风电基础知识
- 格式:ppt
- 大小:8.94 MB
- 文档页数:108
风电技术培训内容大全一、风力发电机组基础知识1. 风力发电概述:介绍风力发电的基本原理、风能的特点以及风力发电在全球范围内的应用情况。
2. 风力发电机组的基本构成:详细讲解风力发电机组的基本构成,包括风轮、发电机、塔筒等主要部件。
3. 风力发电机组的工作原理:阐述风力发电机组的工作原理,包括风能吸收、风轮转换、发电机发电等过程。
二、风力发电机组结构与原理1. 风轮结构与原理:详细介绍风轮的结构、特点、工作原理以及与发电机组的配合方式。
2. 发电机结构与原理:详细介绍发电机的结构、工作原理以及与风轮的配合方式。
3. 塔筒结构与原理:详细介绍塔筒的结构、特点、工作原理以及与风轮和发电机的配合方式。
三、风力发电机组控制系统1. 控制系统的基本组成:介绍控制系统的基本组成,包括传感器、控制系统硬件和软件等。
2. 控制系统的功能:阐述控制系统的功能,包括对风向、风速的监测和控制,对发电机组的启动、停止、调速等控制。
3. 控制系统的工作原理:详细介绍控制系统的工作原理,包括传感器的工作原理、控制算法的实现等。
四、风力发电机组维护与检修1. 维护与检修的基本知识:介绍维护与检修的基本概念和方法,包括定期维护、故障检修等。
2. 主要部件的维护与检修:详细介绍主要部件的维护与检修方法,包括风轮、发电机、塔筒等的维护与检修。
3. 维护与检修的安全措施:强调维护与检修过程中的安全措施和注意事项。
五、风力发电机组故障排除1. 故障排除的基本流程:介绍故障排除的基本流程,包括故障检测、故障定位、故障修复等。
2. 常见故障及排除方法:列举常见的风力发电机组故障及相应的排除方法。
3. 故障排除的安全措施:强调故障排除过程中的安全措施和注意事项。
六、风力发电机组安全知识1. 安全操作规程:介绍风力发电机组的安全操作规程,包括操作前的准备、操作过程中的注意事项等。
2. 安全防护措施:列举常见的安全防护措施,包括防护设备的使用、安全警示标识的设置等。
第一章风力发电机组结构1.8 控制系统控制系统利用微处理器、逻辑程序控制器或单片机通过对运行过程中输入信号的采集传输、分析,来控制风电机组的转速和功率;如发生故障或其他异常情况能自动地检测平分析确定原因,自动调整排除故障或进入保护状态。
控控制系统的主要任务就是自动控制风机组运行,依照其特性自动检测故障并根据情况采取相应的措施。
控制系统包括控制和检测两部分。
控制部分又设置了手动和自动两种模式,运行维护人员可在现场根据需要进行手动控制,而自动控制应在无人值班的条件下预先设置控制策略,保证机组正常安全运行。
检测部分将各传感器采集到的数据送到控制器,经过处理作为控制参数或作为原始记录储存起来,在机组控制器的显示屏上可以查询。
现场数据可通过网络或电信系统送到风电场中央控制室的电脑系统,还能传输到业主所在城市的总部办公室。
安全系统要保证机组在发生非常情况时立即停机,预防或减轻故障损失。
例如定桨距风电机组的叶尖制动片在运行时利用液压系统的高压油保持与叶片外形组合成一个整体,同时保持机械制动器的制动钳处于松开状态,一旦发生液压系统失灵或电网停电,叶尖制动片和制动钳将在弹簧作用下立即使叶尖制动片旋转约90°,制动钳变为夹紧状态,风轮被制动停止旋转。
根据风电机组的结构和载荷状态、风况、变桨变速特点及其他外部条件,将风电机组的运行情况主要分为以下几类:待机状态、发电状态、大风停机方式、故障停机方式、人工停机方式和紧急停机方式。
(1)待机状态风轮自由转动,机组不发电(风速为0~3m/s),刹车释放。
(2)发电状态发电状态Ⅰ:启动后,到额定风速前,刹车释放。
发电状态Ⅱ:额定风速到切出风速(风速12~25m/s),刹车释放。
(3)故障停机方式:故障停机方式分为:可自启动故障和不可自启动故障。
停机方式为正常刹车程序:即先叶片顺桨,党当发动机转速降至设定值后,启动机械刹车。
(4)人工停机方式:这一方式下的刹车为正常刹车,即先叶片顺桨,当发电机转速降至设定值后启动机械刹车。
《风电基础知识综合性概述》一、引言随着全球对清洁能源的需求不断增长,风能作为一种可再生、无污染的能源形式,受到了广泛的关注和重视。
风力发电作为风能利用的主要方式,在全球能源结构中扮演着越来越重要的角色。
本文将对风电基础知识进行全面的阐述和分析,包括基本概念、核心理论、发展历程、重要实践以及未来趋势等方面,为读者提供一个清晰、系统且深入的理解框架。
二、基本概念1. 风能风能是指空气流动所产生的动能。
风能的大小与风速的立方成正比,因此风速是影响风能大小的关键因素。
风能具有可再生、无污染、分布广泛等优点,是一种非常有潜力的清洁能源。
2. 风力发电风力发电是利用风力带动风车叶片旋转,再通过增速机将旋转的速度提升,来促使发电机发电。
风力发电的过程主要包括风能的捕获、机械能的转换和电能的输出三个环节。
3. 风电机组风电机组是风力发电的核心设备,主要由风轮、发电机、塔架、控制系统等部分组成。
风轮是捕获风能的关键部件,通常由叶片和轮毂组成。
发电机将风轮转动产生的机械能转换为电能。
塔架用于支撑风轮和发电机,使其能够在较高的位置捕获更多的风能。
控制系统则负责对风电机组的运行状态进行监测和控制,确保其安全、稳定地运行。
三、核心理论1. 贝兹理论贝兹理论是风力发电的基础理论之一,它指出理想情况下风轮最多只能捕获到风能的 59.3%。
贝兹理论为风电机组的设计和优化提供了理论依据。
2. 空气动力学空气动力学是研究空气流动规律和空气与物体相互作用的学科。
在风力发电中,空气动力学主要用于研究风轮叶片的形状、尺寸和角度等因素对风能捕获效率的影响。
通过优化风轮叶片的空气动力学性能,可以提高风电机组的发电效率。
3. 电机学电机学是研究电机的基本原理、结构、性能和控制方法的学科。
在风力发电中,电机学主要用于研究发电机的类型、工作原理和性能特点等因素对电能输出质量的影响。
通过选择合适的发电机类型和优化发电机的控制方法,可以提高风电机组的电能输出质量和稳定性。
风电基础知识引言:随着对可再生能源的需求不断增长,风电作为一种无污染、可持续的能源形式,越来越受到关注。
无论是面对日趋紧张的能源供应,还是追求绿色环保的发展,风能都成为了各国政府和企业的关注焦点。
本文将介绍风电的基础知识,包括风能的转化原理、组成结构以及风电发电技术的发展趋势等。
一、风能的转化原理风能是一种动能,可以通过风力发电机将其转化为电能。
风力发电机是利用风能使转子旋转,通过转子与发电机的直接耦合或通过齿轮箱连接,使发电机产生电力。
风力发电机的核心部分是转子,其外形类似于大风车。
当风力吹向转子时,转子的叶片受到推动,并开始旋转。
转子上设置的发电机可以将旋转转子的运动转化为电力。
二、风电的组成结构1.风力发电机组风力发电机组是风电站的核心设备。
它由塔筒、轮毂、叶片、发电机和变频器等组成。
塔筒是风力发电机组的支撑结构,通常采用钢铁或混凝土制成。
轮毂是连接塔筒和叶片的部分,其主要作用是使叶片能够转动。
叶片是风力发电机组的动力装置,一般由纤维复合材料制成,具有轻质、高强度的特点。
发电机是将机械能转化为电能的核心部件,通常采用异步发电机或同步发电机。
变频器是将风力发电机组产生的交流电转化为稳定的直流电的装置。
2.电网连接装置电网连接装置包括变电站和输电线路。
变电站将风力发电机组产生的电能转换为适于输送的电气能,并将其接入电力系统中。
输电线路用于将发电站产生的电能输送到用户端。
三、风电发电技术的发展趋势1.提高风能利用率目前风能的利用率还有很大的提升空间。
为了提高风能利用率,风力发电机组的设计和运行需要更加科学合理。
同时,需要对风力资源进行更加准确的评估,选择更加适合的风力发电机组。
2.增强风电系统的稳定性由于风力发电的波动性较大,风电系统的稳定性一直是亟待解决的问题。
在未来的发展中,需要进一步完善风电并网技术,提高系统的稳定性和可靠性。
3.发展离岸风电相比于陆地风电,离岸风电具有风能资源丰富、风速稳定等优势。
风电基础知识1 风电基础知识一、安全管理:1、高压设备发生接地时,室内几米范围内禁止靠近?答: 4m2、电业人员对安规考试几年进行几次?答:安规考试每年进行一次。
3、停电时倒闸操作的顺序?答:断路器(开关)负荷侧刀闸电源侧刀闸 4、电气设备上的工作组织措施有哪些?答:工作票制度、工作许可制度、工作监护制度、工作间断、转移和终结制度。
5、电气设备上工作的技术措施有哪些?答:停电、验电、接地、悬挂标示牌和装设遮拦。
6、风机地网接地电阻合格的范围?答:接地电阻4 。
7、接地电阻可采取什么方法测量?答:电位降法,电流-电压三极法,接地电阻阻抗测试仪法。
8、绝缘手套应多长时间试验一次?答:半年。
9、高压验电器应多长时间试验一次?答:半年。
10、金属导体的电阻值与温度的关系?答:1/ 4随温度的升高而增大。
11、被电击的人能否获救关键在什么?答:取决于能否尽快脱离电源和施行紧急救护? 12、当发电有人触电时,首先做什么?答:迅速脱离电源。
13、由雷电引起的电压叫什么?答:叫大气过电压。
14、高压断路器内部油的作用是什么?答:绝缘和灭弧。
15、兆欧表进行测量时应保持在多少转?答:120r/min 16、变压器中性点接地属于?答:工作接地。
17、计量用电流互感器的精度要求答:0. 2 级。
18、公司范围内 CT 二次侧额定电流一般为多少?答:5A。
19、设备的双重名称是指什么答:设备名称和编号。
20、雷击过后多长时间可以接近风机?答:1h 以后。
21、事故调查应坚持什么原则?答:四不放过原则。
22、交流电能表属于什么仪表?答:感应式仪表。
23、最常见的电流保护措施是什么?答:快速熔断器。
24、补偿电容的投切与主变分接头?答:补偿电容投切时,应观察 10kV 母线电压,根据母线电压情况调整分接头。
25、直流系统接地怎么办?答:当发生直流系统接地时,应采用拉路方法判断,每条直流回路断开不超过 3s。
2 26、 10kV 母线 PT 的开口三角作用?答:用于测量不平衡电压,消除谐振,提供零序电压,保护等作用。
风电基础知识培训风机发电机组成风电是一种清洁、可再生的能源形式,其基础知识对于了解和推广风能利用至关重要。
本文将介绍风电基础知识,特别是风机发电机组成,以帮助读者更好地理解和利用该技术。
一、风能利用的基础知识1.1 风能的来源与特点风能是地球上大气运动转化为机械能的产物。
风的形成与太阳照射地球表面不均匀有关,气温、地形等因素也会影响风能的分布和强度。
风能具有免费、可再生、广泛分布等特点。
1.2 风能的利用方式风能的主要利用方式是风力发电。
通过将风能转化为机械能驱动发电机,进而产生电能。
此外,风能还可以用于提供动力、水泵和空调等领域。
二、风机发电机组成2.1 风机的基本结构风电系统主要由风机、塔架和输电系统组成。
风机是核心部件,通常由叶片、轮毂、发电机、控制系统等组成。
2.2 风机的叶片风机叶片是将风能转化为机械能的关键部件。
叶片通常采用轻质、强度高的材料制造,具有空气动力学设计和结构加强等特点。
2.3 风机的轮毂轮毂是连接叶片和发电机的部件,负责传递叶片的旋转运动。
轮毂通常由高强度合金材料制造,以确保叶片的稳定性和安全性。
2.4 风机的发电机风机发电机是将机械能转化为电能的装置。
它通常由转子、定子和控制系统组成。
转子由风机转动产生的机械能驱动,定子则产生电能。
2.5 风机的控制系统风机的控制系统负责监测和控制风机的运行状态。
它可以根据风速、风向等参数调节叶片角度,以优化风机的发电效率。
2.6 风机与塔架风机通过塔架固定在地面或海上,以获得最佳的风能利用效果。
塔架的高度、材料和结构设计等均会影响风机的稳定性和性能。
三、预防和解决风机故障3.1 风机故障的类型风机故障主要包括叶片断裂、轮毂断裂、发电机故障等。
这些故障可能导致风机停机、性能下降甚至损毁。
3.2 预防风机故障的措施预防风机故障的关键在于定期检查和维护风机设备。
定期检查叶片、轮毂和发电机等部件的状况,及时排查和修复隐患。
3.3 解决风机故障的方法一旦发生风机故障,应立即停机,并寻找原因。
风电基础知识培训风能发电限制因素风能是一种可再生的清洁能源,而风电发电则是利用风能转化为电能的过程。
风能作为一种绿色能源,具有广泛的发展前景。
然而,风电发电也存在一些限制因素,本文将对风电基础知识以及风能发电的限制因素进行详细介绍。
一、风电基础知识1. 风电原理风电原理是指将风能转化为电能的过程。
当风吹向风力发电机的扇叶时,扇叶被风力推动旋转。
扇叶与发电机内部的转子相连,转动的同时驱动发电机发出电能。
通过变压器将发电机产生的低电压电能转化为可以供电的高电压电能。
2. 风电装机容量风电装机容量是指特定时间内风力发电装置额定输出功率的总和。
通常以千瓦(kW)或兆瓦(MW)来表示。
装机容量是衡量风电项目规模大小的重要指标。
3. 风力资源评估风力资源评估是指对特定地理位置的风能资源进行测量和评估的过程。
通过对风速、风向等参数的测量和分析,可以确定是否适合建设风电项目,并评估该项目的潜在发电量。
二、风能发电限制因素尽管风能作为一种可再生的清洁能源,具有许多优势,但也受到一些限制因素的制约,下面将详细介绍这些因素。
1. 风速不稳定风速是影响风能发电量的主要因素之一。
风速的不稳定性会导致风电机组的发电量波动较大。
当风速低于风力发电机组的额定切入风速时,发电机组无法启动发电;当风速超过额定切出风速时,发电机组会自动停机,以保护设备。
2. 风能密度风能密度是指单位面积或单位体积内风能含量的大小。
风能密度越高,表示单位面积或单位体积内的风能含量越大,从而产生更多的风能发电。
然而,许多地区的风能密度较低,限制了风电项目的发展。
3. 建设地点限制风电项目的建设需要占用较大的土地面积,而且需要考虑到风速和风向等因素,选择合适的建设地点。
然而,由于土地利用规划、环境保护和生态保护等因素的限制,许多地区无法建设风电项目,进一步限制了风能发电的规模和发展。
4. 噪音和视觉影响风力发电机组在运行时会产生噪音,尤其是在高速旋转的情况下噪音更加明显。
第一章风能及风能资源一.风的成因风是环绕地球大气层中的空气流动.流动的空气所具有的能量,也就是风所具有的动能,就称为风能.从广义太阳能的观点看,风能是由太阳能转化而来的.来自太阳能的辐射能不断地传送到地球表面周围,因受太阳照射而受热的情况不同,地球表面各处产生了温差,因而产生气压差,由此形成了空气的流动.因此,可以说是太阳把能量以热能的形式传到地球而后又转换成风能的.二风的风类大气环流――地球表面的大气环流是由于太阳辐射及地球自转而引起的.在赤道上,太阳垂直照射,地面受热很强:而在地球两极地区,太阳是倾斜照射的,地面受热则较弱,热空气较冷空气轻,就造成在赤道附近热空气向空间上升,并通过大气层上部流向两极;两极地区的冷空气则流向赤道.由于地球本身自西向东旋转的结果,这种大气环流在北半球产生了东北风,在南半球则产生了东南风,分别称为东北信风和东南信风.海陆风――沿海地球陆地同海上所形成的风向交替的海风与陆风,它们是由于昼夜之间温度变化而造成的.在白日,陆地上接受的太阳辐射热量较海水要强,因而陆地上的空气受热向上流动,而海洋面上的空气较冷,较冷的空气则自海洋流向沿岸陆地,这样就形成了海风;在夜间,陆地上的空气比海洋上的空气冷却要快,这样就造成海洋上的空气上升,而陆地上较冷的空气沿地面流向海洋,形成了陆风.山谷风――山岳地区在一昼夜间风向交替的山风(或称山岳风)与谷风(或称平原风).谷风的产生是由于日间太阳照射使山坡上的空气温度升高,热空气上升,而地势地处的冷空气则自山谷向上流动,这就形成了谷风;到了夜晚,空气中的热量向高空散发,高空中的空气密度增大,空气则沿山坡向下流动,这就形成了山风.第二章风的描述如上所述,风是由于空气的流动而形成的,因此可被看做是向量,包括空气流动的速度及流动的方向两个要素,也即是风速和风向.对于人类来说,风是最熟悉的自然现象之一,风速与风向在不同的时间(每日每月每年)都有一定的周期性变化.为了估算某一地域的风能资源,必须测量出每日、每月、每年的风速及风向数据,了解其变化的情况。
风电的基础知识1.风力发电机的技术原理三相三相不控桥整流蓄电池(1)发电机为三相(即三根线),输出三相应该是相互导通的,两根引出线的电阻是相同的,任意两根线一打是会出现火花。
(2)12V蓄电池充满电之后,电压会上升,一般蓄电认为电池充满在13.8V~14.5V之间。
用风力充电,蓄电池电压都会高,1.1V~1.3V为额定电压,多种蓄电池工作状态选择是不一样的。
10.2V切入逆变器。
发电机频率的监控,控制器增加监控点,电压信号选择保护。
风能-机械能-电能-用电器2.风力发电机实际上是一个由风机叶片、发电机及尾舵组成的机组。
(1)最理想的叶片3.叶片扫风面积越大,接受风能则越大。
叶片侧面叶型的不同设计,可提高转速,减小阻力。
1.风力发电机的技术原理三相三相不控桥整流蓄电池nbsp; (1)发电机为三相(即三根线),输出三相应该是相互导通的,两根引出线的电阻是相同的,任意两根线一打是会出现火花。
(2)12V蓄电池充满电之后,电压会上升,一般蓄电认为电池充满在13.8V~14.5V 之间。
用风力充电,蓄电池电压都会高,1.1V~1.3V为额定电压,多种蓄电池工作状态选择是不一样的。
10.2V切入逆变器。
发电机频率的监控,控制器增加监控点,电压信号选择保护。
风能-机械能-电能-用电器2.风力发电机实际上是一个由风机叶片、发电机及尾舵组成的机组。
(1)最理想的叶片叶片扫风面积越大,接受风能则越大。
叶片侧面叶型的不同设计,可提高转速,减小阻力。
叶片理论极限值CP(max)=0.593P∝SρO3 * CP(目前,大风机叶片实际做出来最理想的CP值为0.48,小风机为0.48~0.36,而HY 系列的叶片CP值可做到0.42。
) (2)高效能的发电机发电机效率:大型发电机 0.95小型发电机 0.6~0.5HY系列的发电机 0.74 整机转化效率:整机转化效率 = 气动效率(CP值) * 发电机效率即HY系列发电机的整机转化效率为:0.42*0.74=0.28~0.3以,远高于国标规定的效率值为0.24。