BC=AC∴四边形OACB 是菱形、【答案】 120°【提示】 连接OC 、OD ,可证△BOC 和△COD 都是等边三角形.* 第3节 答案07、【答案】半径等于5.【提示】如右图,利用垂径定理和勾股定理来算半径.07.1、【答案】 点O 到AB 的距离是24 mm ,∠OAB 的余弦值是0.608、【答案】 10 m.【提示】 在如图的圆弧形中,CD 是拱高,根据圆的对称性可知CD 垂直平分AB ,则CD 所在直线过圆心,延长CD ,作圆心O ,并且连接OB.设拱形的半径OB 为r ,则OD 为(r -4),根据勾股定理可得24)-(r +28=2r ,解得r =10 m. 【总结】求圆的直径或半径常常过圆心作弦的垂线或连接圆心和弦的端点构造直角三角形,再根据勾股定理来求出半径. 有些题目不能直接求出半径则需列方程来解决.08.1【答案】 直径CD 是26寸.【解析】09、【提示】(1)用HL证明Rt△AOE与Rt△COF全等;(2)用HL证明Rt△AOE与Rt△COF全等.10、【答案】AB与CD间的距离为7 cm或1 cm.【提示】如图,若AB和CD在圆心两侧,则可求出OE=3,OF=4,则AB、CD距离是7 cm;若AB和CD在圆心同侧,则距离是1 cm.、【答案】相等.【解析】如图示,过圆心O作垂直于弦的直径EF,由垂径定理得:弧AF=弧BF,弧CF=弧DF,用等量减等量差相等原理,弧AF-弧CF=弧BF-弧DF,即弧AC=弧BD,故结论成立.符合条件的图形有三种情况:(1)圆心在平行弦外,(2)在其中一条线弦上,(3)在平行弦内,但理由相同.11、【答案】2【解析】第4节答案12、【答案】∠BAC的度数是50°.12.1、【答案】∠BOC=50°12.2、【答案】∠OBC=50°13、【答案】∠BOD=160°,∠BAD=80°13.1【答案】∠CBD 的度数是70°13.2【答案】∠DCE=105°13.3【答案】∠C=100°【答案】∠A=40°14、【答案】AC=5 cm、【答案】∠BAD的度数是75°14.2【答案】半径的长为10.【提示】连接AO,延长AO交⊙O于D,连接BD. 、【答案与解析】15、【答案】选C716、【答案】tan∠DPB=3【解析】第5节 答案17、【答案】 锐角三角形的外心在内部;直角三角形的外心在斜边中点;钝角三角形的外心在外部.、【答案】 最少使用两次、【提示】连接AB 、AC ,分别作线段AB 和AC 的垂直平分线,两条垂直平分线的交点即为供水站的位置.18、【答案】 △ABC 外接圆的半径是5.、【答案】 312a第6节 答案19、【答案】 (1)当半径长为32 cm 时,AB 与⊙C 相切.(2)当半径为2 cm 时,⊙C 与AB 相离;当半径为4 cm 时,⊙C 与AB 相交.19.1【答案】 5>r19.2【答案】 (1)m r 23> (2)m r 23= (3)m r 23<20、【答案】 40°20.1【答案】 PA =4、【答案】 选B20.3【答案】 (1)提示:证∠A =∠D =30°(2)半径是10.20.4【提示】 证明Rt △CBO ∽ Rt △BDA21、【答案】证明:(1)连接OD∵BD 是⊙O 的切线,D 为切点∴BC OD ⊥∵BD AC ⊥∴OD ∥AC∴∠ODA=∠CAD又∵OD=OA∴∠BAD=∠CAD∴AD 平分∠ABC(2)解:∵OD ∥AC , ∴ΔBOD ∽ΔBAC , ∴=, ∴=, ∴ AC =320 22、【提示】 连接OC ,证明OC ⊥AB22.1、【答案与解析】(1)证明:连接OA ,∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC ,∴∠OAC=∠OCA=30°,又∵AP=AC ,∴∠P=∠ACP=30°,∴∠OAP=∠AOC ﹣∠P=90°,∴OA ⊥PA , ∴PA 是⊙O 的切线.(2)在Rt △OAP 中,∵∠P=30°,∴PO=2OA=OD+PD ,又∵OA=OD ,∴PD=OA ,∵,∴. ∴⊙O 的直径为.23、【答案】 都在内部23.1、【答案】 π1212a、【答案】 r =2.24、【答案】 ∠I =124°24.1、【答案】∠PAQ的度数是60°、【答案】5cm【解析】*第7节答案25、【解析】3cm25.1、【答案】325.2、【答案】△PDE的周长是10 cm.25.3、【答案】∠EDF=70°26、【答案】⊙O的半径是426.1、【答案】AF=4 cm,BD=5 cm,CE=9 cm.【提示】设AE=AF=x,BF=BD=y,CE=CD=z2426.2、【答案】存在内切圆,内切圆半径是7第8节答案2.27、【答案】中心角是60°,边长是4,边心距是327.1、【答案】外接圆的半径为4627.2、【答案】正六边形的面积是36,边心距是3.27.3、【答案】边长是328、【答案】1∶2∶228.1、【提示】用直尺和圆规作两条互相垂直的直径,在圆周上得到四个点,依次连接这四个点,就得到圆的内接正四边形.28.2、【提示】如图,先作出两条互相垂直的直径,再作出两条直径所形成的直角的角平分线,即可在圆周上得到圆内接正八边形的顶点第9节答案30、【答案】根据弧长公式:l==3π,故选C.30.1、【答案】选B30.2、【答案】7.2 cm.31、【答案】12π2cm31.1、【答案】4332-π【答案】选A【解析】32、【答案】 π15 2cm33、【答案】33π-【解析】33.1、【答案】 (﹣1) cm 2【解析】分析:假设出扇形半径,再表示出半圆面积,以及扇形面积,进而即可表示出两部分P ,Q 面积相等.连接AB ,OD ,根据两半圆的直径相等可知∠AOD =∠BOD =45°,故可得出绿色部分的面积=S △AOD ,利用阴影部分Q 的面积为:S 扇形AOB ﹣S 半圆﹣S 绿色,故可得出结论. 解:∵扇形OAB 的圆心角为90°,假设扇形半径为2,∴扇形面积为:=π(cm 2),半圆面积为:×π×12=(cm 2),∴S Q +S M =S M +S P =(cm 2), ∴S Q =S P ,连接AB ,OD ,∵两半圆的直径相等,∴∠AOD =∠BOD =45°,∴S 绿色=S △AOD =×2×1=1(cm 2),∴阴影部分Q 的面积为:S 扇形AOB ﹣S 半圆﹣S 绿色=π﹣﹣1=﹣1(cm 2).33.2、【答案】 (1)1 米; (2)41 米. 【解析】分析: (1)根据圆周角定理由∠BAC =90°得BC 为⊙O 的直径,即BC =,根据等腰直角三角形的性质得AB=1;(2)由于圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,则2πr=,然后解方程即可.解答:解:(1)∵∠BAC=90°,∴BC为⊙O的直径,即BC=,∴AB=BC=1;(2)设所得圆锥的底面圆的半径为r,根据题意得2πr=,解得r=.故答案为1,.。
北师大版九年级数学下册第三章 圆重点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,AB 为O 的直径,C 、D 为O 上两点,30CDB ∠=︒,3BC =,则AB 的长度为( )A .6B .3C .9D .122、如图,已知O 中,50AOB ∠=︒,则圆周角ACB ∠的度数是( )A .50°B .25°C .100°D .30°3、如图,正六边形ABCDEF 的边长为6,以顶点A 为圆心,AB 的长为半径画圆,则图中阴影部分图形的周长为( )A.2πB.4πC.2π+12D.4π+124、如图,等边△ABC内接于⊙O,D是BC上任一点(不与B、C重合),连接BD、CD,AD交BC于E,CF切⊙O于点C,AF⊥CF交⊙O于点G.下列结论:①∠ADC=60°;②DB2=DE•DA;③若AD=2,则四边形ABDC CF=83.正确的个数为()A.1个B.2个C.3个D.4个5、如图,FA、FB分别与⊙O相切于A、B两点,点C为劣弧AB上一点,过点C的切线分别交FA、FB 于D、E两点,若∠F=60°,△FDE的周长为12,则⊙O的半径长为()AB.2 C.D.3深度为()A.1cm B.2cm C.3cm D.4cm7、下列说法正确的是()A.弧长相等的弧是等弧B.直径是最长的弦C.三点确定一个圆D.相等的圆心角所对的弦相等8、如图,点A,B,C均在⊙O上,连接OA,OB,AC,BC,如果OA⊥OB,那么∠C的度数为()A.22.5°B.45°C.90°D.67.5°9、如图,已知AB是⊙O的直径,CD是弦,若∠BCD=36°,则∠ABD等于()A.54°B.56°C.64°D.66°10、已知⊙O的半径为5,若点P在⊙O内,则OP的长可以是()A.4 B.5 C.6 D.7第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知⊙O的直径为6cm,且点P在⊙O上,则线段PO=_________ .2、已知圆锥的母线长为13cm,底面圆的半径为5cm,则圆锥的表面积为 _____.3、如图,PA、PB是⊙O的切线,A、B为切点,∠OAB=30°.则∠APB=________度;4、Rt ABC 的两条直角边分别是一元二次方程27120x x -+=的两根,则ABC 的外接圆半径为_____.5、在△ABC 中,AB = AC ,以AB 为直径的圆O 交BC 边于点D .要使得圆O 与AC 边的交点E 关于直线AD 的对称点在线段OA 上(不与端点重合),需满足的条件可以是 _________ .(写出所有正确答案的序号)①∠BAC > 60°;②45° < ∠ABC < 60°;③BD > 12AB ;④12AB < DE . 三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,直线y =﹣3x ﹣3与x 轴交于点A ,与y 轴交于点C .抛物线2y x bx c =++经过A ,C 两点,且与x 轴交于另一点B (点B 在点A 右侧).(1)求抛物线的解析式及点B 坐标;(2)试探究ABC ∆的外接圆的圆心位置,并求出圆心坐标;(3)若点M 是线段BC 上一动点,过点M 的直线EF 平行y 轴交x 轴于点F ,交抛物线于点E .求BCE ∆面积 的最大值,并求出此时M 点的坐标.2、尝试:如图①,ABC 中,将ABC 绕点A 按逆时针方向旋转一定角度得到AB C '',点B 、C 的对应点分别为B ′、C ',连接BB '、CC ',直接写出图中的一对相似三角形_______;拓展:如图②,在ABC 中,90C ∠=︒,AC BC =,将ABC 绕点A 按逆时针方向旋转一定角度得到AB C '',点B 、C 的对应点分别为B ′、C ',连接BB '、CC ',若8BB '=,求CC '的长;应用:如图③,在Rt ABC △中,90ACB ∠=︒,2AB =,30ABC ∠=︒,将ABC 绕点A 按逆时针方向旋转一周,在旋转过程中,当点B 的对应点B ′恰好落在Rt ABC △的边所在的直线上时,直接写出此时点C 的运动路径长.3、如图,⊙O 是四边形ABCD 的外接圆,AD 为⊙O 的直径.连结BD ,若AC BD =. (1)求证:∠1=∠2.(2)当AD =BC =4时,求ABD 的面积.4、已知:如图,△ABC 为锐角三角形,AB =AC 求作:一点P ,使得∠APC =∠BAC作法:①以点A 为圆心, AB 长为半径画圆;②以点B 为圆心,BC 长为半径画弧,交⊙A 于点C ,D 两点; ③连接DA 并延长交⊙A 于点P 点P 即为所求(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明证明:连接PC,BD∵AB=AC,∴点C在⊙A上∵BC=BD,∴∠_________=∠_________∠CAD∴∠BAC=12∵点D,P在⊙A上,∠CAD(______________________)(填推理的依据)∴∠CPD=12∴∠APC=∠BAC5、如图,已知P是⊙O上一点,用两种不同的方法过点P作⊙O的一条切线.要求:用直尺和圆规作图.-参考答案-一、单选题1、A【分析】连接AC,利用直角三角形30°的性质求解即可.【详解】解:如图,连接AC.∵AB是直径,∴∠ACB=90°,∵∠CAB=∠CDB=30°,∴AB=2BC=6,故选:A.【点睛】本题考查圆周角定理,含30°角的直角三角形的性质,解题的关键是学会添加常用辅助线,构造直角三角形解决问题. 2、B 【分析】根据圆周角定理,即可求解. 【详解】解:∵1,502ACB AOB AOB ∠=∠∠=︒ ,∴25ACB ∠=︒ . 故选:B 【点睛】本题主要考查了圆周角定理,熟练掌握同圆(或等圆)中,同弧(或等弧)所对的圆周角等于圆心角的一半是解题的关键. 3、D 【分析】根据正多边形的外角求得内角FAB ∠的度数,进而根据弧长公式求得FB l ,即可求得阴影部分的周长. 【详解】解:正六边形ABCDEF 的边长为6,1180360120,66FAB AF AB ∴∠=︒-⨯︒=︒==∴FB l 12064180ππ⨯== ∴阴影部分图形的周长为412FB AF AB l π++=+故选D【点睛】本题考查了求弧长公式,求正多边形的内角,牢记弧长公式和正多边形的外角与内角的关系是解题的关键. 4、C 【分析】如图1,△ABC 是等边三角形,则∠ABC =60°,根据同弧所对的圆周角相等∠ADC =∠ABC =60°,所以判断①正确;如图1,可证明△DBE ∽△DAC ,则DB DEDA DC=,所以DB •DC =DE •DA ,而DB 与DC 不一定相等,所以判断②错误;如图2,作AH ⊥BD 于点H ,延长DB 到点K ,使BK =CD ,连接AK ,先证明△ABK ≌△ACD ,可证明S 四边形ABDC =S △ADK ,可以求得S △ADK 3,连接OA 、OG 、OC 、GC ,由CF 切⊙O 于点C 得CF ⊥OC ,而AF ⊥CF ,所以AF ∥OC ,由圆周角定理可得∠AOC =120°,则∠OAC =∠OCA =30°,于是∠CAG =∠OCA =30°,则∠COG =2∠CAG =60°,可证明△AOG 和△COG 都是等边三角形,则四边形OABC 是菱形,因此OA ∥CG ,推导出S 阴影=S 扇形COG ,在Rt △CFG 中根据勾股定理求出CG 的长为4,则⊙O 的半径为4,可求得S 阴影=S 扇形COG =2604360⨯π=83π,所以判断④正确,所以①③④这3个结论正确. 【详解】解:如图1,∵△ABC 是等边三角形, ∴∠ABC =60°, ∵等边△ABC 内接于⊙O , ∴∠ADC =∠ABC =60°, 故①正确;∵∠BDE =∠ACB =60°,∠ADC =∠ABC =60°, ∴∠BDE =∠ADC , 又∠DBE =∠DAC , ∴△DBE ∽△DAC ,∴DB DE DA DC,∴DB•DC=DE•DA,∵D是BC上任一点,∴DB与DC不一定相等,∴DB•DC与DB2也不一定相等,∴DB2与DE•DA也不一定相等,故②错误;如图2,作AH⊥BD于点H,延长DB到点K,使BK=CD,连接AK,∵∠ABK+∠ABD=180°,∠ACD+∠ABD=180°,∴∠ABK=∠ACD,∴AB=AC,∴△ABK≌△ACD(SAS),∴AK=AD,S△ABK=S△ACD,∴DH =KH =12DK ,∵∠AHD =90°,∠ADH =60°,∴∠DAH =30°,∵AD =2,∴DH =12AD =1,∴DK =2DH =2,AH =∴S △ADK =12AH DK ⋅=∴S 四边形ABDC =S △ABD +S △ACD =S △ABD +S △ABK =S △ADK故③正确;如图3,连接OA 、OG 、OC 、GC ,则OA =OG =OC ,∵CF 切⊙O 于点C ,∴CF ⊥OC ,∵AF ⊥CF ,∴AF ∥OC ,∵∠AOC =2∠ABC =120°,∴∠OAC =∠OCA =12×(180°﹣120°)=30°,∴∠CAG =∠OCA =30°,∴∠COG =2∠CAG =60°,∴∠AOG =60°,∴△AOG 和△COG 都是等边三角形,∴OA =OC =AG =CG =OG ,∴四边形OABC 是菱形,∴OA ∥CG ,∴S △CAG =S △COG ,∴S 阴影=S 扇形COG ,∵∠OCF =90°,∠OCG =60°,∴∠FCG =30°,∵∠F =90°,∴FG =12CG ,∵FG 2+CF 2=CG 2,CF =∴(12CG )2+(2=CG 2,∴CG =4,∴OC =CG =4,∴S 阴影=S 扇形COG =2604360⨯π=83π, 故④正确,∴①③④这3个结论正确,故选C .【点睛】本题主要考查了等边三角形的性质与判定,圆切线的性质,圆周角定理,全等三角形的性质与判定,菱形的性质与判定,勾股定理,含30度角的直角三角形的性质等等,解题的关键在于能够熟练掌握相关知识进行求解.5、C【分析】根据切线长定理可得,BE EC =、CD AD =、AF BF =,再根据∠F =60°,可知ABF 为等边三角形,120AOB ∠=︒,再△FDE 的周长为12,可得12BF AF +=,求得6AB =,再作OH AB ⊥,即可求解.【详解】解:FA 、FB 分别与⊙O 相切于A 、B 两点,过点C 的切线分别交FA 、FB 于D 、E 两点,则:BE EC =、CD AD =、AF BF =,90OBF OAF ∠=∠=︒,∵∠F =60°,∴ABF 为等边三角形,360120AOB F OBF OAF ∠=︒-∠-∠-∠=︒,∵△FDE 的周长为12,即12CD EC EF DF +++=,∴12BF AF +=,即6AB AF ==,作OH AB ⊥,如下图:则1602BOH AOB ∠=∠=︒,132BH AB ==, ∴30OBH ∠=︒,设OH x =,则2OB x =,由勾股定理可得:2223(2)x x +=,解得x =OB =故选C【点睛】此题考查了圆的有关性质,切线的性质、切线长定理,垂径定理以及等边三角形的判定与性质,解题的关键是灵活运用相关性质进行求解.6、B【分析】连接OB ,过点O 作OC ⊥AB 于点D ,交⊙O 于点C ,先由垂径定理求出BD 的长,再根据勾股定理求出OD 的长,进而得出CD 的长即可.【详解】解:连接OB ,过点O 作OC ⊥AB 于点D ,交⊙O 于点C ,如图所示:∵AB=8cm,∴BD=12AB=4(cm),由题意得:OB=OC=1102⨯=5cm,在Rt△OBD中,OD=2222543OB BD-=-=(cm),∴CD=OC-OD=5-3=2(cm),即水的最大深度为2cm,故选:B.【点睛】本题考查了垂径定理、勾股定理等知识;根据题意作出辅助线,构造出直角三角形是解答此题的关键.7、B【分析】利用圆的有关性质、等弧的定义、确定圆的条件及圆心角定理分别判断后即可确定正确的选项.【详解】解:A、能够完全重合的弧是等弧,故错误,是假命题,不符合题意;B、直径是圆中最长的弦,正确,是真命题,符合题意;C、不在同一直线上的三点确定一个圆,故错误,是假命题,不符合题意;D、同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等,故原命题错误,是假命题,不符合题意;故选:B.本题考查了命题与定理的知识,解题的关键是了解圆的有关性质、等弧的定义、确定圆的条件及圆心角定理,难度不大.8、B【分析】根据同弧所对的圆周角是圆心角的一半即可得.【详解】解:∵OA OB ⊥,∴90AOB ∠=︒, ∴1452C AOB ∠=∠=︒,故选:B .【点睛】题目主要考查圆周角定理,准确理解,熟练运用圆周角定理是解题关键.9、A【分析】根据圆周角定理得到∠ADB =90°,∠A =∠BCD =36°,然后利用互余计算∠ABD 的度数.【详解】∵AB 是⊙O 的直径,∴∠ADB =90°,∵∠DAB =∠BCD =36°,∴∠ABD =∠ADB ﹣∠DAB ,即∠ABD =90°﹣∠DAB =90°﹣36°=54°.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.10、A【分析】根据点与圆的位置关系可得5OP <,由此即可得出答案.【详解】解:O 的半径为5,点P 在O 内,5OP ∴<,观察四个选项可知,只有选项A 符合,故选:A .【点睛】本题考查了点与圆的位置关系,熟练掌握点与圆的位置关系(圆内、圆上、圆外)是解题关键.二、填空题1、3cm【分析】根据点与圆的位置关系得出:点P 在⊙O 上,则PO r =即可得出答案.【详解】∵⊙O 的直径为6cm ,∴⊙O 的半径为3cm ,∵点P 在⊙O 上,∴3cm =PO .故答案为:3cm .【点睛】本题考查点与圆的位置关系:点P 在⊙O 外,则PO r >,点P 在⊙O 上,则PO r =,点P 在⊙O 内,则PO r <.2、90πcm 2【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式计算出圆锥的侧面积,然后加上底面积即可得到圆锥的表面积.【详解】 解:圆锥的侧面积=12513652ππ=cm 2, 圆锥的底面积=π•52=25πcm 2,所以圆锥的表面积=65π+25π=90πcm 2.故答案为:90πcm 2.【点睛】本题考查了圆锥的表面积,圆锥的有关概念,正确运用圆的面积公式,扇形的面积公式是解题的关键.3、60【分析】先根据圆的切线的性质可得90OAP ∠=︒,从而可得60PAB ∠=︒,再根据切线长定理可得PA PB =,然后根据等边三角形的判定与性质即可得.【详解】解:,PA PB 是O 的切线,,PA PB OA AP ∴=⊥,90OAP ∴∠=︒,30OAB ∠=︒,60PAB OAP OAB ∴∠∠=∠-=︒,PAB ∴是等边三角形,60APB ∴∠=︒,故答案为:60.【点睛】本题考查了圆的切线的性质、切线长定理等知识点,熟练掌握圆的切线的性质是解题关键. 4、2.552【分析】根据题意先解一元二次方程,进而根据直角三角形的外接圆的半径等于斜边的一边,即可求得答案.【详解】解:27120x x -+=, ()()340x x --=,解得123,4x x ==,∴Rt ABC 的两条直角边分别为3,4,∴,直角三角形的外接圆的圆心在斜边上,且为斜边的中点,∴ABC 的外接圆半径为52. 【点睛】本题考查的是三角形的外接圆与外心,熟知直角三角形的外心是斜边的中点是解答此题的关键.5、②④【分析】将所给四个条件逐一判断即可得出结论.【详解】解:在ΔABC 中,AB AC =①当∠BAC > 60°时,若90BAC ∠=︒时,点E 与点A 重合,不符合题意,故①不满足;②当∠ABC 45≤︒时,点E 与点A 重合,不符合题意,当∠ABC 60>︒时,点E 与点O 不关于AD 对称,当4560ABC ︒<∠≤︒时,点E 关于直线AD 的对称点在线段OA 上,所以,当45° < ∠ABC < 60°时,点E 关于直线AD 的对称点在线段OA 上,故②满足条件;③当12AB BD AB ≤<时,点E 关于直线AD 的对称点在线段OA 上,故③不满足条件;④当12AB < DE 时,点E 关于直线AD 的对称点在线段OA 上,故④满足条件; 所以,要使得O 与AC 边的交点E 关于直线AD 的对称点在线段OA 上(不与端点重合),需满足的条件可以是45° < ∠ABC < 60°或12AB < DE 故答案为②④【点睛】本题考查了圆周角定理,正确判断出每种情况是解答本题的关键.三、解答题1、(1)抛物线解析式为223y x x =--,B 点坐标为(3,0);(2)△ABC 外接圆圆心在直线1x =上,其坐标为(1,14-);(3)BCE S 的最大值为278,此时M 点的坐标为(32,32-). 【分析】(1)先由一次函数解析式求出AC 的坐标,然后把AC 的坐标代入抛物线解析式中求解出抛物线解析式,然后求出B 点坐标即可;(2)设△ABC 外接圆圆心为P ,点P 的坐标为(m ,n ),又A 点坐标为(-1,0),B 点坐标为(3,0),得到抛物线的对称轴为直线1x =,根据外接圆圆心是三角形三边垂直平分线的交点,推出点P 在直线1x =上,即m =1,PB =PC ,再由PB =PC =224441n n n +=+++,由此求解即可; (3)先求出直线BC 的解析式为3y x =-,设M 的坐标为(t ,t -3),则E 点坐标为(t ,223t t --),则()22239323324ME t t t t t t ⎛⎫=----=-+=--+ ⎪⎝⎭,根据=BCE MCE MBE S S S +△△△32ME =23327228t ⎛⎫=--+ ⎪⎝⎭,利用二次函数的性质求解即可. 【详解】解:(1)∵直线33y x =--与x 轴交于点A 、与y 轴交于点C ,∴A 点坐标(-1,0),C 点坐标为(0,-3),∵抛物线2y x bx c =++经过A 、C 两点,∴103b c c -+=⎧⎨=-⎩, ∴23b c =-⎧⎨=-⎩, ∴抛物线解析式为223y x x =--,当0y =时,2230x x --=,解得1x =-或3x =,∴B 点坐标为(3,0);(2)设△ABC 外接圆圆心为P ,点P 的坐标为(m ,n ),∵A 点坐标为(-1,0),B 点坐标为(3,0),∴抛物线的对称轴为直线1x =,∵外接圆圆心是三角形三边垂直平分线的交点,∴点P 在直线1x =上,即m =1,PB =PC ,∵PB =PC =224441n n n +=+++, ∴14n =-, ∴点P 的坐标为(1,14-); (3)设直线BC 的解析式为1y kx b =+,∴11303k b b +=⎧⎨=-⎩, 1313k b =⎧⎨=-⎩, ∴直线BC 的解析式为3y x =-,设M 的坐标为(t ,t -3),则E 点坐标为(t ,223t t --),∴()22239323324ME t t t t t t ⎛⎫=----=-+=--+ ⎪⎝⎭, ∴=BCE MCE MBE S S S +△△△()()1122M C B M ME x x ME x x =⋅-+⋅-()12B C ME x x =⋅- 32ME =, 23327228t ⎛⎫=--+ ⎪⎝⎭, ∴当32t =时,BCE S 有最大值,最大值为278, ∴此时M 点的坐标为(32,32-). 【点睛】本题主要考查了一次函数与二次函数综合,三角形外接圆圆心坐标,三角形面积,解题的关键在于能够熟练掌握二次函数的相关知识.2、尝试:''ABB ACC △△;拓展:'CC =;应用:点C 的运动路径长为3π或43π或23π或π或2π. 【分析】尝试:根据AB C ''△是由△ABC 旋转得到的,可得到=BAC B AC ''∠∠,AB AB '=,AC AC '=,即可推出=BAB CAC ''∠∠,1AB AC AB AC =='',则ABB ACC ''△∽△;拓展:由AC =BC ,∠ACB =90°,可得AB =,同(1)可证ABB ACC ''△∽△,得到AB BB AC CC ='',由此求解即可;应用:分点'B 在AC 延长线上时,点'B 在CA 的延长线上时,当点'B 落在边BC 所在直线上时,当点'B 落在边AB 所在直线上时,当点'B 与点B 重合时,点C 旋转一周时,五种情况讨论求解即可得到答案.【详解】解:尝试:ABB ACC ''△∽△,理由如下:∵AB C ''△是由△ABC 旋转得到的,∴=BAC B AC ''∠∠,AB AB '=,AC AC '=,∴=BAC CAB B AC CAB ''''++∠∠∠∠,即=BAB CAC ''∠∠,1AB AC AB AC =='', ∴ABB ACC ''△∽△;故答案为:ABB ACC ''△∽△;拓展:∵AC =BC ,∠ACB =90°,∴AB ,同(1)原理可证ABB ACC ''△∽△, ∴AB BB AC CC ='',∴AC BB CC AB '⋅'== 应用:∵在Rt ABC 中,2AB =,30ABC ∠=︒, ∴112AC AB ==,60BAC ∠=︒, 当点'B 落在AC 所在直线上时,有两种情况:①若点'B 在AC 延长线上时,如图①所示: 由旋转的旋转可得:'60CAC BAC ∠=∠=︒,∴点C 运动的路径即为CC ',∴6011803CC ππ⨯'==;②若点'B 在CA 的延长线上时,如图②所示,此时点B ,'C ,'B 三点共线,∴点C 运动的路径即为CC ',由旋转的性质可得'60B AC BAC '∠=∠=︒,∴'180120CAC B AC ''∠=︒-=︒∠∴旋转角360240CAC '=︒-=︒∠, ∴弧240141803'CC ππ⨯==;当点'B 落在边BC 所在直线上时,如图③所示,∴点C 运动的路径即为CC ',由旋转的性质可得'60B AC BAC '∠=∠=︒,∴'18060CAB B AC BAC ''∠=︒--=︒∠∠,∴120CAC CAB B AC =''''∠=∠+∠︒ ∴弧120121803CC'ππ⨯==;当点'B 落在边AB 所在直线上时,如图④所示,此时点C ,A ,'C 三点共线,旋转角为180︒, ∴弧1801180CC'ππ⨯==. 当点'B 与点B 重合时,点C 旋转一周,∴弧'22CC AC ππ=⨯=.∴当点B 的对应点'B 恰好落在Rt ABC 的边所在直线上时,点C 的运动路径长为3π或43π或23π或π或2π. 【点睛】本题主要考查了旋转的性质,求弧长,相似三角形的性质与判定,勾股定理,解题的关键在于能够熟练掌握相似三角形的性质与判定条件,以及弧长公式.3、(1)见解析;(2)【分析】(1)先证明AB CD =,再根据同圆中,等弧所对的圆周角相等即可证明;(2)过O 点作OE ⊥BC 于点E ,连接OB ,由垂径定理可得BE =CE =122BC =,由勾股定理求出2OE ,即可得到11222ABD S AD OE ∆=•=⨯= 【详解】解:(1)∵AC BD =,∴AB BC CD BC +=+,∴AB CD =,∴∠1=∠2;(2)过O 点作OE ⊥BC 于点E ,连接OB ,∴BE =CE =122BC =, ∵AD 为⊙O 的直径,∴OB =12AD =∴2OE =,∴11222ABD S AD OE ∆=•=⨯=【点睛】本题主要考查了垂径定理,勾股定理,同圆中等弧所对的圆周角相等,解题的关键在于能够熟练掌握圆的相关知识.4、(1)见解析;(2)BAC=BAD,圆周角定理或同弧所对的圆周角等于它所对圆心角的一半【分析】(1)根据按步骤作图即可;(2)根据圆周角定理进行证明即可【详解】解:(1)如图所示,(2)证明:连接PC,BD∵AB=AC,∴点C在⊙A上∵BC=BD,∴∠BAC=∠BAD∴∠BAC=1∠CAD2∵点D,P在⊙A上,∠CAD(圆周角定理)(填推理的依据)∴∠CPD=12∴∠APC=∠BAC故答案为:BAC=BAD,圆周角定理或同弧所对的圆周角等于它所对圆心角的一半【点睛】本题考查了尺规作图作圆,圆周角定理,掌握圆周角定理是解题的关键.5、见详解【分析】方法一:连接OP,并延长,以点P为圆心,OP长为半径画弧,交OP的延长线于点C,然后再以点O、C为圆心,大于OC长的一半为半径画弧,交于点M、N,则问题可求解;方法二:连接OP,以点P 为圆心,OP长为半径画弧,交圆O于点D,连接OD并延长,然后以点D为圆心OD长为半径画弧,交OD的延长线于点E,连接PE,则问题可求解.【详解】解:方法一如图所示:直线MN即为⊙O的切线;方法二如图所示:则PE即为⊙O的切线.【点睛】本题主要考查切线的性质,熟练掌握切线的性质是解题的关键.。
一、选择题第三章圆1. 已知⊙O 的直径为 10,点 P 到点 O 的距离大于 8,那么点 P 的位置( )A. 一定在⊙O 的内部B. 一定在⊙O 的外部C. 一定在⊙O 上D. 不能确定2. 乌镇是著名的水乡,如图,圆拱桥的拱顶到水面的距离 CD 为 8m ,水面宽 AB 为 8m ,则桥拱半径 OC 为( )A. 4mB. 5mC. 6mD. 8m3. 给出下列说法:①直径是弦;②优弧是半圆;③半径是圆的组成部分;④两个半径不相等的圆中,大的半圆的弧长小于小的半圆的周长.其中正确的有( )A. 1 个B. 2 个C. 3 个D. 4 个4. 一个扇形的圆心角是 120°,面积为 3πcm 2, 那么这个扇形的半径是() A. cm B. 3cmC. 6cmD. 9cm5. 如图,点 A,B,C 均在坐标轴上,AO=BO=CO=1,过 A,O,C 作⊙D ,E 是⊙D 上任意一点,连结 CE, BE ,则的最大值是( )A. 4B. 5C. 6D.6. 如图,在⊙O 中,弦 AC与半径OB 平行,若∠BOC=50°,则∠B 的大小为()A. 25°B. 30°C. 50°D. 60°7.在研究圆的有关性质时,我们曾做过这样的一个操作“将一张圆形纸片沿着它的任意一条直径翻折,可以看到直径两侧的两个半圆互相重合”.由此说明()A.圆的直径互相平分B.垂直弦的直径平分弦及弦所对的弧C.圆是中心对称图形,圆心是它的对称中心D.圆是轴对称图形,任意一条直径所在的直线都是它的对称轴8.如图,AB 为⊙O 的直径,点E、C 都在圆上,连接AE,CE,BC,过点A 作⊙O 的切线交BC 的延长线于点D,若∠AEC=25°,则∠D 的度数为()A. 75°B. 65°C. 55°D. 74°9.如图,四边形ABCD 内接于圆O,E 为CD 延长线上一点,若∠B=110°,则∠ADE 的度数为()A. 115°B. 110°C. 90°D. 80°10.已知:⊙O 是△ABC 的外接圆,∠OAB=40°,则∠ACB 的大小为()A. 20°B. 50°C. 20°或160°D. 50°或130°11.如图,⊙O 内切于四边形ABCD,AB=10,BC=7,CD=8,则AD 的长度为()A. 8B. 9C. 10D. 1112.如图,在圆心角为45°的扇形内有一正方形CDEF,其中点C、D 在半径OA 上,点F 在半径OB 上,点E 在上,则扇形与正方形的面积比是()A. π:8B. 5π:8C. π:4D. π:4二、填空题13.PA,PB 分别切⊙O 于A,B 两点,点C 为⊙O 上不同于AB 的任意一点,已知∠P=40°,则∠ACB 的度数是.14.如图,AB 为⊙O 的直径,直线l 与⊙O 相切于点C,AD⊥l,垂足为D,AD 交⊙O 于点E,连接OC、BE.若AE=6,OA=5,则线段DC 的长为.15.如图,AB 是⊙O 的直径,点C 在⊙O 上,∠AOC=40°,D 是BC 弧的中点,则∠ACD= .16.如图所示,⊙I 是Rt△ABC 的内切圆,点D、E、F 分别是且点,若∠ACB=90°,AB=5cm,BC=4cm,则⊙I 的周长为cm.17.如图,PA,PB 是⊙O 的切线,CD 切⊙O 于E,PA=6,则△PDC 的周长为.18.如图,⊙O 的半径为6cm,B 为⊙O 外一点,OB 交⊙O 于点A,AB=OA,动点P 从点A 出发,以πcm/s 的速度在⊙O 上按逆时针方向运动一周回到点A 立即停止.当点P 运动的时间为时,BP 与⊙O 相切.19.如图,在⊙O 的内接四边形ABCD 中,点E 在DC 的延长线上.若∠A=50°,则∠BCE= .20.如图,△ABC 中,∠BAC=90°,点G 是△ABC 的重心,如果AG=4,那么BC 的长为.21.如图,在△ABC 中,AB=AC=3,∠BAC=120°,以点A 为圆心,1 为半径作圆弧,分别交AB,AC 于点D,E,以点C 为圆心,3 为半径作圆弧,分别交AC,BC 于点A,F.若图中阴影部分的面积分别为S1,S2,则S1﹣S2的值为.22.如图所示,在半圆O 中,AB 为直径,P 为弧AB 的中点,分别在弧AP 和弧PB 上取中点A1和B1,再在弧PA1和弧PB1上分别取中点A2和B2,若一直这样取中点,求∠A n PB n= .三、解答题23.如图,AB 为⊙O 的直径,C 是⊙O 上一点,D 在AB 的延长线上,且∠DCB=∠A.求证:CD 是⊙O 的切线.24.如图,已知AB 是半圆O 的直径,∠BAC=32°,D 是弧AC 的中点,求∠DAC 的度数.25.如图,ABCD 是⊙O 的内接四边形,DP∥AC,交BA 的延长线于P,求证:AD•DC=PA•BC.26.(2017•通辽)如图,AB 为⊙O 的直径,D 为的中点,连接OD 交弦AC 于点F,过点D 作DE∥AC,交BA 的延长线于点E.(1)求证:DE 是⊙O 的切线;(2)连接CD,若OA=AE=4,求四边形ACDE 的面积.参考答案一、选择题B B A BC AD B B D D B二、填空题13. 70°或110°14. 4 15.125°16. 2π17. 1218. 2 秒或5 秒19. 50°20. 1221. - π22. 180°﹣×180°三、解答题23.解:证明:连接OC,∵AB 是⊙O 的直径,∴∠ACB=90°,∴∠A+∠ABC=90°,又∵OB=OC,∴∠OBC=∠OCB,又∵∠DCB=∠A,∴∠A+∠ABC=∠DCB+∠OCB=90°,∴OC⊥DC,∴CD 是⊙O 的切线.24.解:连接BC,∵AB 是半圆O 的直径,∠BAC=32°,∴∠ACB=90°,∠B=90°﹣32°=58°,∴∠D=180°﹣∠B=122°(圆内接四边形对角互补),∵D 是弧的中点,∴∠DAC=∠DCA=(180°﹣∠D)÷2=29°,即∠DAC 的度数是29°.25.证明:如图,连接AC,连接BD.∵DP∥AC,∴∠PDA=∠DAC.∵∠DAC=∠DBC,∴∠PDA=∠DBC.∵四边形ABCD 是圆内接四边形,∴∠DAP=∠DCB.∴△PAD∽△DCB.得PA:DC=AD:BC,即AD•DC=PA•BC.26.(1)证明:∵D 为的中点,∴OD⊥AC,∵AC∥DE,∴OD⊥DE,∴DE 是⊙O 的切线(2)解:连接DC,∵D 为的中点,∴OD⊥AC,AF=CF,∵AC∥DE,且OA=AE,∴F 为OD 的中点,即OF=FD,在△AFO 和△CFD 中,∴△AFO➴△CFD(SAS),∴S△AFO=S△CFD ,∴S 四边形ACDE=S△ODE在Rt△ODE 中,OD=OA=AE=4,∴OE=8,∴DE= =4 ,∴S 四边形ACDE=S△ODE= ×OD×DE= ×4×4 =8 .“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
北师大版九年级数学下册第三章圆专项练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,Rt△ABC中,∠A=90°,∠B=30°,AC=1,将Rt△ABC延直线l由图1的位置按顺时针方向向右作无滑动滚动,当A第一次滚动到图2位置时,顶点A所经过的路径的长为()B C D.(πA2、如图,O是正方形ABCD的外接圆,若O的半径为4,则正方形ABCD的边长为()A.4 B.8 C.D.3、如图,⊙O中,半径OC⊥AB于D,且CD=2,弦AB=8,则⊙O的半径的长等于()A .3B .4C .5D .64、到三角形三个顶点距离相等的点是此三角形( )A .三条角平分线的交点B .三条中线的交点C .三条高的交点D .三边中垂线的交点5、已知半径为5的圆,直线l 上一点到圆心的距离是5,则直线和圆的位置关系为( )A .相切B .相离C .相切或相交D .相切或相离6、如图,已知O 中,50AOB ∠=︒,则圆周角ACB ∠的度数是( )A .50°B .25°C .100°D .30°7、如图,直径AB =6的半圆,绕B 点顺时针旋转30°,此时点A 到了点A ',则图中阴影部分的面积是( )A .3πB .34πC .πD .3π8、下列说法正确的是( )A .等弧所对的圆周角相等B .平分弦的直径垂直于弦C .相等的圆心角所对的弧相等D .过弦的中点的直线必过圆心9、如图,菱形ABCD 中,60C ∠=°,2AB =.以A 为圆心,AB 长为半径画BD ,点P 为菱形内一点,连PA ,PB ,PD .若PA PB =,且120APB ∠=︒,则图中阴影部分的面积为( )A .23y π= B .23y π= C .23y π= D .23y π=10、若正六边形的边长为6,则其外接圆半径与内切圆半径的大小分别为( )A .6,B .6,C . 6D .6,3第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知圆锥的母线AB 长为40 cm ,底面半径OB 长为10 cm ,若将绳子一端固定在点B ,绕圆锥侧面一周,另一端与点B 重合,则这根绳子的最短长度是______________.2、如图,AB 是半圆O 的直径,AB =4,点C ,D 在半圆上,OC ⊥AB ,2BD CD =,点P 是OC 上的一个动点,则BP +DP 的最小值为______.3、已知正六边形的周长是24,则这个正六边形的半径为_____ .4、在半径为3的圆中,60°的圆心角所对的劣弧长等于_____.5、如图,五边形ABCDE是⊙O的内接正五边形,则ODC的度数是____.三、解答题(5小题,每小题10分,共计50分)1、如图,射线AB和射线CB相交于点B,∠ABC=α(0°<α<180°),且AB=CB.点D是射线CB 上的动点(点D不与点C和点B重合),作射线AD,并在射线AD上取一点E,使∠AEC=α,连接CE,BE.(1)如图①,当点D在线段CB上,α=90°时,请直接写出∠AEB的度数;(2)如图②,当点D在线段CB上,α=120°时,请写出线段AE,BE,CE之间的数量关系,并说明理由;(3)当α=120°,tan∠DAB=13时,请直接写出CEBE的值.2、如图,AB是⊙O的一条弦,E是AB的中点,过点E作EC⊥OA于点C,过点B作O的切线交CE的延长线于点D.(1)求证:DB=DE;(2)若AB=12,BD=5,求AC长.3、如图,⊙O是△ABC的外接圆,AD是⊙O的直径,F是AD延长线上一点,连接CD,CF,且:CF是⊙O的切线.(1)求证:∠DCF=∠CAD.(2)探究线段CF,FD,FA的数量关系并说明理由;(3)若cos B35=,AD=2,求FD的长.4、在平面直角坐标系xOy中,⊙O的半径为1.对于线段AB,给出如下定义:若线段AB沿着某条直线l对称可以得到⊙O的弦A′B′,则称线段AB 是⊙O的以直线l为对称轴的“反射线段”,直线l称为“反射轴”.(1)如图,线段CD,EF,GH中是⊙O的以直线l为对称轴的“反射线段”有;(2)已知A点坐标为(0,2),B点坐标为(1,1),①若线段AB是⊙O的以直线l为对称轴的“反射线段”,求反射轴l与y轴的交点M的坐标.②若将“反射线段”AB沿直线y=x的方向向上平移一段距离S,其反射轴l与y轴的交点的纵坐标y M的取值范围为12≤y M136≤,求S.(3)已知点M,N是在以原点为圆心,半径为2的圆上的两个动点,且满足MN=1,若MN是⊙O的以直线l为对称轴的“反射线段”,当M点在圆上运动一周时,求反射轴l未经过的区域的面积.(4)已知点M,N是在以(2,0MN=MN是⊙O的以直线l为对称轴的“反射线段”,当M点在圆上运动一周时,请直接写出反射轴l与y轴交点的纵坐标的取值范围.5、在平面直角坐标系xOy 中,已知抛物线212y x bx =+. (1)求抛物线顶点Q 的坐标;(用含b 的代数式表示)(2)抛物线与x 轴只有一个公共点,经过点(0,2)的直线与抛物线交于点A ,B ,与x 轴交于点K .①判断△AOB 的形状,并说明理由;②已知E (2,0),F (4,0),设△AOB 的外心为M ,当点K 在线段EF 上时,求点M 的纵坐标m 的取值范围.-参考答案-一、单选题1、C【分析】根据题意,画出示意图,确定出点A 的运动路径,再根据弧长公式即可求解.【详解】解:根据题意可得,Rt △ABC 的运动示意图,如下:Rt △ABC 中,∠A =90°,∠B =30°,AC =1,∴60ACB ∠=︒,2BC =,AB =由图形可得,点A 的运动路线为,先以C 为中心,顺时针旋转120︒,到达点1A ,经过的路径长为120121803ππ⨯=,再以1B 为中心,顺时针旋转150︒,到达点2A ,顶点A 所经过的路径的长为23π=故选:C【点睛】 此题考查了旋转的性质,圆弧弧长的求解,解题的关键是根据题意确定点A 的运动路线.2、D【分析】连接OB ,OC ,过点O 作OE ⊥BC 于点E ,由等腰直角三角形的性质可知OE =BE ,由垂径定理可知BC =2BE ,故可得出结论.【详解】解:连接OB ,OC ,过点O 作OE ⊥BC 于点E ,∴OB =OC ,∠BOC =90°,∴∠OBE =45°,45BOE ∠=︒∴OE =BE ,∵OE 2+BE 2=OB 2,∴BE =∴BC =2BE =ABCD 的边长是故选:D【点睛】本题考查的是圆周角定理、垂径定理及勾股定理,根据题意作出辅助线,构造出等腰直角三角形是解答此题的关键.3、C【分析】根据垂径定理得出AD =BD =118422AB ,设⊙O 的半径的长为x ,根据勾股定理222OB OD BD =+,即()22224x x =-+,解方程即可.【详解】解:∵半径OC ⊥AB 于D ,弦AB =8, ∴AD =BD =118422AB , 设⊙O 的半径的长为x ,∴OD =OC -CD =x -2,在Rt△ODB 中,根据勾股定理222OB OD BD =+,即()22224x x =-+,解得x =5,∴⊙O的半径的长为5.故选择C.【点睛】本题考查垂径定理,勾股定理,解拓展一元一次方程,掌握垂径定理,勾股定理,解拓展一元一次方程是解题关键.4、D【分析】由题意根据线段的垂直平分线上的性质,则有三角形三边中垂线的交点到三角形的三个顶点距离相等.【详解】解:∵垂直平分线上任意一点,到线段两端点的距离相等,∴到三角形三个顶点的距离相等的点是三角形三边中垂线的交点.故选:D.【点睛】本题考查了线段的垂直平分线的性质,解题的关键是注意掌握线段的垂直平分线上的点到线段的两个端点的距离相等.5、C【分析】根据若直线上一点到圆心的距离等于圆的半径,则圆心到直线的距离等于或小于圆的半径,此时直线和圆相交或相切.【详解】解:∵半径为5的圆,直线l上一点到圆心的距离是5,∴圆心到直线的距离等于或小于5,∴直线和圆的位置关系为相交或相切,故选:C . 【点睛】本题考查了直线和圆的位置关系,判断的依据是半径和直线到圆心的距离的大小关系:设⊙O 的半径为r ,圆心O 到直线l 的距离为d ,①直线l 和⊙O 相交⇔d <r ;②直线l 和⊙O 相切⇔d =r ;③直线l 和⊙O 相离⇔d >r .6、B 【分析】根据圆周角定理,即可求解. 【详解】解:∵1,502ACB AOB AOB ∠=∠∠=︒ ,∴25ACB ∠=︒ . 故选:B 【点睛】本题主要考查了圆周角定理,熟练掌握同圆(或等圆)中,同弧(或等弧)所对的圆周角等于圆心角的一半是解题的关键. 7、D 【分析】阴影面积为旋转后'A B 为直径的半圆面积加旋转后扇形面积减去旋转前AB 为直径的半圆面积,则阴影面积为旋转后的扇形面积,由扇形面积公式计算即可. 【详解】∵直径AB =6的半圆,绕B 点顺时针旋转30° ∴A'B ABA'AB S S S S =+-阴影为直径的半圆扇形为直径的半圆 又∵'AB A B =∴A'B AB S S =为直径的半圆为直径的半圆∴ABA'S S =阴影扇形 ∵AB =6,∠ABA ’=30° ∴223063360360ABA'n r S S π︒⋅π⋅====π︒︒阴影扇形 故答案为:D . 【点睛】本题考查了扇形面积公式的应用,扇形面积公式为2360n r π︒,由旋转的性质得出阴影面积为扇形面积是解题的关键. 8、A 【分析】根据圆周角定理,垂径定理的推论,圆心角、弧、弦的关系,对称轴的定义逐项排查即可. 【详解】解:A . 同弧或等弧所对的圆周角相等,所以A 选项正确;B .平分弦(非直径)的直径垂直于弦,并且平分弦所对的弧,所以B 选项错误;C 、在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦相等,所以C 选项错误;D .圆是轴对称图形,任何一条直径所在的直线都是它的对称轴,所以D 选项错误.故选A. 【点睛】本题主要考查了圆心角、弧、弦的关系,轴对称图形,垂径定理,圆周角定理等知识点.灵活运用相关知识成为解答本题的关键. 9、C【分析】过点P 作PM AB ⊥交于点M ,由菱形ABCD 得60DAB C ∠=∠=︒,2AB AD ==,由PA PB =,120APB ∠=︒得112AM AB ==,1602APM APB ∠=∠=︒,故可得30PAM ∠=︒,603030PAD DAB PAM ∠=∠-∠=︒-︒=︒,根据SAS 证明ABP ADP ≅,求出PM =ABPADPABD S S SS=--阴扇形.【详解】如图,过点P 作PM AB ⊥交于点M , ∵四边形ABCD 是菱形,∴60DAB C ∠=∠=︒,2AB AD ==, ∵PA PB =,120APB ∠=︒, ∴112AM AB ==,1602APM APB ∠=∠=︒, ∴30PAM ∠=︒,603030PAD DAB PAM ∠=∠-∠=︒-︒=︒, 在ABP △与ADP △中,AB ADPAB PAD AP AP =⎧⎪∠=∠⎨⎪=⎩, ∴()ABP ADP SAS ≅, ∴ABP ADP S S =△△,在Rt AMP △中,30PAM ∠=︒, ∴2AP PM =,222AP PM AM =+,即2241PM PM =+,解得:PM =∴260211222360223ABP ADPABD S S S Sππ⋅=--=-⨯⨯=阴扇形 故选:C . 【点睛】此题主要考查了菱形的性质以及求不规则图形的面积等知识,掌握扇形的面积公式是解答此题的关键. 10、B 【分析】如图1,⊙O 是正六边形的外接圆,连接OA ,OB ,求出∠AOB =60°,即可证明△OAB 是等边三角形,得到OA =AB =6;如图2,⊙O 1是正六边形的内切圆,连接O 1A ,O 1B ,过点O 1作O 1M ⊥AB 于M ,先求出∠AO 1B =60°,然后根据等边三角形的性质和勾股定理求解即可. 【详解】解:(1)如图1,⊙O 是正六边形的外接圆,连接OA ,OB , ∵六边形ABCDEF 是正六边形, ∴∠AOB =360°÷6=60°, ∵OA =OB ,∴△OAB 是等边三角形, ∴OA =AB =6;(2)如图2,⊙O1是正六边形的内切圆,连接O1A,O1B,过点O1作O1M⊥AB于M,∵六边形ABCDEF是正六边形,∴∠AO1B=60°,∵O1A= O1B,∴△O1AB是等边三角形,∴O1A= AB=6,∵O1M⊥AB,∴∠O1MA=90°,AM=BM,∵AB=6,∴AM=BM,∴O 1M 故选B . 【点睛】本题主要考查了正多边形与圆,等边三角形的性质与判定,勾股定理,熟知正多边形与圆的知识是解题的关键. 二、填空题1、【分析】根据底面圆的周长等于扇形的弧长求解扇形的圆心角90,BAB '∠=︒ 再利用勾股定理求解即可. 【详解】解:圆锥的侧面展开图如图所示:设圆锥侧面展开图的圆心角为n °, 圆锥底面圆周长为210=20,40=20,180n BB 则n =90,∵40,AB AB224040402,BB即这根绳子的最短长度是,故答案为:【点睛】本题考查的是圆锥的侧面展开图,弧长的计算,掌握“圆锥的底面圆的周长等于展开图的弧长求解圆心角”是解本题的关键.2、【分析】如图,连接AD,PA,PD,OD.首先证明PA=PB,再根据PD+PB=PD+PA≥AD,求出AD即可解决问题.【详解】解:如图,连接AD,PA,PD,OD.∵OC⊥AB,OA=OB,∴PA=PB,∠COB=90°,∵2BD CD,∴∠DOB=23×90°=60°,∵OD=OB,∴△OBD是等边三角形,∴∠ABD=60°∵AB是直径,∴∠ADB=90°,∴AD=AB•sin∠ABD∵PB+PD=PA+PD≥AD,∴PD+PB∴PD+PB的最小值为故答案为:【点睛】本题考查圆周角定理,垂径定理,圆心角,弧,弦之间的关系等知识,解题的关键是学会用转化的思想思考问题.3、4【分析】由于正六边形可以由其半径分为六个全等的正三角形,而三角形的边长就是正六边形的半径,由此即可求解.【详解】解:∵正六边形可以由其半径分为六个全等的正三角形,而三角形的边长就是正六边形的半径,又∵正六边形的周长为24,∴正六边形边长为24÷6=4,∴正六边形的半径等于4.故答案为4.【点睛】此题主要考查正多边形和圆,解题的关键是熟练掌握基本知识,属于中考基础题.4、π【分析】弧长公式为l =n 180rπ,把半径和圆心角代入公式计算就可以求出弧长. 【详解】解:半径为3的圆中,60°的圆心角所对的劣弧长=603180π⨯=π, 故答案为:π. 【点睛】本题主要考查了弧长计算,关键是掌握弧长计算公式. 5、54︒ 【分析】根据圆内接正五边形的定义求出∠COD ,利用三角形内角和求出答案. 【详解】解:∵五边形ABCDE 是⊙O 的内接正五边形, ∴∠COD=360725︒=︒, ∵OC=OD ,∴ODC ∠=(180)5412COD ︒-∠=︒, 故答案为:54︒. 【点睛】此题考查了圆内接正五边形的性质,三角形内角和定理,同圆的半径相等的性质,熟记圆内接正五边形的性质是解题的关键. 三、解答题1、(1)45°;(2)AE +CE ,理由见解析;(3【分析】(1)连接AC,证A、B、E、C四点共圆,由圆周角定理得出∠AEB=∠ACB,证出△ABC是等腰直角三角形,则∠ACB=45°,进而得出结论;(2)在AD上截取AF=CE,连接BF,过点B作BH⊥EF于H,证△ABF≌△CBE(SAS),得出∠ABF=∠CBE,BF=BE,由等腰三角形的性质得出FH=EH,由三角函数定义得出FH=EH,进而得出结论;(3)分两种情况,由(2)得FH=EH,由三角函数定义得出AH=3BH=32BE,分别表示出CE,进而得出答案.【详解】解:(1)连接AC,如图①所示:∵α=90°,∠ABC=α,∠AEC=α,∴∠ABC=∠AEC=90°,∴A、B、E、C四点共圆,∴∠AEB=∠ACB,∵∠ABC=90°,AB=CB,∴△ABC是等腰直角三角形,∴∠ACB=45°,∴∠AEB=45°;(2)AE+CE,理由如下:在AD 上截取AF =CE ,连接BF ,过点B 作BH ⊥EF 于H ,如图②所示:∵∠ABC =∠AEC ,∠ADB =∠CDE ,∴180°﹣∠ABC ﹣∠ADB =180°﹣∠AEC ﹣∠CDE ,∴∠A =∠C ,在△ABF 和△CBE 中,AF CE A C AB CB =⎧⎪∠=∠⎨⎪=⎩, ∴△ABF ≌△CBE (SAS ),∴∠ABF =∠CBE ,BF =BE ,∴∠ABF +∠FBD =∠CBE +∠FBD ,∴∠ABD =∠FBE ,∵∠ABC =120°,∴∠FBE =120°,∵BF =BE ,∴∠BFE =∠BEF =11(180)(180120)3022FBE ︒︒︒︒⨯-∠=⨯-=, ∵BH ⊥EF ,∴∠BHE =90°,FH =EH ,在Rt△BHE中,1,2BH BE FH EH ====,∴22EF EH ===, ∵AE =EF +AF ,AF =CE ,∴.AE CE=+;(3)分两种情况:①当点D在线段CB上时,在AD上截取AF=CE,连接BF,过点B作BH⊥EF于H,如图②所示,由(2)得:FH=EH,∵tan∠DAB=13 BHAH=,∴332AH BH BE==,∴32CE AF AH FH BE==-==,∴CEBE=;②当点D在线段CB的延长线上时,在射线AD上截取AF=CE,连接BF,过点B作BH⊥EF于H,如图③所示,同①得:3,32FH EH AH BH BE ====,∴32CE AF AH FH BE==+==,∴CE BE综上所述,当α=120°,1tan3DAB∠=时,CEBE【点睛】本题是三角形综合题目,考查了全等三角形的判定与性质、等腰直角三角形的判定与性质、等腰三角形的判定与性质、四点共圆、圆周角定理、三角函数定义等知识;本题综合性强,构造全等三角形是解题的关键.2、(1)见解析;(2)15 2【分析】(1)由切线性质及等量代换推出∠4=∠5,再利用等角对等边可得出结论;(2)由已知条件得出sin∠DEF和sin∠AOE的值,利用对应角的三角函数值相等推出结论. 【详解】(1)如图,∵DC⊥OA,∴∠1+∠3=90°,∵BD为切线,∴OB⊥BD,∴∠2+∠5=90°,∵OA=OB,∴∠1=∠2,∵∠3=∠4,∴∠4=∠5,在△DEB中,∠4=∠5,∴DE=DB.(2)如图,作DF⊥AB于F,连接OE,∵DB=DE,∴EF=12BE=3,在Rt△DEF中,EF=3,DE=BD=5,∴DF4=∴sin∠DEF=DFDE=45,∵∠AOE90A A AEC+∠=︒=∠+∠,AEC DEF∠=∠,∴∠AOE=∠DEF,∴在Rt△AOE 中,sin∠AOE =45AE AO = , ∵AE =6,∴AO =152. 【点睛】本题考查了圆的性质,切线定理,三角形相似,三角函数等知识,结合图形正确地选择相应的知识点与方法进行解题是关键.3、(1)见解析;(2)2·FC FD FA =,见解析;(3)187【分析】(1)连接OC ,根据直径所对的圆周角为直角及切线的性质和各角之间的等量关系即可证明;(2)根据相似三角形的判定定理可得ΔΔΔΔ~ΔΔΔΔ,依据相似三角形的性质:对应边成比例即可得出;(3)根据同弧所对的圆周角相等可得:B ADC ∠=∠,3cos cos 5ADC B ∠=∠=,在Rt ACD ∆中,利用锐角三角函数可得65CD =,由勾股定理确定85AC =,由此得出34CD AC =,即为(2)中的相似比,设3FD x =,则4FC x =,32AF x =+,将其代入(2)中结论求解即可.【详解】解:(1)连接OC ,如图所示:∵AD 为O 直径,∴90ACD ∠=︒,90CAD ADC ∠+∠=︒,∵CF 为O 的切线,∴90OCF ∠=︒,即90OCD DCF ∠+∠=︒,∵OC OD =,∴OCD ADC ∠=∠,∴DCF CAD ∠=∠;(2)在ΔΔΔΔ与AFC ∆中,∵DCF CAD ∠=∠,F F ∠=∠,∴ΔΔΔΔ~ΔΔΔΔ, ∴FCFDAF FC =,∴2·FC AF FD =;(3)∵B ADC ∠=∠, ∴3cos cos 5ADC B ∠=∠=,在Rt ACD ∆中,2AD =,3cos 5CDADC AD ∠==, ∴6·cos 5CD AD ADC =∠=,∴85AC ==, ∴34CDAC =,由(2)结论可得:ΔΔΔΔ~ΔΔΔΔ,∴34FC FD CD AF FC AC ===, 设3FD x =,则4FC x =,32AF x =+,将其代入结论(2)可得:()()24332x x x =+, 解得:67x =或0x =(舍去), ∴1837FD x ==. 【点睛】题目主要考查圆周角定理、相似三角形的判定和性质、锐角三角函数解三角形、勾股定理等,理解题意,综合运用这些知识点是解题关键.4、(1)2;(2)①1(0,)2M ;②02S ≤≤;(3)1916π⎛ ⎝⎭;(4)1y >或1y <- 【分析】(1)O 的半径为1,则O 的最长的弦长为2,根据两点的距离可得2,EF CD EF ===而即可求得答案;(2)①根据定义作出图形,根据轴对称的方法求得对称轴,反射线段经过对应圆心的中点,即可求得M 的坐标;②由①可得当0S =时,y M 1=2,设当S 取得最大值时,过点1O 作1O P y ⊥轴,根据题意,122,,O A B 分别为沿直线y =x 的方向向上平移一段距离S 后,,O A B '的对应点,则1O P PO '=S =,根据余弦求得11cos cos QO PO MOQ O OP OM OO ∠=∠==进而代入数值列出方程,解方程即可求得S 的最大值,进而求得S 的范围;(3)根据圆的旋转对称性,找到MN 所在的2O 的圆心,如图,以MN 为边在O 内作等边三角形2O MN ,连接2OO ,取2OO 的中点R ,过R 作2OO 的垂线l ,则l 即为反射轴,反射轴l 未经过的区域是以O 为圆心OR 为半径的圆,反射轴l 是该圆的切线,求得半径为1算即可; (4)根据(2)的方法找到MN 所在的圆心3O ,当M 点在圆上运动一周时,如图,取3OO 的中点1A ,OT 的中点S ,即3OO 的中点1A 在以S l 与y 轴交点的纵坐标y 的取值范围【详解】(1)O 的半径为1,则O 的最长的弦长为2根据两点的距离可得2,EF CD EF ===2,2,2EF CD EF ∴<<>故符合题意的“反射线段”有2条;故答案为:2(2)①如图,过点B 作BO y '⊥轴于点O ',连接11A BA 点坐标为(0,2),B 点坐标为(1,1),∴AB ==45BAO '∠=︒,(0,1)O 'O 的半径为1,1190AOB ∠=︒11A B ∴1145B A O =︒线段AB 是⊙O 的以直线l 为对称轴的“反射线段”,()00O ,,(0,1)O ' 1(0,)2M ∴ ②由①可得当0S =时,y M 1=2如图,设当S 取得最大值时,过点1O 作1O P y ⊥轴,根据题意,122,,O A B 分别为沿直线y =x 的方向向上平移一段距离S 后,,O A B '的对应点,则1O P PO '=S =, (0,1)O '1(,1)O S S ∴+()222211221OO S S S S ∴=++=++ 过1OO 中点Q ,作直线l 1OO ⊥交y 轴于点M ,则l 即为反射轴1(,)22S S Q +∴ 12≤y M 136≤,136OM ∴= 11cos cos QO PO MOQ O OP OM OO ∠=∠== 即11112136OO S OO += 即()21113126OO S =+⨯ ∴()2113126S S S ++=+ 解得1252,6S S ==-(舍)02S ∴≤≤(3)1MN =∴1M N ''= O 的半径为1,则M N O ''是等边三角形, 根据圆的旋转对称性,找到MN 所在的2O 的圆心,如图,以MN 为边在O 内作等边三角形2O MN ,连接2OO ,取2OO 的中点R ,过R 作2OO 的垂线l ,则l 即为反射轴, ∴反射轴l 未经过的区域是以O 为圆心OR 为半径的圆,反射轴l 是该圆的切线222OO ∴==2112OR OO ∴==∴当M 点在圆上运动一周时,求反射轴l 未经过的区域的面积为2191=16ππ⎛⎛ ⎝⎭⎝⎭. (4)如图,根据(2)的方法找到MN 所在的圆心3O ,设(2,0)T则TM =2MN =3O MN 是等腰直角三角形3O L ML ∴,TL ∴==3TO ∴=当M 点在圆上运动一周时,如图,取3OO 的中点1A ,OT 的中点S ,1SA ∴是3OO T 的中位线1312SA O T ∴==,13SA TO ∥即3OO 的中点1A 在以S∴若MN 是⊙O 的以直线l 为对称轴的“反射线段”,则l 为S 的切线设S 与y 轴交于点,C D 112OS OT ==,1SC SA =1OC ∴=同理可得1OD =∴反射轴l 与y 轴交点的纵坐标y 的取值范围为1y >或1y <-【点睛】本题考查了中心对称与轴对称,圆的相关知识,切线的性质,三角形中位线定理,余弦的定义,掌握轴对称与中心对称并根据题意作出图形是解题的关键.5、(1)(-b ,-12b 2);(2)①直角三角形,见解析;②94≤Δ≤3 【分析】(1)y =12x 2+bx =12(x +b )2-12b 2,即可求解;(2)①求出抛物线的表达式为y=12x2,联立y=12x2和y=kx+2并整理得:x2-2kx-4=0,证明△ADO∽△OEB,即可求解;②△AOB的外心为M,则点M是AB的中点,MP是梯形BADG的中位线,则m=k2+2,进而求解.【详解】解:(1)∵y=12x2+bx=12(x+b)2-12b2,∴抛物线的顶点Q坐标为(-b,-12b2);(2)①∵抛物线与x轴只有一个公共点,∴△=b2-4×12×0=0,解得b=0,∴抛物线的表达式为y=12x2,如下图,分别过点A、B作x轴的垂线,垂足分别为D、G,设经过点(0,2)的直线的表达式为y=kx+2,联立y=12x2和y=kx+2并整理得:x2-2kx-4=0,则x1+x2=2k,x1x2=-4,∴y1=12x12,y2=12x22,则y1y2=14x12x22=4=-x1x2,∵AD=y1,DO=-x1,BE=y2,OE=x2,∴AD OD OE BE,∴∠ADO=∠BEO=90°,∴△ADO∽△OEB,∴∠AOD=∠OBE,∵∠OBG+∠BOG=90°,∴∠BOG+∠AOD=90°,即AO⊥BO,∴△AOB为直角三角形;②过点A作x轴的平行线交EB的延长线于点H,过点M作MN与y轴平行,交AH于N,∵△AOB的外心为M,MN∥y轴∥BH,∴点M是AB的中点,MP是梯形ABGD的中位线,∴MP=12(AD+BG)=12(y2+y1),则m=MP=12(y1+y2)=12(kx1+2+kx2+2)=12[k(x1+x2)+4]=k2+2,令y=kx+2=0,解得x=-2k,即点K的坐标为(-2k,0),由题意得:2≤-2k≤4,解得-1≤k≤12且k≠0,∴94≤k2+2≤3,即点M的纵坐标m的取值范围94≤m≤3.【点睛】本题主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。
一、考点突破1. 了解圆内接正多边形的有关概念。
2. 理解并掌握正多边形半径和边长、边心距、中心角之间的关系。
3. 会应用正多边形和圆的有关知识画正多边形。
二、重难点提示重点:圆内接正多边形的定义及相关性质。
难点:正多边形半径、中心角、弦心距、边长之间的关系。
考点精讲 1. 圆内接正多边形的有关概念 ① 顶点都在同一个圆上的正多边形叫做圆内接正多边形。
这个圆叫做该正多边形的外接圆。
② 正多边形的中心、半径、边心距、中心角正多边形的外接圆的圆心叫做这个正多边形的中心;正多边形的外接圆的半径叫做这个正多边形的半径;正多边形的中心到正多边形一边的距离叫做这个正多边形的边心距;正多边形的每一边所对的外接圆的圆心角叫做这个正多边形的中心角。
如图:五边形ABCDE 是⊙O 的内接正五边形, 圆心O 叫做这个正五边形的中心; OA 是这个正五边形的半径; OM 是这个正五边形的边心距。
AOB 叫做这个正五边形的中心角。
A E【要点诠释】① 只要把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。
② 求正n 边形中心角的常用方法:正n 边形有n 条边,每条边对应一个中心角,所以正n 边形的中心角为。
(正n 边形中心角度数与正n 边形的一个外角相等)2. 特殊的圆内接正多边形的半径、弦心距、边长之间的关系① 正三角形——在中进行:;② 正四边形——在中进行,;③ 正六边形——在中进行,。
D E OC OB O D B A CA A B【规律总结】正多边形的外接圆半径R 与边长a 、边心距r 之间的关系:R 2=r 2+(a )2,连接正n 边形的半径,弦心距,把正n 边形的有关计算转化为直角三角形中的问题。
典例精讲例题1 (义乌市)一张圆心角为45°的扇形纸板和圆形纸板按如下图所示方式分别剪成一个正方形,边长都为1,则扇形和圆形纸板的面积比是( )A. 5:4B. 5:2C.:2D.:思路分析:先画出图形,分别求出扇形和圆的半径,再根据面积公式求出面积,最后求出比值即可。
北师大版九年级下册数学第三章圆含答案一、单选题(共15题,共计45分)1、如图,,O为射线BC上一点,以点O为圆心,长为半径做,要使射线BA与相切,应将射线绕点B按顺时针方向旋转( )A. 或B. 或C. 或D. 或2、如图,点O为等边三角形ABC的外心,四边形OCDE为正方形,其中E点在△ABC的外部,下列三角形中,外心不是点O的是()A.△CBEB.△ACDC.△ABED.△ACE3、如图,扇形AOB中,半径OA=2,∠AOB=120°,C是的中点,连接AC、BC,则图中阴影部分面积是()A. ﹣2B. ﹣2C. ﹣D. ﹣4、如图,从一块直径为的圆形铁皮上剪出一个圆心角为90°的扇形.则此扇形的面积为()A. B. C. D.5、如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为4,∠B=135°,则劣弧AC的长()A.8B.4C.2πD.π6、以点O为圆心,线段a为半径作圆,可以作()圆A.无数个B.1个C.2个D.3个7、如图,已知点,是以为直径的半圆上的两个点,且,下列结论中不一定成立的是()A. B. C.D.8、下列命题中,是真命题的是()A.平分弦的直径垂直于弦B.圆内接平行四边形必为矩形C.任意三个点确定一个圆D.相等圆心角所对的弧相等9、如图,在半径为1的⊙O中,将劣弧AB沿弦AB 翻折,使折叠后的恰好与OB、OA相切,则劣弧AB的长为()A. B. C. D.10、如下图,已知AB是⊙O的直径,= = ,∠BOC=40°,那么∠AOE等于()A.40°B.50°C.60°D.120°11、如图所示,MN为⊙O的弦,∠M=40°,∠MON则等于()A.40°B.60°C.100°D.120°12、圆外切等腰梯形一腰长为5cm,则梯形的中位线长为()A.10cmB.5cmC.20cmD.15cm13、如图,已知∠BOA=30°,M为OB边上一点,以M为圆心、2cm为半径作⊙M.点M在射线OB上运动,当OM=5cm时,⊙M与直线OA的位置关系是()A.相切B.相离C.相交D.不能确定14、如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是()A. B.5 C. D.315、如图,点A,B,C在上,四边形是平行四边形.若对角线,则的长为()A. B. C. D.二、填空题(共10题,共计30分)16、如图,分别切⊙于点,若,点为⊙上任一动点,则的大小为________°.17、如图,四边形是的内接四边形,对角线,交于点,且,若,则等于________ .18、如图,⊙O的直径CD垂直弦AB于点E,且CE=4,DE=16,则AB的长为________19、已知扇形的弧长为2π,面积为8π,则扇形的半径为________.20、如图,抛物线与x轴交于A、B两点,与y轴交于C 点,⊙B的圆心为B,半径是1,点P是直线AC上的动点,过点P作⊙B的切线,切点是Q,则切线长PQ的最小值是________.21、如图,四边形ABCD内接于⊙O,AE⊥CB交CB的延长线于点E,若BA 平分∠DBE,AD=5,CE=,则AE=________.22、如图,在扇形AOB中,∠AOB=90°,正方形CDEF的顶点C在弧AB上,使得弧BC=2弧AC,点D在OB上,点E在OB的延长线上,当CF=2 时,阴影部分的面积为________.23、如图,四边形ABCD是的内接四边形,点是的中点,点是上的一点,若,则________.24、如图,已知PA,PB分别切⊙O于A、B,CD切⊙O于E,PO=13,AO=5,则△PCD周长为________.25、如图,边长为2的正方形ABCD内接于⊙O,过点D作⊙O的切线交BA延长线于点E,连接EO,交AD于点F,则EF长为________.三、解答题(共5题,共计25分)26、如图,AB、CD是⊙O的直径,弦CE∥AB,的度数为70°.求∠EOC的度数.27、如图,AB是⊙O的弦,半径OA=10cm,∠AOB=120°,求△AOB的面积.28、如图,Rt△ABC中,∠C=90°、∠BAC=30°,在AC边上取点O画圆使⊙O 经过A、B两点,延长BC交⊙O于D;求证:A、B、D是⊙O的三等分点.29、如图,已知P是正△ABC外接圆的上的任一点,AP交BC于D.求证:PA2=AC2+PB•PC.30、一下水管道的截面如图所示.已知排水管的直径为100cm,下雨前水面宽为60cm.一场大雨过后,水面宽为80cm,求水面上升多少?参考答案一、单选题(共15题,共计45分)1、B2、B3、A4、A5、C6、B7、B8、B10、C11、C12、B13、B14、A15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、28、。
北师大版九年级下册数学第三章圆含答案一、单选题(共15题,共计45分)1、如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为()A.35°B.45°C.55°D.65°2、如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD= ,则阴影部分图形的面积为()A.4πB.2πC.πD.3、如图,在⊙O中,AE是直径,半径OC垂直于弦AB于D,连接BE,若AB=2,CD=1,则BE的长是()A.5B.6C.7D.84、如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则BE的长为()A.2B.4C.6D.85、如图,在半径为4cm的⊙O中,劣弧AB的长为2π cm,则∠C=()A.90°B.60°C.45°D.30°6、如图,在⊙O中,∠BAC=33°,则∠BOC的度数是()A.33°B.66°C.60°D.45°7、下列命题中,正确的是()A.平面上三个点确定一个圆B.等弧所对的圆周角相等C.平分弦的直径垂直于这条弦D.与某圆一条半径垂直的直线是该圆的切线8、如图,△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C 的半径为()A.2.3B.2.4C.2.5D.2.69、在半径为50cm的⊙O中,有长50cm的弦AB,则弦AB的弦心距为()cmA.50B.25C.25D.2510、下列命题是真命题的是()A.顶点在圆上的角叫圆周角B.三点确定一个圆C.圆的切线垂直于半径D.三角形的内心到三角形三边的距离相等11、在某校校园文化建设活动中,小彬同学为班级设计了一个班徽,这个班徽图案由一对大小相同的较大半圆挖去一对大小相同的较小半圆而得.如图,若它们的直径在同一直线上,较大半圆O1的弦AB∥O1O2,且与较小半圆O2相切,AB=4,则班徽图案的面积为()A.25πB.16πC.8πD.4π12、过⊙O内一点M的最长弦长为10cm,最短弦长为8cm,那么OM长为()A.3cmB.6cmC. cmD.9cm13、《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为 1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为()A.13B.24C.26D.2814、如图,四边形ABCD为⊙O的内接四边形,若∠BCD=110°,则∠BAD为()A.140°B.110°C.90°D.70°15、如图,AB是⊙O的直径,AB垂直于弦CD,∠BOC=70°,则∠ABD=()A.20°B.46°C.55°D.70°二、填空题(共10题,共计30分)16、如图,AB是⊙O的直径,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若∠A=∠D,CD=3,则图中阴影部分的面积为________.17、如图,在正方形ABCD内有一折线段,其中AE⊥EF,EF⊥FC,并且AE=4,EF=8,FC=12,则正方形与其外接圆形成的阴影部分的面积为________.18、如图,菱形的边长为2,点在以点A为圆心,为半径的圆弧上,则图中阴影部分的面积是________.19、如图,两同心圆的大圆半径长为5cm,小圆半径长为3cm,大圆的弦AB与小圆相切,切点为C,则弦AB的长是________。
3.1圆同步练习一.选择题1.已知⊙O中,最长的弦长为16cm,则⊙O的半径是()A.4cm B.8cm C.16cm D.32cm2.已知⊙O的半径OA长为1,OB=,则可以得到的正确图形可能是()A.B.C.D.3.下列说法正确的是()A.弦是直径B.弧是半圆C.直径是圆中最长的弦D.半圆是圆中最长的弧4.下列说法:①直径是弦;②弦是直径;③半径相等的两个半圆是等弧;④长度相等的两条弧是等弧;⑤半圆是弧,但弧不一定是半圆.正确的说法有()A.1个B.2个C.3个D.4个5.到圆心的距离不大于半径的点的集合是()A.圆的外部B.圆的内部C.圆D.圆的内部和圆6.下列说法中,正确的是()A.弦是直径B.半圆是弧C.过圆心的线段是直径D.圆心相同半径相同的两个圆是同心圆7.如图,⊙O中,点A,O,D以及点B,O,C分别在一条直线上,图中弦的条数有()A.2条B.3条C.4条D.5条8.一个压路机的前轮直径是1.7米,如果前轮每分钟转动6周,那么这台压路机10分钟前进()米.A.51πB.102πC.153πD.204π9.如图,从A地到B地有两条路可走,一条路是大半圆,另一条路是4个小半圆.有一天,一只猫和一只老鼠同时从A地到B地.老鼠见猫沿着大半圆行走,它不敢与猫同行(怕被猫吃掉),就沿着4个小半圆行走.假设猫和老鼠行走的速度相同,那么下列结论正确的是()A.猫先到达B地B.老鼠先到达B地C.猫和老鼠同时到达B地D.无法确定10.如图中正方形、矩形、圆的面积相等,则周长L的大小关系是()A.L A>L B>L C B.L A<L B<L C C.L B>L C>L A D.L C<L A<L B 二.填空题11.参加篝火晚会时,人们会自然围成一个圆,这是因为圆上任意一点到圆心的距离都,这个距离就是这个圆的.12.如果一个圆的周长为21.98厘米,那么这个圆的半径是厘米.13.如果圆的半径为3,则弦长x的取值范围是.14.如图,若点O为⊙O的圆心,则线段是圆O的半径;线段是圆O的弦,其中最长的弦是;是劣弧;是半圆.15.如图,在⊙O中,点A、O、D和点B、O、C分别在一条直线上,图中共有条弦,它们分别是.三.解答题16.已知:如图,AB是⊙O的直径,CD是⊙O的弦,AB,CD的延长线交于E,若AB=2DE,∠C=40°,求∠E及∠AOC的度数.17.如图,线段AB过圆心O,点A,B,C,D均在⊙O上,请指出哪些是直径、半径、弦,并把它们表示出来.18.如图所示,小丽家到学校有2条路线.分别以AB、BC和AC为直径的半圆弧,已知AB=8千米,BC=16千米.(1)比较①②两条路线,走哪条近;(2)如果AB=a,BC=b,那么①②两条路线的长度有什么变化呢?你得到什么样的结论?参考答案一.选择题1.解:∵最长的弦长为16cm,∴⊙O的直径为16cm,∴⊙O的半径为8cm.故选:B.2.解:∵⊙O的半径OA长1,若OB=,∴OA<OB,∴点B在圆外,故选:D.3.解:A、直径是弦,但弦不一定是直径,故错误,不符合题意;B、半圆是弧,但弧不一定是半圆,故错误,不符合题意;C、直径是圆中最长的弦,正确,符合题意;D、半圆是小于优弧而大于劣弧的弧,故错误,不符合题意,故选:C.4.解:①直径是弦,正确,符合题意;②弦不一定是直径,错误,不符合题意;③半径相等的两个半圆是等弧,正确,符合题意;④能够完全重合的两条弧是等弧,故原命题错误,不符合题意;⑤半圆是弧,但弧不一定是半圆,正确,符合题意,正确的有3个,故选:C.5.解:根据点和圆的位置关系,知圆的内部是到圆心的距离小于的所有点的集合;圆是到圆心的距离等于半径的所有点的集合.所以与圆心的距离不大于半径的点所组成的图形是圆的内部(包括边界).故选:D.6.解:A、直径是弦,但弦不一定是直径,故错误;B、半圆是弧,正确;C、过圆心的弦是直径,故错误;D、圆心相同半径不同的两个圆是同心圆,故错误,故选:B.7.解:图中的弦有AB,BC,CE共三条,故选:B.8.解:前轮的底面圆周长:π×1.7=1.7π(米),1.7π×6×10=102π(米)故选:B.9.解:以AB为直径的半圆的长是:π•AB;设四个小半圆的直径分别是a,b,c,d,则a+b+c+d=AB.则老鼠行走的路径长是:a+πb+πc+πd=π(a+b+c+d)=π•AB.故猫和老鼠行走的路径长相同.故选:C.10.解:设面积是S.则正方形的边长是,则周长L A=4==4;长方形的一边长x,则另一边长为,则周长L B=2(x+),∵(x+)2≥0∴x+≥2,∴L B≥4,即L B≥;圆的半径为,L C=2π×=,∵<,∴L C<L A<L B.故选:D.二.填空题11.解:参加篝火晚会时,人们会自然围成一个圆,这是因为圆上任意一点到圆心的距离都相等,这个距离就是这个圆的半径.故答案为:相等,半径.12.解:21.98÷3.14÷2=3.5(厘米)故答案为:3.5.13.解:圆的半径为3,则弦中最长的弦即直径的长度是6,因而弦长度的取值范围是0<x ≤6.故答案为:0<x≤6.14.解:如图,若点O为⊙O的圆心,则线段OA、OB、OC是圆O的半径;线段AC、AB、BC是圆O的弦,其中最长的弦是AC;、是劣弧;、是半圆.故答案为OA、OB、OC;AC、AB、BC;AC;、;、;15.解:图中的弦有AE,DC,AD共三条,故答案为:三,AE,DC,AD.三.解答题16.解:连接OD,∵OC=OD,∠C=40°,∴∠ODC=∠C=40°,∵AB=2DE,OD=AB,∴OD=DE,∵∠ODC是△DOE的外角,∴∠E=∠EOD=∠ODC=20°,∵∠AOC是△COE的外角,∴∠AOC=∠C+∠E=40°+20°=60°.17.解:直径有:直径AB;半径有:OA、OB、OC;弦有:弦CD、弦AB.18.解:(1)∵①路线的长=AC•π=(8+16)•π=12π,②路线的长=AB•π+BC•π=(AB+BC)π=AC•π=12π,∴两条路线相等;(2)∵①路线的长=AC•π=(a+b)•π=π,②路线的长=AB•π+BC•π=(AB+BC)π=(a+b)π,∴两条路线相等;结论:不论AB,BC的长度怎么变化那么①②两条路线长度仍然相等.。
北师大版九年级下册数学第三章圆含答案一、单选题(共15题,共计45分)1、如图,⊙O过点B,C,圆心O在等腰直角△ABC的内部,∠BAC=90°,OA =1,BC=6,则⊙O的半径为( )A. B.2 C. D.32、已知⊙O的半径为5,点O到弦AB的距离为3,则⊙O上到弦AB所在直线的距离为2的点有()A.4个B.3个C.2个D.1个3、在⊙O中,弦AB的长为8,圆心O到AB的距离为3,若OP=4,则点P与⊙O 的位置关系是()A.P在⊙O内B.P在⊙O上C.P在⊙O外D.P与A或B重合4、如图,AB是⊙O的弦,半径OC⊥AB于D点,且AB=6cm,OD=4cm,则DC的长为()A.5 cmB.2.5 cmC.2 cmD.1 cm5、已知 的半径为 ,图心 到直线 的距离为 ,则直线 与的位置关系为 ( )A.相交B.相切C.相离D.无法确定6、设三角形ABC 为一等腰直角三角形,角ABC 为直角,D 为AC 中点。
以B 为圆心,AB 为半径作一圆弧AFC ,以D 为中心,AD 为半径,作一半圆AGC ,作正方形BDCE 。
月牙形AGCFA 的面积与正方形BDCE 的面积大小关系( )A.S 月牙=S 正方形B.S 月牙= S 正方形C.S 月牙=S 正方形 D.S月牙=2S 正方形7、下列语句中,正确的有( )(1)相等的圆心角所对的弧相等; (2)平分弦的直径垂直于弦;(3)长度相等的两条弧是等弧 (4) 圆是轴对称图形,任何一条直径都是对称轴 A.0个 B.1个 C.2个 D.3个 8、下列语句中不正确的有( )①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③圆是轴对称图形,任何一条直径所在直线都是它的对称轴;④长度相等的两条弧是等弧. A.3个 B.2个 C.1个 D.以上都不对9、如图,在⊙O 中,弦BC=1.点A 是圆上一点,且∠BAC=30°,则⊙O 的半径是( )A.1B.2C.D.10、如图,直线AB是⊙O的切线,C为切点,OD∥AB交⊙O于点D,点E在⊙O 上连接OC,EC,ED,则∠CED 的度数为( )A.30°B.35°C.15°D.45°11、如图,PA,PB是的切线,切点分别为A,B, PO的延长线交于点C,连接OA,OB,BC.若,则等于()A. B. C. D.12、若点B(a,0)在以点A(1,0)为圆心,以2为半径的圆内,则a的取值范围为( )A.-1<a<3B.a<3C.a>-1D.a>3或a<-113、下列命题正确是( )A.一组对边平行,另一组对边相等的四边形是平行四边形B.有两条边对应相等的两个直角三角形全等C.垂直于圆的半径的直线是切线D.对角线相等的平行四边形是矩形14、如图,AB是⊙O的弦,半径OC⊥AB于点D,且AB=6cm,OD=4cm。
一、选择题1.如图,ABC 是O 的内接三角形,BD 为O 的直径.若10BD =,2ABD C ∠=∠,则AB 的长度为( )A .4B .5C .5.5D .62.一定滑轮的起重装置如图,滑轮半径为6cm ,当重物上升4cm π时,滑轮的一条半径OA 按逆时针方向旋转的度数为(假设绳索与滑轮之间没有滑动)( )A .30B .60︒C .90︒D .120︒ 3.如图,AB 是O 的直径,弦CD AB ⊥于点E ,1BE =,6CD =,则AE 的长度为( )A .10B .9C .5D .4 4.如图,O 是ABC 的外接圆,其半径为3cm ,若3BC cm =,则A ∠的度数是( )A .10︒B .15︒C .20︒D .30︒ 5.如图,O 的半径为5,3OP =,则经过点P 的弦长可能是( )A .3B .5C .9D .126.如图,在平面直角坐标系xOy 中,半径为2的⊙O 与x 轴的正半轴交于点A ,点B 是O 上一动点,点C 为弦AB 的中点,直线334y x =-与x 轴、y 轴分别交于点D E 、,则CDE △面积的最小值为( )A .2B .2.5C .3D .347.如图,已知,ABC O △为AC 上一点,以OB 为半径的圆经过点A ,且与BC OC 、交于点E D 、,设,C a A β∠=∠=,则( )A .若70αβ+=︒,则弧DE 的度数为20︒B .若70αβ+=︒,则弧DE 的度数为40︒C .若70αβ-=︒,则弧DE 的度数为20︒D .若70αβ-=︒,则弧DE 的度数为40︒ 8.如图,在ABC 中,5AB AC ==,6BC =,D ,E 分别为线段AB ,AC 上一点,且AD AE =,连接BE 、CD 交于点G ,延长AG 交BC 于点F .以下四个结论正确的是( )①BF CF =;②若BE AC ⊥,则CF DF =;③若BE 平分ABC ∠,则32FG =; ④连结EF ,若BE AC ⊥,则2DFE ABE ∠=∠. A .①②③B .③④C .①②④D .①②③④ 9.如图,AB 是O 的直径,CD 是弦,四边形OBCD 是菱形,AC 与OD 相交于点P ,则下列结论错误的是( )A .OD AC ⊥B .AC 平分OD C .2CB DP = D .2AP OP = 10.如图,ABC 内接于O ,50A ∠=︒,点E 是边BC 的中点,连接OE 并延长交O 于点D ,连接BD ,则D ∠的大小为( )A .55°B .65°C .70°D .75°11.往直径为26cm 的圆柱形容器内装入一些水以后,截面如图所示,若水的最大深度为8cm ,则水面AB 的宽度为( )A .12cmB .18cmC .20cmD .24cm 12.如图,四边形OABC 是平行四边形,以点O 为圆心,OA 为半径的⊙O 与BC 相切于点B ,CO 的延长线交⊙O 于点E ,连接AE ,若AB =2,则图中阴影的面积为( ).A .2πB .πC .22πD .2π二、填空题13.如图,PA 、PB 切⊙O 于A 、B ,点C 在AB 上,DE 切⊙O 于C 交PA 、PB 于D 、E ,已知PO =13cm ,⊙O 的半径为5cm ,则△PDE 的周长是_____.14.如图,在平面直角坐标系中,点P 在第一象限,P 与x 轴、y 轴都相切,且经过矩形AOBC 的顶点C ,与BC 相交于点D .若P 的半径为5,点A 的坐标是()0,8.则点D的坐标是______.15.如图,把一只篮球放在高为16cm 的长方体纸盒中,发现篮球的一部分露出盒,其截图如图所示.若量得EF =24cm ,则该篮球的半径为_____cm .16.边长为6的正三角形的外接圆的周长为__________.17.如图,在ABC 中,A 30∠=︒,45B ∠=︒,72cm AB =,点O 以2/cm s 的速度在ABC 边上沿A B C A →→→的方向运动.以O 为圆心作半径为2cm 的圆,运动过程中O 与ABC 三边所在直线首次相切和第三次相切的时间间隔为__________秒.18.如图所示的是边长为4的正方形镖盘ABCD ,分别以正方形镖盘ABCD 的三边为直径在正方形内部作半圆,三个半圆交于点O ,乐乐随机地将一枚飞镖投掷到该镖盘上,飞镖落在阴影区域的概率为________.19.如图,在ABCD 中,2AD =,3AB =,45A ∠=︒,以点A 为圆心,AD 的长为半径画弧交AB 于点E ,连接CE ,则图中阴影部分的面积为__________(结果保留π).20.如图,正方形ABCD 的边长为8,M 是AB 的中点,一动点P 从点B C D --运动,连接PM ,以点P 为圆心,PM 的长为半径作P ,当P 与正方形ABCD 的边相切时,BP 的长为_________.三、解答题21.已知关于x 的一元二次方程x 2+2mx ﹣n 2+5=0.(1)当m =1时,该一元二次方程的一个根是1,求n 的值;(2)若该一元二次方程有两个相等的实数根.①求m 、n 满足的关系式;②在x 轴上取点H ,使得OH =|m |,过点H 作x 轴的垂线l ,在垂线l 上取点P ,使得PH =|n |,则点P 到点(3,4)的距离最小值是 .22.如图所示,在△ABC 中,AB =CB ,以BC 边为直径的⊙O 交AC 于点E .点D 在BA 的延长线上,且∠ACD =12∠ABC .(1)求证:CD 是⊙O 的切线;(2)若∠ACB =60°,BC =12,连接OE ,求劣弧BE 所对扇形BOE 的面积(结果保留π).23.如图,直径为5的M 的圆心在x 轴正半轴上,M 和x 轴交于,A B 两点,和y 轴交于,C D 两点且4CD =,抛物线2y ax bx c =++经过,,A B C 三点,顶点为N .(1)求,,A B C 三点的坐标.(2)求经过,,A B C 三点的抛物线的解析式.(3)直线NC 与x 轴交于点E ,试判断直线CN 与M 的位置关系,并说明理由. 24.如图,AB 是O 的直径,弦CD AB ⊥与点E ,点P 在O 上,1C ∠=∠.(1)求证://CB PD ;(2)若3BC =,2sin 3C ∠=,求CD 的长. 25.如图,在ABC 中,90,C ABC ∠=︒∠的平分线交AC 于点E ,过点E 作BE 的垂线交AB 于点,F O 是BEF 的外接圆.(1)求证:AC 是O 的切线;(2)过点E 作EH AB ⊥于点H ,若8,4BC EH ==,求O 的半径. 26.如图,已知BC 是O 的直径,AC 切O 于点C ,AB 交O 于点D ,E 为AC 的中点,连接CD ,DE .(1)求证:DE 是O 的切线;(2)若8BD =,6CD =,求AC 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】连接OA ,首先求出∠ACB=30°得∠AOB=60°,从而证得△AOB 是等边三角形,进一步得出结论.【详解】解:∵BD 是圆O 的直径,且BD=10∴OB=5连接OA ,如图,∵BD 是圆O 的直径,∴90ACB ABD ∠+∠=︒又2ABD C ∠=∠∴3∠C=90°,即∠C=30°,∴∠AOB=60°∴△AOB 是等边三角形,∴AB=OB=5故选:B .【点睛】此题主要考查了圆周角定理,熟练掌握圆周角定理是解答此题的关键.2.D解析:D【分析】重物上升的距离恰好是滑轮转过的弧长,根据弧长公式计算即可.【详解】∵重物上升的距离恰好是滑轮转过的弧长,∴4π=n 6180π⨯⨯, 解得n=120,故选D.【点睛】 本题考查了弧长的计算,熟记弧长公式,读懂题意是解题的关键.3.B解析:B【分析】利用垂径定理EC 的长,再在Rt OEC 中,利用勾股定理求解即可.【详解】解:设OC=OB=x ,OE=OB-BE= x-1∵在O 中,AB ⊥CD ,AB 是直径,6CD = ∴11=6=322CD EC DE =⨯=, ∵在Rt OEC 中,OC 2=CE 2+OE 2,即x 2=32+(x-1)2,解得:x=5,∴OE = x-1=4,∴AE=OA+OE=5+4=9,故选:B .【点睛】本题考查垂径定理,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题.4.D解析:D【分析】连接OB 、OC ,则判断△OBC 是等边三角形,则∠BOC=60°,再根据圆周角定理,即可得到答案.【详解】解:连接OB 、OC ,如图:∵3OB OC BC cm ===,∴△OBC 是等边三角形,∴∠BOC=60°,∴∠BAC=30°,故选:D .【点睛】本题考查了圆周角定理,等边三角形的判定和性质,解题的关键是熟练掌握圆周角定理进行解题.5.C解析:C【分析】当经过点O 、P 的弦是直径时,弦最长为10;当弦与OP 是垂直时,弦最短为8;判断即可.【详解】当经过点O 、P 的弦是直径时,弦最长为10;当弦与OP 垂直时,根据垂径定理,得半弦长2253-,所以最短弦为8;所以符合题意的弦长为8到10,故选C.【点睛】本题考查了直径是最长的弦,垂径定理,熟练运用分类思想,垂径定理,勾股定理是解题的关键.6.A解析:A【分析】连接OB ,取OA 的中点M ,连接CM ,过点M 作MN DE ⊥于N ,先证明点C 的运动轨迹是以点(1,0)M 为圆心,1为半径的M ,设M 交MN 于点C ',解得直线DE 与坐标轴的交点,即可解得OD OE 、的长,再由勾股定理解得DE 的长,接着证明DNM DOE 解得MN 的长,最后当点C 与点C '重合时, 此时CDE △面积的最小值,据此解题.【详解】解:如图,连接OB ,取OA 的中点M ,连接CM ,过点M 作MN DE ⊥于N ,,AC CB AM OM ==112MC OB ∴== C ∴的运动轨迹是以点(1,0)M 为圆心、半径为1的圆,设M 交MN 于点C ', 直线DE 的解析式为334y x =-, 令0x =,得3y =- (0,3)E ∴-令0y =,得4x =(4,0)D ∴3,4,OE OD ∴==3DM =22345DE ∴+=,MDN ODE MND DOE ∠=∠∠=∠DNM DOE ∴MN DM OE DE ∴= 335MN ∴= 95MN ∴= 94155C N '∴=-= 当点C 与点C '重合时,此时CDE △面积的最小值11452225DE C N '=⋅=⨯⨯= 故选:A .【点睛】本题考查圆的综合题,涉及一次函数与坐标轴的交点、勾股定理、相似三角形的判定与性质等知识,是重要考点,难度一般,掌握相关知识是解题关键.7.B解析:B【分析】连接BD ,根据直径所对的圆周角是直角,可求得∠ABD =90°,又由A β∠=,可求得∠ADB =90β︒-,再根据∠ADB =∠DBC +∠C ,可得∠DBC =90βα︒--,从而求出弧DE 的度数.【详解】解:连接BD ,∵AD 是直径,∴90ABD ∠=︒,∴90A ADB ∠+∠=︒,∴90ADB β∠=︒-,又∵∠ADB =∠DBC +∠C ,∴()90DBC αβ∠=︒-+,若70αβ+=︒,则()90907020DBC αβ∠=︒-+=︒-︒=︒,∴弧DE 的度数20240=︒⨯=︒,故选B .【点睛】此题主要考查了圆周角定理及推论、三角形外角的性质,熟练掌握圆周角定理、构造直径所对圆周角是解题的关键.8.D解析:D【分析】先证明∆BAE ≅∆CAD ,再证明∆ABG ≅ ∆ACG ,得AF 是∠BAC 的平分线,进而即可判断①;先证明BDC=∠CEB=90°,根据直角三角形的性质,即可判断②;根据角平分线的性质,得点G 到∆ABC 的三边距离都相等,结合“等积法”即可判断③;先证明B ,C ,D ,E 在以点F 为圆心的圆上,进而即可判断④.【详解】∵AB=AC ,∠BAE=∠CAD ,AE=AD ,∴∆BAE ≅ ∆CAD ,∴∠ABE=∠ACD ,∵AB=AC ,∴∠ABC=∠ACB ,∴∠ABC-∠ABE=∠ACB-∠ACD ,即:∠GBC=∠GCB ,∴BG=CG ,∴∆ABG ≅ ∆ACG ,∴∠BAG=∠CAG ,即AF 是∠BAC 的平分线,∴BF CF =,故①正确;∵BE AC ⊥,∴∠CEB=90°,由①可知:BD=CE ,∠ABC=∠ACB ,又∵BC=CB ,∴∆BDC ≅∆CEB ,∴∠BDC=∠CEB=90°,∵点F 是BC 的中点,∴CF DF =,故②正确;∵BE 平分ABC ∠,AF 平分∠BAC ,∴点G 是角平分线的交点,∴点G 到∆ABC 的三边距离都相等,且等于FG ,∵5AB AC ==,6BC =,AF ⊥BC ,∴4=, ∴S ∆ABC =12(AB+AC+BC)∙FG=12×16FG=8FG ,S ∆ABC =12BC∙AF=12, ∴8FG=12,即:32FG =,故③正确; ∵BE AC ⊥,由①可知:CD ⊥AB , ∴B ,C ,D ,E 在以点F 为圆心的圆上,∴2DFE ABE ∠=∠,故④正确. 故选D .【点睛】本题主要考查等腰三角形的性质,全等三角形的判定和性质,直角三角形的性质,勾股定理,角平分线的性质,圆周角定理,熟练掌握“等腰三角形三线合一”,“直角三角形,斜边上的中线等于斜边的一半”,是解题的关键.9.D解析:D【分析】根据菱形的性质可以得出四条边平行并且都相等,又根据AB 是直径,即可知道∠ACB=90°,即可判断A ,因为三角形ABC 为直角三角形,根据求∠A 的正弦值即可判断∠A=30°,即可判断D ,根据中位线的性质即可B 、C 选项;【详解】∵ 四边形OBCD 是菱形,∴ OB ∥CD ,OD ∥BC ,OB=OD=CD=BC ,∵ AB 是直径,∴ ∠ACB=90°,∵OD ∥BC ,∴ ∠APO=90°,∴OD ⊥AC ,故A 正确; ∵12BC OD A AB AB ===sin ∠ , ∴∠A=30°,∴2OA OP = ,故D 错误,∵2OA OP =,∴2OD OP = ,∴DP=OP ,∴AC平分OD,故C正确;∴BC=2DP,故B正确;故选:D.【点睛】本题考查了菱形的性质,锐角三角函数、三角形的中位线的性质,圆周角的性质,熟练掌握知识点是解题的关键;10.B解析:B【分析】连接CD,根据圆的内接四边形的性质得到∠CDB=180°-∠A=130°,根据垂径定理得到OD⊥BC,求得BD=CD,根据等腰三角形的性质即可得到结论;【详解】如图:连接CD,∵∠A=50°,∴∠CDB=180°-∠A=130°,∵ E是边BC的中点,∴ OD⊥BC,∴ BD=CD,∠BDC=65°,∴∠ODB=∠ODC=12故选:B.【点睛】本题考查了三角形的外接圆与外心,圆内接四边形的性质,垂径定理,等腰三角形的性质,正确的理解题意是解题的关键.11.D解析:D【分析】连接OB,过点O作OC⊥AB于点D,交圆O于点C,由题意可知CD为8,然后根据勾股定理求出BD的长,进而可得出AB的长.【详解】如图,连接OB,过点O作OC⊥AB于点D,交圆O于点C,则AB=2BD,∵圆的直径为26cm ,∴圆的半径r=OB=13cm ,由题意可知,CD=8cm ,∴OD=13-8=5(cm ), ∴()221692512BD OB OD cm =-=-= ,∴AB=24cm ,故选:D .【点睛】本题考查了垂径定理的应用,过圆心向弦作垂线构造垂径定理是解题的关键.12.A解析:A【分析】连接OB ,根据平行四边形的判定及平行线的性质得出2OF ⊥BE 于F ,根据=()OBE OEA OBE S S SS S ---阴扇扇OEA 求解即可.【详解】 解:连接OB ,∴OB=OE=OA ,∵BC 与⊙O 相切于B ,∴OB ⊥BC ,∵四边形ABCD 是平行四边形,∴BC ∥OA ,OC ∥AB ,∴∠BOA=∠OBC=90°, ∵OB=OA ,AB=2,∴∠OAB=∠OBA=45°,2,即2作OF ⊥BE 于F ,∵OA ∥BC ,∴∠COB=∠OBA=45°,∴∠EOB=180°-∠COB=180°-45°=135°, ∴2135(2)33604OBE S ππ==扇形,112sin 22sin(135)222OBE S ab C ==︒=,245(2)13604OEA S ππ==扇形, ∴=()OBE OEA OBE S S SS S ---阴扇扇OEA =32124242ππ--+=21=42ππ, 故选A .【点睛】本题考查了平行线的性质,平行四边形的判定与性质,解题的关键是正确作出辅助线.二、填空题13.24cm 【分析】连接OAOB 由切线长定理可得:PA=PBDA=DCEC=EB ;由勾股定理可得PA 的长△PDE 的周长=PD+DC+CE+PE=PD+DA+PE+EB=PA+PB 即可求得△PDE 的周长【解析:24cm【分析】连接OA 、OB ,由切线长定理可得:PA=PB ,DA=DC ,EC=EB ;由勾股定理可得PA 的长,△PDE 的周长=PD+DC+CE+PE=PD+DA+PE+EB=PA+PB ,即可求得△PDE 的周长.【详解】解:连接OA 、OB ,如图所示:∵PA 、PB 为圆的两条切线,∴由切线长定理可得:PA=PB ,同理可知:DA=DC ,EC=EB ;∵OA ⊥PA ,OA=5cm ,PO=13cm ,∴在Rt △POA 中,由勾股定理得:=cm,12∴PA=PB=12cm;∵△PDE的周长=PD+DC+CE+PE,DA=DC,EC=EB;∴△PDE的周长=PD+DA+PE+EB=PA+PB=24cm,故答案为:24cm.【点睛】本题考查的是切线长定理,切线长定理图提供了很多等线段,分析图形时关键是要仔细探索,找出图形的各对相等切线长.14.(92)【分析】设圆与x轴y轴的切点分别是EF连接EP并延长交AC于点N连接FP并延长交BC于点M连接PCPD利用切线的性质垂径定理勾股定理计算PMCM的长即可【详解】如图设圆与x轴y轴的切点分别是解析:(9,2).【分析】设圆与x轴,y轴的切点分别是E,F,连接EP,并延长,交AC于点N,连接FP,并延长,交BC于点M,连接PC,PD,利用切线的性质,垂径定理,勾股定理计算PM,CM的长即可.【详解】如图,设圆与x轴,y轴的切点分别是E,F,连接EP,并延长,交AC于点N,连接FP,并延长,交BC于点M,连接PC,PD,∵P与x轴、y轴都相切,∴PE⊥OB,PF⊥OA,∵FO⊥OE,PE=PF,∴四边形PFOE是正方形,∵P的半径为5,∴PE=PF=PC=PD=5,∵四边形AOBC是矩形,∴PN⊥AC,PM⊥BC,∴四边形AOEN,四边形NEBC都是矩形,∵点A的坐标是()0,8,∴OA=EN=8,∴AF=PN=CM=3,∴=,∴AC=OB=AN+NC=9,∵PM⊥BC,∴CM=DM=3,∴BD=BC-CD=8-6=2,∴点D的坐标为(9,2).故答案为:(9,2).【点睛】本题考查了切线的性质,正方形的判定,矩形的性质和判定,勾股定理,垂径定理,根据题意熟练运用切线的性质是解题的关键.15.5【分析】取EF的中点M作MN⊥AD于点M取MN上的球心O连接OF 设OF=x则OM=16-xMF=12在Rt△MOF中利用勾股定理求得OF的长即可【详解】取EF的中点M作MN⊥AD于点M取MN上的球解析:5【分析】取EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM=16-x,MF=12,在Rt△MOF中利用勾股定理求得OF的长即可.【详解】取EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=16cm,设OF=x cm,则ON=OF,∴OM=MN-ON=16-x,MF=12cm,在Rt△MOF中,OM2+MF2=OF2,即:(16-x)2+122=x2,解得:x=12.5 (cm),故答案为:12.5.【点睛】本题主考查垂径定理、矩形的性质及勾股定理的应用,正确作出辅助线构造直角三角形是解题的关键.16.【分析】根据题意画出图形先求出边长为6的正三角形的外接圆的半径再求出其周长即可【详解】解:如图所示连接OBOC过O作OD⊥BC于D∵△ABC 是边长为6的等边三角形BC=6∴∠BOC==120°∠BO解析:43π【分析】根据题意画出图形,先求出边长为6的正三角形的外接圆的半径,再求出其周长即可.【详解】解:如图所示,连接OB、OC,过O作OD⊥BC于D,∵△ABC是边长为6的等边三角形,BC=6,∴∠BOC=3603︒=120°,∠BOD=12∠BOC=60°,BD=3,∴OB=3 sin603BD==︒∴外接圆的周长33.故答案为:3.【点睛】本题考查的是正多边形和圆,根据题意画出图形,利用数形结合求解是解答此题的关键.17.【分析】要求第一次相切和第三次相切的时间间隔题目已知速度那么就要求第一次相切圆心运动的距离与第三次相切圆心运动的距离之差根据公式:时间=路程÷速度即可求解【详解】解:第一次相切如图①∵∴即第一次相切解析:521 2+【分析】要求第一次相切和第三次相切的时间间隔,题目已知速度,那么就要求第一次相切圆心运动的距离与第三次相切圆心运动的距离之差,根据公式:时间=路程÷速度即可求解.【详解】解:第一次相切如图①,∵12O P cm,1O P AC⊥,∴11222sin sin 30O P O A cm A ===︒,即第一次相切圆心运动的距离为22cm .第二次相切如图②, 22O P cm =,2O P BC ⊥, 第三次相切如图③,∵32O P cm =,3O P AB ⊥,∴3322sin O P O B cm B ===, 第三次相切圆心运动的距离为3722AB O B +=+,∴第一次相切圆心运动的距离与第三次相切圆心运动的距离之差为:72222522+-=+,∴52252122s t v +===+, 故答案为:5212+.【点睛】本题考查的是特殊角的三角函数值以及求圆平移到与直线相切时圆心经过的距离,解题的关键是求出第一次相切圆心运动的距离与第三次相切圆心运动的距离之差.18.【分析】先判断出两半圆交点为正方形的中心连接OAOD 则可得出所产生的四个小弓形的面积相等先得出2个小弓形的面积即可求阴影部分面积根据即可求得概率【详解】解:由题意易知两半圆的交点即为正方形的中心设此解析:12【分析】先判断出两半圆交点为正方形的中心,连接OA ,OD ,则可得出所产生的四个小弓形的面积相等,先得出2个小弓形的面积,即可求阴影部分面积,根据ABCD S S 阴影正方形即可求得概率.【详解】解:由题意,易知两半圆的交点即为正方形的中心,设此点为O ,连接AO ,DO ,则图中的四个小弓形的面积相等,∵两个小弓形面积=14AOD AOD AOD ABCD S S S S --△半圆半圆正方形=, 又∵正方形ABCD 的边长为4,∴各半圆的半径为2,∴两个小弓形面积=2112-44=2-424ππ⨯⨯⨯⨯, ∴=2S S ⨯阴影半圆-4个小弓形的面积=()22-22-4=8ππ⨯,∴飞镖落在阴影部分的概率为:81==162ABCD S S 阴影正方形, 故答案为:12. 【点睛】 本题考查扇形的面积、正方形的性质、几何概率,解题的关键是求出小弓形的面积. 19.【分析】过点作于点根据等腰直角三角形的性质求得从而求得最后由结合扇形面积公式平行四边形面积公式三角形面积公式解题即可【详解】解:过点作于点故答案为:【点睛】本题考查等腰直角三角形平行四边形的性质扇形 52π-【分析】过点D 作DF AB ⊥于点F ,根据等腰直角三角形的性质求得DF ,从而求得EB ,最后由ABCD EBC ADE S SS S =--阴影扇形结合扇形面积公式、平行四边形面积公式、三角形面积公式解题即可.【详解】解:过点D 作DF AB ⊥于点F ,2,3,45AD AB A ==∠=︒,22DF AD ∴==, 2AE AD ==,1EB AB AE ∴=-=,ABCD EBC ADE S S S S ∴=--阴影扇形2452132123602π⨯=-⨯2322π= 22π=, 故答案为:522π-. 【点睛】 本题考查等腰直角三角形、平行四边形的性质、扇形的面积公式等知识,是重要考点,难度较易,掌握相关知识是解题关键.20.3或或【分析】由线段中点的性质解得当与正方形的边相切时分别作出相应的图形分三种情况讨论:①当与正方形的边相切切点为点时设在中利用勾股定理解得的值即可解出的长;②当与正方形的边相切切点为点时可证明四边 解析:3或35【分析】由线段中点的性质解得4BM =,当P 与正方形ABCD 的边相切时,分别作出相应的图形,分三种情况讨论:①当P 与正方形ABCD 的边CD 相切,切点为点C 时, 设PC PM x ==,在Rt PBM △中,利用勾股定理解得x 的值,即可解出BP 的长;②当P 与正方形ABCD 的边AD 相切,切点为点K 时,可证明四边形PKDC 是矩形,由矩形对边相等的性质结合圆的半径相等,解得2PM PK DC BM ===,再在Rt PBM △中,利用勾股定理解题;③当P 与正方形ABCD 的边AB 相切,切点为点M 时,在Rt PMB 中,利用勾股定理解题即可.【详解】解:M 是AB 的中点,118422BM AB ∴==⨯=分三种情况讨论:①如图,当P 与正方形ABCD 的边CD 相切,切点为点C 时,设PC PM x ==,在Rt PBM △中,222PM BM BP =+2224(8)x x ∴=+-22246416x x x ∴=+-+5x ∴=5,3PC BP BC PC ∴==-=;②如图,当P 与正方形ABCD 的边AD 相切,切点为点K 时,连接PK ,则PK AD ⊥,四边形PKDC 是矩形,2PM PK DC BM ∴===48BM PM ∴==,在Rt PBM △中, 228443PB =-=;③如图,当P 与正方形ABCD 的边AB 相切,切点为点M 时,,8,4PM AB PM BC BM ⊥===在Rt PMB 中,228445BP =+=综上所述,当P与正方形ABCD的边相切时,BP的长为:3或435故答案为:3或4345【点睛】本题考查切线的性质、勾股定理等知识,是重要考点,难度一般,掌握相关知识是解题关键.三、解答题21.(1)2;(2)①m2+n2=5;②55【分析】(1)把m=1,x=1代入方程得1+2-n2+5=0,然后解关于n的方程即可;(2)①利用判别式的意义得到△=4m2-4(-n2+5)=0,从而得到m与n的关系;②利用勾股定理得到22m n+5P在以O5上,然后根据点与圆的位置关系判断点P到点(3,4)的距离最小值.【详解】解:(1)把m=1,x=1代入方程得1+2﹣n2+5=0,解得n=2,即n的值为2;(2)①根据题意得△=4m2﹣4(﹣n2+5)=0,整理得m2+n2=5;②∵OH=|m|,PH=|n|,∴OP22+5m n即点P在以O5∴原点与点(3,4)的连线与⊙O的交点P使点P到点(3,4)的距离最小,∵原点到点(3,422+5,34∴点P到点(3,4)的距离最小值是55故答案为55【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.也考查了点与圆的位置关系.22.(1)见解析;(2)12π【分析】(1)连接BE ,由圆周角定理可得出∠BEC =90°,由等腰三角形的性质得出∠ABE =∠CBE =12∠ABC ,得出∠ACD =∠CBE ,证得∠BCE+∠ACD =90°,则可得出结论; (2)求出∠BOE =120°,由扇形的面积公式可得出答案.【详解】(1)证明:连接BE ,∵BC 是⊙O 的直径,∴∠BEC =90°,∴BE ⊥AC ,又∵AB =CB ,∴∠ABE =∠CBE =12∠ABC , ∵∠ACD =12∠ABC , ∴∠ACD =∠CBE ,又∵∠BCE+∠CBE =90°,∴∠BCE+∠ACD =90°,∵点C 在⊙O 上,∴CD 是⊙O 的切线.(2)解:∵∠ACB =60°,∴∠BOE =120°,∵BC =12,∴⊙O 的半径是6,∴S 扇形BOE =21206360π⨯⨯=12π. 【点睛】本题考查了切线的性质、圆周角定理、等腰三角形的性质、扇形面积公式等知识,熟练掌握切线的判定方法是解题的关键;23.(1)点A 的坐标为()1,0-,点B 的坐标为()4,0,C 点的坐标为()0,2-;(2)213222y x x =--;(3)直线CN 与M 相切,见解析. 【分析】 (1)连接DM ,在Rt △DOM 中,求出OM ,OC 、OA 、OB ,则可求出A 、B 、C 三点的坐标即可; (2)由A 、B 两点坐标,设抛物线y =a (x +1)(x−4),将C (0,−2)代入求出a 即可解决问题;(3)连接MC ,根据勾股定理的逆定理证明CM ⊥EN 即可.【详解】(1)如图,连接DM ,∵M 的直径5,∴52DM =, ∵4CD =,∴2OD OC ==,∴C 点的坐标为()0,2-,∴2232OM DM OD =-=, ∴53122OA =-=,∴54OB OA =-=, ∴点A 的坐标为()1,0-,点B 的坐标为()4,0;(2)由A 、B 两点坐标,设抛物线()()14y a x x =+-,将()0,2C -代入,得()()-20104a =+-解得:12a =, ∴()()1142y x x =+-, ∴经过,,A B C 三点的抛物线解析式为213222y x x =--; (3)直线CN 与M 相切;如图,连接CM ,设过CN 直线的解析式为y kx b =+,∵抛物线的顶点为N , ∴332-12222b a -=-=⨯,()219424252414842ac b a ⨯⨯---==-⨯, ∴N 点的坐标为325,28⎛⎫- ⎪⎝⎭, 将C ()0,2-,N 325,28⎛⎫-⎪⎝⎭代入y kx b =+得 232528b k b =-⎧⎪⎨+=-⎪⎩ 解得342k b ⎧=-⎪⎨⎪=-⎩ , ∴CN 直线的解析式为324y x =--, 当y=0时,x=8-3∴点E 的坐标为8,03⎛⎫- ⎪⎝⎭ ∴22103CE OC OE =+=, ∴256EM OE OM =+=, ∵2254CM =,21009CE =,262536EM =, ∴222CM CE EM +=,∴ECM ∆是直角三角形,即MC EC ⊥,∴直线CN 与M 相切.【点睛】此题考查待定系数法求函数解析式,圆、垂径定理、圆的切线的判定、勾股定理以及逆定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.24.(1)见解析;(2)CD =【分析】(1)根据同弧所对圆周角相等可以确定∠C=∠P ,又知∠1=∠C ,即可得∠1=∠P ,进而得到//CB PD ;(2)先利用三角函数求出BE 的长,再根据勾股定理求EC 得长,最后根据垂径定理得DE EC =,即可求出CD DE EC =+的长.【详解】(1)证明:∵C P ∠=∠,1C ∠=∠.∴1P ∠=∠.∴//CB PD .(2)解:∵CD AB ⊥,3BC =,2sin 3C ∠=. ∴在t R △CEB 中,2sin =3BE C BC ∠=,则2=33BE . ∴=2BE .又∵3BC =,CD AB ⊥∴t R △CEB 中,DE EC ==, ∴CD DE EC =+=【点睛】本题考查了三角函数解直角三角形、勾股定理、垂径定理和圆周角性质,平行线的判定,解题的关键是利用垂径定理和圆周角定理找到边与角的关系.25.(1)见解析;(2)5【分析】(1)连接OE ,由于BE 是角平分线,则有CBE ABE ∠=∠,再证可得OE//BC ;根据平行线的性质和切线的判定即可证得结论;(2)先证明△BCE ≌△BHE ,再根据勾股定理列方程求解即可.【详解】 ()1证明:连结OE,∵BE 平分ABC ∠,CBE ABE ∴∠=∠又,=OB OE,∴∠=∠ABE BEO∴∠=∠CBE BEO ,//OE AC ∴,又90C ∠=︒,即AC BC ⊥.OE AC ∴⊥,∴AC 是O 的切线,()2解:∵BE 平分,ABC AC BC EH AB ∠⊥⊥、,CE EH ∴=,∵BE BE =,∴()Rt CBE Rt HBE HL ≌,8CB HB ∴==,设OE=OB=r ,8HO BH OB r ∴=-=-,222OE OH HE =+,()22284r r ∴=-+.解得:=5r .【点睛】本题主要考查了切线的证明、角平分线的性质定理以及全等三角形的判定与性质,勾股定理,掌握切线的证明、角平分线的性质定理以及全等三角形的判定与性质,勾股定理是解题关键.26.(1)证明见解析;(2)152 【分析】(1)连接OD ,根据切线的性质和直角三角形斜边的中线以及等腰三角形的性质得出,EDC ECD ∠=∠,ODC OCD ∠=∠,然后利用等量代换即可得出DE OD ⊥,从而证明结论;(2)首先根据勾股定理求出BC 的长度,然后证明BCD BAC ∽△△,最后利用CD BD AC BC=求解即可. 【详解】(1)证明:连接OD ,如图,∵BC 是O 的直径,∴90BDC ∠=︒,∴90ADC ∠=︒,∵E 为AC 的中点, ∴12DE EC AC ==, ∴EDC ECD ∠=∠,∵OD OC = , ∴ODC OCD ∠=∠,∵AC 切O 于点C ,∴AC OC ⊥,∴90EDC ODC ECD OCD ∠+∠=∠+∠=︒,∴DE OD ⊥,∴DE 是O 的切线;(2)解:在Rt BCD 中,∵8BD =,6CD =,∴10BC ==∵90BDC BCA ∠=∠=︒,B B ∠=∠,∴BCD BAC ∽△△, ∴CD BD AC BC=, 即6810AC =, ∴152AC =. 【点睛】 本题主要考查圆的综合问题,掌握切线的判定及性质,相似三角形的判定及性质是解题的关键.。
新版北师大初中数学九(下)第三章圆分节练习第1节圆01、【基础题】已知⊙O的面积为25 . (1)若PO=5.5,则点P在_____;(2)若PO=4,则点P在_____;(3)若PO=_____,则点P在⊙O上.01.1【综合Ⅰ】如左下图,△ABC中,∠ACB=90°,AC=2 cm,BC=4 cm,CM是AB边上的中线,以点C为圆心,5cm为半径作圆,则A、B、C、M四点在圆外的有_______,在圆上的有_______,在圆内的有_______.01.2、【综合Ⅲ】如右上图,菱形ABCD的对角线AC和BD相交于点O,点E、F、G、H分别为AB、BC、CD、DA的中点,那么E、F、G、H是否在同一个圆上?说明理由.01.3、【综合Ⅲ】若⊙A的半径为5,圆心A的坐标是(3,4),点P的坐标是(5,8),则点P的位置是()A、在⊙A内B、在⊙A上C、在⊙A外D、不能确定02、【综合Ⅰ】设AB=3 cm,作图说明满足下列要求的图形:(1)到点A和点B的距离都等于2 cm的所有点组成的图形;(2)到点A和点B的距离都小于2 cm的所有点组成的图形;(3)到点A的距离小于2 cm,且到点B的距离大于2 cm的所有点组成的图形.03、【提高】海军部队在某灯塔A的周围进行爆破作业,A的周围3 km的水域为危险水域,有一渔船误入离灯塔A有2 km远的B处,为了尽快驶离危险区域,该船应往哪个方向航行?请给予证明.03.1【提高】已知点P不在⊙O上,且点P到⊙O上的点的最小距离是5,最大距离是7,求⊙O的半径.第2节圆的对称性04、【基础题】如左下图,在⊙O中,⌒AC =⌒BD ,∠1=30°,那么∠2=_____.04.1、【基础题】如右上图,在⊙O中,弧AB等于弧AC,∠A=30°,则∠B=_____.05、【综合Ⅰ】如左下图,点A、B、C、D是⊙O上的四点,AB=DC,那么△ABC与△DCB全等吗?为什么?05.1、【基础题】如右上图,在⊙O中,AD=BC,试说明AB与CD相等.05.2【基础】如左下图,AB、DE是⊙O的直径,C是⊙O上的一点,且⌒AD=⌒CE,那么BE和CE的大小有什么关系?为什么?05.3【综合Ⅰ】如右上图,AB是⊙O的直径,OD∥AC,那么⌒CD与⌒BD的大小有什么关系?为什么?06、【综合Ⅰ】如左下图,A、B是⊙O上两点,∠AOB=120°,C是⌒AB的中点,试确定四边形OACB的形状.06.1、【综合Ⅱ】如图,AB是⊙O的直径,BC、CD、DA是⊙O的弦,且BC=CD=DA,则∠BCD=______.* 第3节垂径定理07、【基础题】如左下图,已知⊙O中,OC⊥弦AB于C,AB=8,OC=3,则⊙O的半径等于______.07.1、【基础题】如右上图,已知⊙O的半径为30 mm,弦AB=36 mm,求点O到AB的距离及∠OAB的余弦值.08、【综合Ⅱ】如左下图,有一圆弧形拱桥,拱的跨度AB=16 m,拱高CD=4 m,那么拱形的半径是____m.C08.1、【综合Ⅱ】“圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问:径几何?”转化为数学语言就是:如右上图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为E ,CE =1寸,AB =10寸,求直径CD 的长.09、【综合Ⅰ】如右图,在⊙O 中,AB 、CD 是两条弦,OE ⊥AB ,OF ⊥CD ,垂足分别为E 、F.(1)如果∠AOB =∠COD ,那么OE 与OF 的大小有什么关系?为什么?(2)如果OE =OF ,那么AB 与CD 的大小有什么关系?为什么?10、【综合Ⅰ】 已知⊙O 的半径为5 cm ,弦AB ∥弦CD ,AB =6 cm ,CD =8 cm ,试求AB 与CD 间的距离.10.1、【综合Ⅱ】 如果圆的两条弦互相平行,那么这两条弦所夹的弧相等吗?为什么?11、【综合Ⅲ】如右图,在⊙O 中,AB 、AC 为互相垂直且相等的两条弦,OD ⊥AB ,OE ⊥AC ,垂足分别为D 、E ,若AC =2 cm ,则⊙O 的半径为______ cm .第4节 圆周角和圆心角的关系(包括圆内接四边形)12、【基础题】如左下图,在⊙O 中,已知∠BOC =100°,则∠BAC 的度数是_____°12.1、【基础题】如右上图,在⊙O 中,∠BAC =25°,则∠BOC =_____°12.2、【综合Ⅰ】 如图,∠A 是⊙O 的圆周角,∠A =40°,求∠OBC 的度数.C BA OCBAO13、【基础题】如图,A、B、C、D是⊙O上的四点,且∠BCD=100°,求∠BOD (弧BCD所对的圆心角)和∠BAD的大小.13.1、【基础题】左下图,A、B、C三点都在⊙O上,点D是AB延长线上一点,∠AOC=140°, ∠CBD 的度数是_____.13.2【基础题】如右上图,四边形ABCD是圆内接四边形,E是BC延长线上一点,若∠BAD=105°,则∠DCE是_____°.13.3【综合Ⅰ】在圆内接四边形ABCD中,对角∠A与∠C的度数之比是4:5,求∠C的度数.13.4、【综合Ⅱ】如左下图,圆内接四边形ABCD两组对边的延长线分别相交于点E、F,且∠E=40°,∠F=60°,求∠A的度数.14、【基础题】如右上图,⊙O的直径AB=10 cm,C为⊙O上的一点,∠B=30°,求AC的长.14.1、【基础题】如左下图,AB是⊙O的直径,∠C=15°,求∠BAD的度数.14.2、【综合Ⅰ】如右上图,⊙O 的弦AB =16,点C 在⊙O 上,且sin C =54,求⊙O 的半径的长.14.3、【中考题】A 、B 是⊙O 上的两个定点,P 是⊙O 上的动点(P 不与A 、B 重合),我们称∠APB 是⊙O 上关于点A 、B 的滑动角.(1)若AB 是⊙O 的直径,则∠APB 是多少度?(2)若⊙O 的半径是1,AB =2,则∠APB 是多少度?15、【基础题】平行四边形的四个顶点在同一圆上,则该平行四边形一定是( )A 、正方形B 、菱形C 、矩形D 、等腰梯形16、【提高题】如右图,AB 是半圆O 的直径,弦AD 、BC 相交于点P ,且CD 、AB 的长是一元二次方程01272=+-x x 的两根,求tan ∠DPB.第5节 确定圆的条件17、【基础题】分别作出下面三个三角形的外接圆,并指出它们外心的位置有什么特点17.1、【基础题】如左下图,MN 所在的直线垂直平分线段AB ,利用这样的工具,最少使用多少次,就可以找到圆形工件的圆心?为什么?17.2、【基础题】如右上图,A 、B 、C 三点表示三个工厂,要建立一个供水站,使它到这三个工厂的距离相等,求作供水站的位置(尺规作图,不写作法,保留作图痕迹).18、【综合Ⅰ】 在△ABC 中,AC =10,BC =8,AB =6,求△ABC 外接圆的半径18.1、【综合Ⅰ】 等边三角形的边长为a ,求这个三角形外接圆的面积.第6节直线和圆的位置关系19、【基础题】如右图,已知Rt△ABC的斜边AB=8 cm,AC=4 cm.(1)以点C为圆心作圆,当半径为多长时,AB与⊙C相切?(2)以点C为圆心,分别以2 cm和4 cm的长为半径作两个圆,这两个圆与AB分别有怎样的位置关系?19.1【基础题】直线l与半径为r的⊙O相交,且点O到直线l的距离为5,求r的取值范围.19.2、【综合Ⅰ】在Rt△ABC中,∠C=90°,∠B=30°,O是AB上一点,OA=m,⊙O的半径为r,当r与m 满足怎样的关系时,(1)AC与⊙O相交?(2)AC与⊙O相切?(3)AC与⊙O相离?20、【基础题】如左下图,AB是⊙O的直径,点D在AB的延长线上,过点D作⊙O的切线,切点为C,若∠A=25°,则∠D=______.20.1【基础题】如右上图,PA切⊙O于点A,该圆的半径为3,PO=5,则PA的长等于_____.20.2、【综合Ⅰ】如左下图,P A、PB分别与⊙O相切于点A、B,∠P=70°,则∠C=( )A.70°B.55°C.110°D.140°20.3、【综合Ⅱ】如右上图,已知AB是⊙O的直径,AC是弦,CD切⊙O于点C,交AB的延长线于点D,∠ACD=120°,BD=10.(1)求证:CA=CD;(2)求⊙O的半径.20.4【综合Ⅱ】如右图,AB是⊙O的直径,BC是⊙O的切线,切点为点B,点D是⊙O上的一点,且AD∥OC,求证:AD·BC=OB·BD.21、【中考题,2014陕西23题】(本题满分8分)如右下图,⊙O的半径为4,B是⊙O外一点,连接OB,且OB=6.过点B作⊙O的切线BD,切点为D,延长BO 交⊙O于点A,过点A作切线BD的垂线,垂足为C.(1) 求证:AD平分∠BAC(2) 求AC的长22、【基础题】如左下图,已知直线AB经过⊙O上的点C,并且OA=OB,CA=CB,那么直线AB是⊙O的切线吗?为什么?22.1、【中考题,2013年孝感市23题,10分】如右上图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=,求⊙O的直径.23、【基础题】如图,已知锐角三角形、直角三角形和钝角三角形,分别作出它们的内切圆. 请问,三角形的内心是否都在三角形的内部?23.1、【基础题】等边三角形的边长为a,求这个三角形内切圆的面积.23.2、【综合Ⅰ】已知在Rt△ABC中,∠C=90°,AC=6,BC=8,则△ABC的内切圆半径r=__ _ .24、【综合Ⅰ】如左下图,在△ABC中,∠A=68°,点I是内心,求∠I的度数.24.1、【综合Ⅰ】如右上图,在四边形ABCD中,∠B=60°,∠DCB=80°,∠D=100°,若P、Q两点分别为三角形ABC和三角形ACD的内心,那么∠PAQ的度数是多少?24.2、【综合Ⅲ】在Rt△ABC中,∠C=90°,AC=8 cm,BC=6 cm,求其内心和外心之间的距离.*第7节切线长定理25、【基础题】如图,PA、PB是⊙O的两条切线,A、B是切点. 求证:PA=PB25.1、【基础题】已知⊙O的半径为3 cm,点P和圆心O的距离为6 cm,过点P画⊙O的两条切线,求这两条切线的切线长.25.2、【综合Ⅰ】如左下图,PA和PB是⊙O的两条切线,A、B是切点,C是弧AB上任意一点,过点C画⊙O的切线,分别交PA和PB于D、E两点. 已知PA=PB=5 cm,求△PDE的周长.25.3、【综合Ⅲ】如右上图,PA和PB是⊙O的两条切线,A、B为切点,∠P=40°,点D在AB上,点E和点F分别在PB和PA上,且AD=BE,BD=AF,求∠EDF的度数.26、【综合Ⅰ】如左下图,在Rt△ABC中,∠C=90°,AC=10,BC=24,⊙O是△ABC的内切圆,切点分别为D、E、F,求⊙O的半径. (利用切线长定理来解题)26.1、【综合Ⅲ】如右上图,⊙O是△ABC的内切圆,D、E、F为切点,且AB=9 cm,BC=14 cm,CA=13 cm,求AF、BD、CE的长.26.2、【综合Ⅲ】如图,在四边形ABCD中,AB=AD=6 cm,CB=CD=8 cm,且∠B=90°,该四边形存在内切圆吗?如果存在,请计算内切圆的半径.第8节圆内接正多边形27、【基础题】如图,在圆内接正六边形ABCDEF中,半径OC=4,OG⊥BC,垂足为G,求这个正六边形的中心角、边长和边心距.27.1、【综合Ⅱ】有一边长为4的正n边形,它的一个内角为120°,则其外接圆的半径为______.27.2、【综合Ⅱ】如右图,把边长为6的正三角形剪去三个三角形得到一个正六边形DFHKGE,求这个正六边形的面积.27.3、【基础题】请求出半径为6的圆内接正三角形的边长和边心距.28、【基础题】已知正方形的边长是a,其内切圆的半径为r,外接圆的半径为R,则r∶R∶a=______. 28.1、【基础题】请利用尺规作一个已知圆的内接正四边形.28.2、【综合Ⅰ】请利用尺规作一个已知圆的内接正八边形.29、【综合Ⅲ】如图,点M、N分别是⊙O的内接正三角形ABC、内接正方形ABCD、内接正五边形ABCDE、……、内接正n边形的边AB、BC上的点,且BM=CN,连接OM、ON.(1)求图1中的∠MON的度数;(2)在图2中,∠MON的大小是______,在图3中,∠MON的大小是______;(3)根据图n,请说明∠MON的度数与正n边形的边数n之间的关系(直接写出答案).第9节弧长及扇形的面积(含圆锥侧面积题目)30、【中考题,2014年云南省第7题3分】已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为()A、B.2πC.3πD.12π30.1、【中考题,2014四川自贡第8题4分】一个扇形的半径为8cm,弧长为cm,则扇形的圆心角为()30.2、【基础题】已知圆上一段弧长为4 cm,它所对的圆心角为100°,则该圆的半径是_____.cm.31、【中考题,2014成都,3分】在圆心角为120°的扇形AOB中,半径OA=6 cm,则扇形AOB的面积是________2 31.1、【中考题,2014山东东营第5题3分】如左下图,已知扇形的圆心角为60°,半径为3,则图中弓形(阴影)面积是_________.31.2、【中考题,2014·浙江金华第10题4分】如右上图,一张圆心角为45°的扇形纸板和圆形纸板按如图方式各剪得一个正方形,两个正方形的边长都为1,则扇形纸板和圆形纸板的面积比是()A.5:4B.5:2C.5:2D.5:2cm.32、【中考题,2014杭州第2题3分】左下图,已知一个圆锥体的三视图如图所示,则这个圆锥的侧面积为______233、【综合Ⅲ】如右上图,⊙A与⊙B外切于⊙O的圆心O,⊙O的半径为1,则阴影部分的面积是________. 33.1、【中考题,2014山东泰安第19题3分】如图,半径为2cm,圆心角为90°的扇形OAB中,分别以OA、OBcm.为直径作半圆,则图中阴影部分的面积为________233.2、【中考题,2014福建泉州第17题4分】如右图,有一直径是米的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC,则:(1)AB的长为_____ 米;(2)用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为______ 米.新版北师大初中数学九(下)第三章圆分节练习答案第1节答案01、【答案】(1)圆外;(2)圆内;(3)501.1、【答案】在圆外的有点B,在圆上的有点M,在圆内的有点A和点C.01.2【答案】E、F、G、H四个点共圆.证明:连接OE、OF、OG、OH∵四边形ABCD是菱形∴AB=BC=CD=DA,DB⊥AC∵E、F、G、H分别是各边的中点∴1111,,,2222OE AB OF BC OG CD OH AD====(直角三角形斜边上的中线等于斜边的一半)∴OE OF OG OH===∴E、F、G、H四个点都在以O为圆心、OE长为半径的圆上.01.3【答案】选A02、【答案】(1)如图1,所求图形即P、Q两点;(2)如图2,所求图形为阴影部分(不包括阴影的边界);(3)如图3,所求图形为阴影部分(不包括阴影的边界).03、【答案】往射线AB方向航行【证明】如图,设航线AB交⊙A于点C,在⊙A上任取一点D(不包括C关于A的对称点)连接AD、BD;在△ABD中,∵AB+BD>AD,AD=AC=AB+BC,∴AB+BD>AB+BC,∴BD>BC.答:应沿AB的方向航行.03.1【答案】当点P在圆外时,半径是1;当点P在圆内时,半径是6.第2节答案04、【答案】30°04.1【答案】 75°05、【答案】 全等,可先证AC =DB.05.1、【提示】 证弧CD 和弧AB 相等.05.2【答案】 相等.【提示】 先证弧BE 和弧AD 相等.05.3、【答案】 相等【提示】 连接OC06、【答案】四边形OACB 是菱形【证明】连接OC∵C 是弧AB 的中点,∠AOB=120°∴∠AOC=60°∴△AOC 是等边三角形∴OA=AC同理可得BC=OB∴OA=OB=BC=AC∴四边形OACB 是菱形06.1、【答案】 120°【提示】 连接OC 、OD ,可证△BOC 和△COD 都是等边三角形.* 第3节 答案07、【答案】半径等于5.【提示】如右图,利用垂径定理和勾股定理来算半径.07.1、【答案】 点O 到AB 的距离是24 mm ,∠OAB 的余弦值是0.608、【答案】 10 m.【提示】 在如图的圆弧形中,CD 是拱高,根据圆的对称性可知CD 垂直平分AB ,则CD 所在直线过圆心,延长CD ,作圆心O ,并且连接OB.设拱形的半径OB 为r ,则OD 为(r -4),根据勾股定理可得24)-(r +28=2r ,解得r =10 m.出半径. 有些题目不能直接求出半径则需列方程来解决.08.1【答案】直径CD是26寸.【解析】09、【提示】(1)用HL证明Rt△AOE与Rt△COF全等;(2)用HL证明Rt△AOE与Rt△COF全等.10、【答案】AB与CD间的距离为7 cm或1 cm.【提示】如图,若AB和CD在圆心两侧,则可求出OE=3,OF=4,则AB、CD距离是7 cm;若AB和CD在圆心同侧,则距离是1 cm.10.1、【答案】相等.【解析】如图示,过圆心O作垂直于弦的直径EF,由垂径定理得:弧AF=弧BF,弧CF=弧DF,用等量减等量差相等原理,弧AF-弧CF=弧BF-弧DF,即弧AC=弧BD,故结论成立.符合条件的图形有三种情况:(1)圆心在平行弦外,(2)在其中一条线弦上,(3)在平行弦内,但理由相同.11、【答案】2【解析】第4节答案12、【答案】∠BAC的度数是50°.12.1、【答案】∠BOC=50°12.2、【答案】∠OBC=50°13、【答案】∠BOD=160°,∠BAD=80°13.1【答案】∠CBD 的度数是70°13.2【答案】∠DCE=105°13.3【答案】∠C=100°13.4【答案】∠A=40°14、【答案】AC=5 cm14.1、【答案】∠BAD的度数是75°14.2【答案】半径的长为10.【提示】连接AO,延长AO交⊙O于D,连接BD.14.3、【答案与解析】15、【答案】选C716、【答案】tan∠DPB=3【解析】第5节答案17、【答案】锐角三角形的外心在内部;直角三角形的外心在斜边中点;钝角三角形的外心在外部.17.1、【答案】 最少使用两次 17.2、【提示】连接AB 、AC ,分别作线段AB 和AC 的垂直平分线,两条垂直平分线的交点即为供水站的位置.18、【答案】 △ABC 外接圆的半径是5.18.1、【答案】 π312a第6节 答案19、【答案】 (1)当半径长为32 cm 时,AB 与⊙C 相切.(2)当半径为2 cm 时,⊙C 与AB 相离;当半径为4 cm 时,⊙C 与AB 相交.19.1【答案】 5>r19.2【答案】 (1)m r 23> (2)m r 23= (3)m r 23<20、【答案】 40°20.1【答案】 PA =420.2、【答案】 选B20.3【答案】 (1)提示:证∠A =∠D =30°(2)半径是10.20.4【提示】 证明Rt △CBO ∽ Rt △BDA21、【答案】证明:(1)连接OD∵BD 是⊙O 的切线,D 为切点∴BC OD ⊥∵BD AC ⊥∴OD ∥AC∴∠ODA=∠CAD又∵OD=OA∴∠BAD=∠CAD∴AD 平分∠ABC(2)解:∵OD ∥AC , ∴ΔBOD ∽ΔBAC , ∴=, ∴=, ∴ AC =32022.1、【答案与解析】(1)证明:连接OA ,∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC ,∴∠OAC=∠OCA=30°,又∵AP=AC ,∴∠P=∠ACP=30°,∴∠OAP=∠AOC ﹣∠P=90°,∴OA ⊥PA , ∴PA 是⊙O 的切线.(2)在Rt △OAP 中,∵∠P=30°,∴PO=2OA=OD+PD ,又∵OA=OD ,∴PD=OA ,∵,∴. ∴⊙O 的直径为.23、【答案】 都在内部23.1、【答案】 1212a23.2、【答案】 r =2.24、【答案】 ∠I =124°24.1、【答案】 ∠PAQ 的度数是60°24.2、【答案】 5 cm【解析】*第7节答案25、【解析】3cm25.1、【答案】325.2、【答案】△PDE的周长是10 cm.25.3、【答案】∠EDF=70°26、【答案】⊙O的半径是426.1、【答案】AF=4 cm,BD=5 cm,CE=9 cm.【提示】设AE=AF=x,BF=BD=y,CE=CD=z2426.2、【答案】存在内切圆,内切圆半径是7第8节答案2. 27、【答案】中心角是60°,边长是4,边心距是327.1、【答案】外接圆的半径为4627.2、【答案】正六边形的面积是36,边心距是3.27.3、【答案】边长是328、【答案】1∶2∶228.1、【提示】用直尺和圆规作两条互相垂直的直径,在圆周上得到四个点,依次连接这四个点,就得到圆的内接正四边形.28.2、【提示】如图,先作出两条互相垂直的直径,再作出两条直径所形成的直角的角平分线,即可在圆周上得到圆内接正八边形的顶点29、【答案】第9节答案30、【答案】根据弧长公式:l==3π,故选C.30.1、【答案】 选B30.2、【答案】 7.2 cm.31、【答案】 12π 2cm 31.1、【答案】 4332-π31.2【答案】 选A【解析】32、【答案】 π15 2cm33、【答案】33π-【解析】33.1、【答案】 (﹣1) cm 2 【解析】分析:假设出扇形半径,再表示出半圆面积,以及扇形面积,进而即可表示出两部分P ,Q 面积相等.连接AB ,OD ,根据两半圆的直径相等可知∠AOD =∠BOD =45°,故可得出绿色部分的面积=S △AOD ,利用阴影部分Q 的面积为:S 扇形AOB ﹣S 半圆﹣S 绿色,故可得出结论.解:∵扇形OAB 的圆心角为90°,假设扇形半径为2,∴扇形面积为:=π(cm 2),半圆面积为:×π×12=(cm 2),∴S Q +S M =S M +S P =(cm 2), ∴S Q =S P ,连接AB ,OD ,∵两半圆的直径相等,∴∠AOD =∠BOD =45°,∴S 绿色=S △AOD =×2×1=1(cm 2),∴阴影部分Q 的面积为:S 扇形AOB ﹣S 半圆﹣S 绿色=π﹣﹣1=﹣1(cm 2).33.2、【答案】 (1)1 米; (2)41 米. 分析: (1)根据圆周角定理由∠BAC =90°得BC 为⊙O 的直径,即BC =,根据等腰直角三角形的性质得AB =1;(2)由于圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,则2πr=,然后解方程即可.解答:解:(1)∵∠BAC=90°,∴BC为⊙O的直径,即BC=,∴AB=BC=1;(2)设所得圆锥的底面圆的半径为r,根据题意得2πr=,解得r=.故答案为1,.。