多元函数的概念二元函数的极限和连续性
- 格式:ppt
- 大小:1.36 MB
- 文档页数:33
第九章 多元函数微分学§9.1 多元函数的概念、极限与连续性一、多元函数的概念1.二元函数的定义及其几何意义设D 是平面上的一个点集,如果对每个点()D y x P ∈,,按照某一对应规则f ,变量z 都有一个值与之对应,则称z 是变量x ,y 的二元函数,记以()y x f z ,=,D 称为定义域。
二元函数()y x f z ,=的图形为空间一卦曲面,它在xy 平面上的投影区域就是定义域D 。
例如 221y x z --=,1:22≤+y x D , 此二元函数的图形为以原点为球心,半径为1的上半球面,其定义域D 就是 xy 平面上以原点为圆心,半径为1的闭圆。
2.三元函数与n 元函数()z y x f u ,,= ()Ω∈z y x ,,空间一个点集称为三元函数()n x x x f u ,,21 = 称为n 元函数它们的几何意义不再讨论,在偏导数和全微分中会用到三元函数。
条件极值中,可能会遇到超过三个自变量的多元函数。
二、二元函数的极限设函数),(y x f 在区域D 内有定义,),(000y x P 是D 的聚点,如果存在常数A ,对于任意给定的0>ε,总存在0>δ,当),(y x P 满足δ<-+-=<20200)()(0y y x x PP 时,恒有ε<-A y x f ),(成立。
则记以()A y x f y y x x =→→,lim 0或()()()A y x f y x y x =→,lim00,,。
称当()y x ,趋于()00,y x 时,()y x f ,的极限存在,极限值A ,否则称为极限不存在。
值得注意:这里()y x ,趋于()00,y x 是在平面范围内,可以按任何方式沿任意曲线趋于()00,y x ,所以二元函数的极限比一元函数的极限复杂;但考试大纲只要求知道基本概念和简单的讨论极限存在性和计算极限值,不像一元函数求极限要求掌握各种方法和技巧。
多元函数的极限与连续性在数学中,多元函数的极限与连续性是重要的概念。
本文将介绍多元函数的极限和连续性的定义,并探讨它们的性质和应用。
一、多元函数的极限多元函数的极限可以类比于一元函数的极限,但其定义稍有不同。
对于一个二元函数,我们将自变量表示为(x,y),则当自变量趋近于某个点(a,b)时,函数值f(x,y)的极限记为:lim (x,y)→(a,b) f(x,y) = L其中,L为实数。
我们称函数f(x,y)在点(a,b)处具有极限L,如果对于任意给定的ε>0,存在δ>0,使得当(x,y)满足0< √((x-a)^2+(y-b)^2) < δ时,都有 |f(x,y)-L|<ε 成立。
类似地,对于一个三元函数,自变量表示为(x,y,z),其极限定义与二元函数类似。
多元函数的极限有以下性质:1. 极限存在且唯一:如果一个多元函数在某点具有极限,那么它的极限是唯一的。
2. 有界性:如果一个多元函数在某点具有极限,则它在该点附近是有界的。
但需要注意,多元函数在整个定义域内有界不一定代表在每个点处都具有极限。
3. 加法性、乘法性:如果两个多元函数在某点都具有极限,则它们的和、差、积仍在该点处具有极限。
4. 复合函数的极限性质:多元函数的复合函数在某点处具有极限的条件是,内部函数在该点处具有极限,且外部函数在内部函数极限处连续。
二、多元函数的连续性多元函数的连续性是指函数在整个定义域内的连续性。
对于一个二元函数,如果对于任意给定的ε>0,存在δ>0,使得当(x,y)满足0<√((x-a)^2+(y-b)^2) < δ时,都有 |f(x,y)-f(a,b)|<ε 成立,那么我们称函数f(x,y)在点(a,b)处连续。
类似地,对于一个三元函数,连续性的定义也类似。
多元函数的连续性具有以下性质:1. 极限与连续性的关系:如果一个多元函数在某点处具有极限L,则它在该点处连续。
第九讲 多元函数的微分一、主要知识点1.主要概念(以二元函数为主)(1)函数的极限与连续定义极限定义(εδ-定义)A y x f y y x x =→→),(lim 00:如果对于任意给定0ε>,总存在0δ>,使得对于适合不等式00pp δ<=的一切点(,)p x y ,都有ε<-A y x f ),(成立.连续函数定义 设函数),(y x f z =在区域D 内有定义,且000(,)p x y D ∈,若),(),(lim 0000y x f y x f y y x x =→→则称函数),(y x f 在点000(,)p x y 处连续. 注意:二元函数与一元函数的差异. (2)偏导数的定义设函数),(y x f z =在点),(y x p 的某邻域内有定义,函数的偏导数为0(,)(,)lim x z f x x y f x y x x ∆→∂+∆-=∂∆,0(,)(,)lim y z f x y y f x y y y∆→∂+∆-=∂∆. 注意:分段函数在分段点的偏导数用偏导数定义计算. (3)全微分定义设函数),(y x f z =在点),(y x p 的某邻域内有定义,若()z A x B y o ρ∆=∆+∆+,其中22)()(y x ∆+∆=ρ,全微分dy yzdx x z y B x A dz ∂∂+∂∂=∆+∆=. 2. 主要理论(1)定理1(求偏导数与次序无关的定理)若函数),(y x f z =的两个混合偏导数x y z y x z ∂∂∂∂∂∂22,在区域D 内连续,则xy zy x z ∂∂∂=∂∂∂22.(2)定理2(可微与偏导数存在关系定理)若函数),(y x f z =在点),(y x p 可微,则在该点处yzx z ∂∂∂∂,存在,且 dy yzdx x z dz ∂∂+∂∂=. (3)定理3(偏导连续与可微的关系定理)若函数),(y x f z =偏导数yzx z ∂∂∂∂,在点),(y x p 的某邻域内存在且连续,则),(y x f 在点),(y x p 可微.3.主要公式(1) 全导数公式设函数),(v u f z =偏导数连续,而)(),(t v t u ψϕ==导数连续,则)](),([t t f z ψϕ=的全导公式为dtdvv f dt du u f dt dz ⋅∂∂+⋅∂∂=. (2)显函数 ),,(z y x f u =的偏导数求u 对x 的偏导数xu∂∂时,将z y ,视作常数,利用一元函数求导公式及法则求之. 求u 对y 的偏导数yu∂∂时,将z x ,视作常数,利用一元函数求导公式及法则求之. 求u 对z 的偏导数zu∂∂时,将y x ,视作常数,利用一元函数求导公式及法则求之. (3)复合函数的偏导数1)设),(),,(),,(y x v y x u v u f z ψϕ===的偏导数连续,则)],(),,([y x y x f z ψϕ=偏导数为xv v x x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂, yv v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂. 2)设),,,(v u y x f z =,),(),,(y x v y x u ψϕ==的偏导数连续,则函数)],(),,(,,[y x y x y x f z ψϕ=的偏导数为x v v f x u u f x f x z ∂∂∂∂+∂∂∂∂+∂∂=∂∂,yv v f y u u f y f y z ∂∂∂∂+∂∂∂∂+∂∂=∂∂.注意:1)偏导函数yzx z ∂∂∂∂,的复合关系同原函数一样,求二阶偏导数方法同一阶方法类似.2)抽象函数的二阶偏导数的求法及其重要. (4)隐函数的偏导数1) 由方程0),(=y x F 确定的隐函数)(x y y =的导数公式为),(),(y x F y x F dx dyy x''-= , (0),(≠y x F y ). 2)由方程0),,(=z y x F 确定的隐函数),(y x z z =的偏导数公式为),(),(,),(),(y x F y x F y z y x F y x F x zz y z x ''-=∂∂''-=∂∂ , (0),(≠'y x F z ). 3)由三个变量两个方程所构成的方程组⎩⎨⎧==0),,(0),,(z y x G z y x F 确定的隐函数),(x y y =)(x z z =,求导数dx dz dx dy ,可通过解关于dxdzdx dy ,的线性方程组来完成,即解方程组⎪⎪⎩⎪⎪⎨⎧'-=+'-='+'x z y x z y G dx dz G dxdy G F dxdz F dx dy F ''. 4)由四个变量两个方程所构成的方程组⎩⎨⎧==0),,,(0),,,(v u y x G v u y x F , 确定的隐函数(,),(,)u u x y v v x y ==,求偏导数yvx v y u x u ∂∂∂∂∂∂∂∂,,,,可通过解关于x v x u ∂∂∂∂,),(yvy u ∂∂∂∂的线性方程组来完成,即解方程组 ⎪⎪⎩⎪⎪⎨⎧'-=∂∂+∂∂''-=∂∂'+∂∂'x v u x v u G x v G xu G F xv F x u F ' , ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎩⎪⎪⎨⎧'-=∂∂'+∂∂''-=∂∂'+∂∂'y v u y v u G y v G y u G F y vF y u F . 4.主要计算方法(1)显函数求偏导数的方法(包含二阶偏导数,抽象函数); (2)隐函数求偏导数的方法(包含二阶偏导数,抽象函数,方程组);二、例题分析1.二元函数极限、连续、偏导数与全微分之间的联系例1.设223222(,)()0x y f x y x y ⎧⎪=⎨+⎪⎩2222,0,0x y x y +≠+=,证明函数),(y x f 在点)0,0(连续且偏导数存在,但不可微分. 证明:(1)证明连续性因为32240cos sin 232222)0,0(),()0,0(),(cos sin lim )(lim),(lim rr y x yx y x f r r x r y y x y x θθθθ→==→→====+=2220lim sin cos 0r r θθ→==)0,0(f =. 所以),(y x f 在点)0,0(连续.(2)证明偏导数存在.因为 232200()0(0,0)(0,0)(()0)(0,0)limlim 0x x x x f x f x f x x∆→∆→∆⋅-+∆-∆+'===∆∆22200()0(0,0)(0,0)(0())(0,0)limlim 0y y y y f y f y f y y∆→∆→⋅∆-+∆-+∆'===∆∆所以函数(,)(0,0)f x y 在处偏导数存在且为0. (3)证明(,)f x y 在点(0,0)不可微.因为 223222()()[(0,0)(0,0)][()()]x y x y z f x f y z x y ∆∆''∆-∆-∆=∆=∆+∆,所以41])(2[)(lim ])()[()()(lim ])()[()()(lim224,0222220,02322220,0=∆∆=∆+∆∆∆=∆+∆∆∆∆=∆→∆→∆→∆→∆→∆x x y x y x y x y x x y x y x y x ρ于是函数)0,0(),(o y x f 在点不可微.说明:通常判断函数(,)f x y 在点00(,)x y 是否可微,可以按以下步骤考虑:(1)考察函数(,)f x y 在点00(,)x y 是否连续.若不连续,则函数(,)f x y 在点00(,)x y 不可微;(2)若函数(,)f x y 在点00(,)x y 连续,再考察偏导数0000(,),(,)x y f x y f x y 是否存在.若两个偏导数有一个不存在,则函数(,)f x y 在点00(,)x y 不可微;(3)若函数(,)f x y 在点00(,)x y 连续,偏导数0000(,),(,)x y f x y f x y 存在,再考察偏导数0000(,),(,)x y f x y f x y 是否连续,若偏导数0000(,),(,)x y f x y f x y 连续,则函数(,)f x y 在点00(,)x y 可微;(4)若偏导数0000(,),(,)x y f x y f x y 不连续,则利用全微分定义判别,如例1.练习题:设222222(0(,)00x y x y f x y x y ⎧++≠⎪=⎨⎪+=⎩,证明函数),(y x f 在点)0,0(连续且偏导数存在,但是偏导数在点)0,0(不连续,而函数点)0,0(可微分.二元函数),(y x f z =连续,偏导存在与可微三者关系函数连续 偏导数存在2.多元复合显函数求导问题例2.设函数(,,)f x y z 是k 次齐次函数,即(,,)(,,)kf tx ty tz t f x y z =,k 为某一常数,求证:(,,)f f f xy z kf x y z x y z∂∂∂++=∂∂∂. 证明:令,,u tx v ty w tz ===,则(,,)(,,)k f tx ty tz t f x y z =化为(,,)(,,)k f u v w t f x y z =,上式两边对t 求导得1(,,)k f u f v f wkt f x y z u t v t w t -∂∂∂∂∂∂++=∂∂∂∂∂∂, 又 ,u v w x y z t t t ∂∂∂===∂∂∂ 有 1(,,)k f f f x y z k t f x y z u v w-∂∂∂++=∂∂∂上式两边同乘以t ,得(,,)k f f f txty tz kt f x y z u v w ∂∂∂++=∂∂∂ 即有 (,,)f f f u v w kf u v w u v w∂∂∂++=∂∂∂ 于是得 (,,)f f fxy z kf x y z x y z∂∂∂++=∂∂∂. 例3.已知函数(,)u u x y =,满足方程2222()0u u u u a x y x y∂∂∂∂-++=∂∂∂∂ (1)试选择参数α,β,利用变量(,)(,)x y u x y v x y e αβ+=,将原方程变形使得新方程中不含一阶偏导数项;(2)再令x y ξ=+,x y η=-,使新方程变换形式 解:(1)()x y x y x y u v v e v e v e x x xαβαβαβαα+++∂∂∂=+=+∂∂∂ 2222()()x y x y u v v ve v e x x x xαβαβααα++∂∂∂∂=+++∂∂∂∂ 222(2)x y v vv e x xαβαα+∂∂=++∂∂, ()x y u vv e y yαββ+∂∂=+∂∂, 22222(2)x yu v v v e y y yαβββ+∂∂∂=++∂∂∂ 将上述式子代入已知方程中,消去x yeαβ+变得到222222(2)(2)()0u u v va a a a v x y x yαβαβαβ∂∂∂∂-+++-++-++=∂∂∂∂, 由题意,令2020a a αβ+=⎧⎨-+=⎩,解出22a a αβ⎧=-⎪⎪⎨⎪=⎪⎩,故原方程为 22220u ux y∂∂-=∂∂.(2)令x y ξ=+,x y η=-,则v v v v vx x x ξηξηξη∂∂∂∂∂∂∂=+=+∂∂∂∂∂∂∂, v v v v vy y y ξηξηξη∂∂∂∂∂∂∂=+=-∂∂∂∂∂∂∂ 22222222v v v v v x x x x xξηξηξξηξηη∂∂∂∂∂∂∂∂∂=+++∂∂∂∂∂∂∂∂∂∂∂ 222222v v vξξηη∂∂∂=++∂∂∂∂ 同理 2222222v v v v y ξξηη∂∂∂∂=-+∂∂∂∂∂ 将上面式子代入22220u ux y∂∂-=∂∂中得到20vξη∂=∂∂. 例4.证明:若u =20d u ≥.(二阶全微分)记号:222222(),(),()dx dx dy dy dz dz ===,()0,()0,()0d dx d dy d dz ===. 证明:因为一阶全微分为xdx ydy zdzdu u++=则 22222()()u dx dy dz xdx ydy zdz dud u u++-++= 2222()()xdx ydy zdzu dx dy dz xdx ydy zdz u u ++++-++=222223()()u dx dy dz xdx ydy zdz u ++-++=22222223()()()x y z dx dy dz xdx ydy zdz u++++-++= 2223()()()0xdy ydx ydz zdy zdx xdz u -+-+-=≥于是有20d u ≥.练习题:1.设函数(,,),(,,),(,),(,)u f x y z x z s t y x t z s t ϕψω====偏导数存在,求,u u s t∂∂∂∂. 2.设函数(,)()z f x y x y g x ky =-+++,其中,f g 具有二阶连续偏导数,且"0g ≠,如果222"222224z z z f x x y y∂∂∂++=∂∂∂∂,求常数k 的值.(2120k k ++=,故1k =-) 3.设z =,求二阶全微分20d z ≥.(222223222()()()()x y dx dy xdx ydy x y ++-++)3.隐函数的求导问题例5.设),(t x f y =,而t 是由方程0),,(=t y x G 所确定的y x ,的隐函数,求dxdy(其中),,(),,(t y x G t x f 为可微函数).解:设方程组⎩⎨⎧==0),,(),(t y x G t x f y 确定t y ,皆为x 的函数,将方程组对x 求导数,得0x t dy t f f dx x G G dy G tx y dx t x∂⎧''=+⎪∂⎪⎨∂∂∂∂⎪++=∂∂∂∂⎪⎩或 t x dy tf f dx xG dy G t G ydx t x x∂⎧''-=⎪∂⎪⎨∂∂∂∂⎪+=-∂∂∂∂⎪⎩解方程组,得1x t x t t t f f G G G G f f dy x t t x G G f dx f t y G Gy t''-∂∂∂∂-''-∂∂∂∂==∂∂'-'+∂∂∂∂∂∂. 例6.设(,,)u f x y z =,2(,,)0yx e z ϕ=,sin y x =,其中,f ϕ具有一阶连续偏导数,且0x ϕ∂≠∂,求dudx. 解:这是有显函数,隐函数构成的复合函数的求导问题,x yzxyxu从复合关系图看出复合关系后求导,有x y z du u u dy u dz dy dz f f f dx x y dx z dx dx dx∂∂∂'''=++=++∂∂∂ 由2(,,)0y x e z ϕ=两边对x 求导,得12320ydy dzx e dx dxϕϕϕ'''++= , 又cos dyx dx=,代入上式得 1231(2cos )y dz x e x dx ϕϕϕ''=-+'于是123cos (2cos )y z x y f duf f x x e x dx ϕϕϕ'''''=+-+'. 例7.设(,)z z x y =是由方程(,)z z f xy e =确定的隐函数,求偏导数,z zx y∂∂∂∂. 解法1:设(,,)(,)z F x y z f xy e z =-,求偏导数1x F f y''=⋅,1y F f x ''=⋅,21z z F f e '=⋅-, 应用公式得112211x z zz F yf yf zx F f e e f '''∂=-=-='''∂--,112211y z zz F xf xf zy F f e e f '''∂=-=-='''∂--. 方法2:直接应用复合函数求导法则,方程两边关于x 求偏导数,此时z 是,x y 得函数,于是12(,)(,)z z z z zf xy e y f xy e e x x∂∂''=⋅+⋅∂∂, 从上述方程中解出z x ∂∂,即得121z yf zx e f '∂='∂-.方程两边关于y 求偏导数,此时z 是,x y 得函数, 于是12(,)(,)z z z z z f xy e x f xy e e y y∂∂''=⋅+⋅∂∂,从上述方程中解出z y ∂∂,即得121zxf zy e f '∂='∂-. 方法3:应用一阶全微分形式不变性12(,)()z z dz df xy e f d xy f de ''==⋅+⋅ 112z f ydx f xdy f e dz '''=⋅+⋅+⋅,移项得 211(1)zf e d z y f d x x f d y '''-⋅=⋅+⋅, 解出112211z zyf yf dz dx dy e f e f ''=+''--, 因此121z yf z x e f '∂='∂-,121z xf zy e f '∂='∂-. 例8.设sin ,sin u xu v x y v y+=+=,求22,,,du dv d u d v . 解:方程组sin sin u v x yy u x v+=+⎧⎨=⎩对x 求微分,得sin cos sin cos du dv dx dy udy y udu vdx x vdv +=+⎧⎨+=+⎩(1)解方程组的1[(sin cos )(sin cos )]cos cos du v x v dx u x v dy x v y u=+--+1[(sin cos )(sin cos )]cos cos dv u y u dy v y u dx x v y u=+--+(1) 式方程组再微分一次,得222222cos 2cos sin cos 2cos sin d u d v y ud u udydu y udu x vd v vdxdv x vdv⎧+=⎨+-=+-⎩ (2) 解方程组(2),得221[(2cos sin )(2cos sin )]cos cos d u d v vdx x vdv dv udy y udu du x v y u=-=---+.例9.设函数(,)z f x y =有连续的一阶偏导数,(,)w w u v =是由方程组2211w x y u x y v x y z e++⎧=+⎪⎪=+⎨⎪⎪=⎩所确定的隐函数,试将方程()()z z y x y x z x y x y∂∂-=-≠∂∂化为,w w u v ∂∂∂∂所满足的关系式. 解:由方程组可以看出(,,),(,)w x y z f x y w e w w u v ++===,则1321()(2)w x y w x y z w u w v w w z z e e x x u x v x u x v++++∂∂∂∂∂∂∂=++=+-∂∂∂∂∂∂∂ 2321()(2)w x y w x y z w u w v w w z z e e y y u y v y u y v++++∂∂∂∂∂∂∂=++=+-∂∂∂∂∂∂∂ 因此 左边22()()w x y y x z z v y x∂=-+-∂,右边()y x z =-, 于是方程()()z z y x y x z x y x y∂∂-=-≠∂∂化为 22()0w x y z v y x∂-=∂, 又由于3322220x y x y y x x y--=≠,故0w v ∂=∂. 例10.设)(u f 有连续的二阶导数,且)sin (y e f z x=满足方程z e y z x z x 22222=∂∂+∂∂,求)(u f .解:设sin xu e y =,则 '()'()sin '()x z u f u f u e y uf u x x∂∂===∂∂, '()'()cos x z u f u f u e y y y∂∂==∂∂, 222"()'()z f u u f u u x∂=+∂,(u u x ∂=∂), 2222'()sin cos "()'()"()cos x x x z u f u e y e yf u uf u f u e y y y∂∂=-+=-+∂∂,所以 22222"()x z z e f u x y∂∂+=∂∂. 由已知条件,得22"()()x x e f u e f u =,即"()()0f u f u -=,这是二阶常系数线性微分方程,其特征方程为210r -=,特征根为1r =±,则12()u u f u c e c e -=+为所求.练习题:1.已知ty y e x =+,而t 是由方程2221y t x +-=所确定的,x y 的函数,求dy dx. (22()tytydy t xye dx t y t e +=+-) 2.设2222221x y z a b c++=,求全微分2,dz d z . 3.设函数222),(z y x r r f u ++==,在0>r 内满足0222222=∂∂+∂∂+∂∂zu y u x u , 其中)(r f 为二阶可导函数,且1)1()1(='=f f ,试将方程化为以y 为自变量的常微分方程,并求)(r f .(1()2f r r=-+)。
二元函数与多元函数的极限随着数学的发展,人们对函数的研究也越来越深入。
在微积分中,函数的极限是一个重要的概念。
而在二元函数和多元函数中,极限的概念也存在着相应的扩展。
本文将针对二元函数与多元函数的极限进行详细的讨论和解析。
一、二元函数的极限二元函数,顾名思义,就是含有两个自变量的函数。
设函数为$f(x, y)$,其中$x$和$y$分别表示自变量。
当我们研究二元函数的极限时,通常会有两种情况。
1. 二元函数在某一点的极限设点$(x_0, y_0)$是二元函数$f(x, y)$的定义域内的一个点,如果对于任意给定的正数$\varepsilon$,存在正数$\delta$,使得当$(x, y)$满足$0 < \sqrt{(x-x_0)^2 + (y-y_0)^2} < \delta$时,都有$|f(x,y)-L| <\varepsilon$成立,其中$L$为常数,则称$L$是$f(x,y)$在点$(x_0,y_0)$处的极限。
2. 二元函数的无穷极限设二元函数$f(x, y)$在无穷远点$P(x, y)$处定义,如果对于任意给定的正数$\varepsilon$,存在正数$R$,使得当$(x, y)$满足$R < \sqrt{x^2 + y^2}$时,都有$|f(x,y)-L| < \varepsilon$成立,则称$L$是$f(x,y)$在无穷远点的极限。
二、多元函数的极限与二元函数类似,多元函数也是含有多个自变量的函数。
设函数为$g(x_1, x_2, \ldots, x_n)$,其中$x_1, x_2, \ldots, x_n$分别表示自变量。
多元函数的极限可以有多种形式。
1. 多元函数在某一点的极限设点$(x_1^0, x_2^0, \ldots, x_n^0)$是多元函数$g(x_1, x_2, \ldots,x_n)$的定义域内的一个点,如果对于任意给定的正数$\varepsilon$,存在正数$\delta$,使得当$(x_1, x_2, \ldots, x_n)$满足$0 < \sqrt{(x_1-x_1^0)^2 + (x_2-x_2^0)^2 + \ldots + (x_n-x_n^0)^2} < \delta$时,都有$|g(x_1, x_2, \ldots, x_n)-L| < \varepsilon$成立,其中$L$为常数,则称$L$是$g(x_1, x_2, \ldots, x_n)$在点$(x_1^0, x_2^0, \ldots, x_n^0)$处的极限。