核电厂安全仪表控制系统的发展
- 格式:pdf
- 大小:249.13 KB
- 文档页数:2
核电厂仪表与控制第一章:1.压水堆核电厂主要由核反应堆、一回路系统、二回路系统和其他辅助系统组成。
2.核电厂仪表与控制系统的功能可以归纳为三种:监视功能、控制功能、保护功能。
3.控制功能包括:1)反应堆控制系统:包括反应性控制、功率水平控制和功率分布控制。
2)蒸汽旁路排放控制系统:为了解决核岛和常规岛发生功率失配而设置的,它是功率控制系统的辅助系统,在常规岛发生短暂事故时,为了不使反应堆停堆,可将其功率由蒸汽旁路排放系统吸收。
3)稳压器压力和液位调节系统:为了调节维持一回路的工作压力不变,同时能保持一回路内水温和化学成分的均匀性。
4)蒸汽发生器水位调节系统:作用是保证使蒸汽发生器二次侧水位维持在整定值上,以便消除各种扰动,保证二回路系统的正常运行。
5)汽轮机调节系统:通过调节汽轮机进气阀对机组实施功率控制和频率控制等。
4.对安全级设备,必须制定清晰、完整、明确的技术规格书,在设计、制造、安装和运行的全过程都根据此规格书检查仪表及其供电设备。
第二章:1.自动控制是一门理论性很强的工程技术学科,自动控制原理是该学科的基础理论。
所谓自动控制就是在没有人直接参加的情况下,利用控制装置使被控制对象自动地按照预定的规律运行或变化。
2.如果系统的输出量与输入量之间不存在反馈,则叫做开环控制系统。
凡是系统输出量对控制作用能有直接影响的系统,都叫做闭环控制系统。
3.一般闭环控制系统:P94.阶跃相应的几个动态性能指标:调节时间Ts:也称为过度过程时间。
指响应曲线从输入信号开始,到最后进入偏离给定值的误差为±5%(或±2%)范围为Δ,并且不再越出这个范围的时间,记作Ts.调节时间是衡量控制系统快速性指标。
衰减比n和衰减率φ:衰减比表示振荡过程衰减的程度,是衡量过度过程稳定程度的动态指标。
5.前馈控制的原理是:当系统受到扰动时,立即从扰动作用取得信息,并以此通过控制器产生控制作用,以消除扰动时被控制量的影响。
核电厂安全仪表控制系统的发展摘要:核电厂的保护系统用来在核电厂异常和事故工况下停堆并且缓解事故状况。
核电站保护系统是核安全级系统,并且应在安全设计要求的引导下开发。
核仪表与控制系统开发项目正在开发数字化保护系统和安全级可编程逻辑控制器。
为了优化核电站保护系统的设计,可编程逻辑控制器应该满足通讯、实时性、可靠性、性能、设备硬件鉴定和软件整定的要求等。
在核仪表与控制系统开发项目下开发的数字化核电站保护系统和可编程逻辑控制器将用于升级现有运行核电厂的仪表与控制系统和新的核电厂仪表控制系统。
关键词:反应堆保护系统;核电仪表;安全1核电厂保护系统的设计趋势核电站保护系统(DR)应该在核电厂异常和事故工况下自动停堆并且缓解事故状况。
因此,一个核电站保护系统包括一个反应堆保护系统和一个工程安全设施启动系统。
其中,反应堆保护系统的作用是:在异常情况下自动停堆;工程安全设施启动系统则用于开启阀和泵来缓解事故情况。
通常,一个反应堆保护系统包括4个通道,每个通道拥有相同的构造和设备。
每个反应堆保护系统的通道从4个独立的Class-IE仪表通道中的一个获得过程参数的值,如果其中一个过程参数的值超过了设定的事故保护定值,系统通道则输出停堆信号。
如图1所示,每个通道包含一个双稳态触发器BP、与门触发器CP、测试处理器TP。
双稳态触发器比较过程参数值和事故保护定值,然后产生停堆状态信号。
与门触发器对这个停堆状态信号进行4取2逻辑判断。
测试处理器则对双稳态触发器和与门触发器进行维护和测试。
工程安全设施启动系统使用从反应堆保护系统得来的初始信号,来产生启动安全设施(如泵、阀)用的启动信号。
通常情况下,为了满足冗余需求,工程安全设施启动系统要有两套,每套都需要具有工程安全设施的功能,如:安全注入启动、外壳隔离启动、外壳喷射启动、Main-Stream-Isolation和辅冷却水启动。
核电站保护系统的主要设计要求如下:核电站的仪表和控制系统是核电站的重要组成部分,机组的安全、可靠、经济运行在很大程度上取决于I&C设备的性能水平。
核电数字化仪控远程智能运维系统的应用分析摘要:数字化仪控在核电厂中的应用操作,为现有工作人员提供了信息资讯,也保证了核电厂的有效运作。
在核电厂数字化仪控系统之中,通讯网络是最为核心的部分,为控制系统的落实推进和工作执行带来了数据支撑保障,也促进了管理升级。
本文结合我国常见的核电厂数字化仪控系统的通讯网络结构,对其中的工作状态和工作模式进行了综合的分析,以求加快通信网络升级,保证核电厂工作的稳定性和高效性。
关键词:核电厂;数字化仪控系统;远程智能运维引言:在当前的发展阶段,我国核电厂的仪控系统逐渐开始使用数字化的仪控装置,同时在数字化仪控系统结构之中,通信网络系统占据了较为重要的地位,为后期的系统控制和相互的控制站之间的数据信息管控分析提供了重要的工作基础。
在核电厂仪控系统操作中,设定了安全级以及非安全级两种,安全级系统需要具备多种安全操作功能结构,为此对于系统仪器设备的基础性能以及仪控设备的安全操作管理有着较高的管理基本要求。
通信网络作为当前数字化仪控系统的核心内容,在安全级数字化仪控系统中的作用逐渐地凸显。
为此就需要保证通信网络的功能多元化,以适应不同的故障问题以及安全管理基础要求,这也是保证通信网络安全有效的基础原则。
一、核电数字化仪控系统的相关概述核电数字化仪控系统是整个核电厂的核心系统,是保证核电站安全稳定运行的基础操作体系和工作项目。
运维管理作为核电站生命周期稳定的工作核心和基础,是保证核电站安全操作的管理基础手段。
随着新型核电站建设管理的不断加强,通过对已有核电站的不断优化和转型,核电站已经逐渐依托数字化仪控系统构建出了核电站的运行操作,实现了系统的控制和保护。
数字化仪控系统的产品内容也是因为规模化的集成电路信息资料的应用,智能化发展管理要求的提升,核电数字化仪控系统的工作方式不断升级。
传统人为的修订和优化模式,已经不能适应核电数字化仪控系统维护操作管理要求,因此全面优化维修技术和运维工作方式就显得尤为必要。
核电厂数字化仪表与控制系统的应用现状与发展趋势随着科技的迅猛发展,核电厂数字化仪表与控制系统在核电行业中的应用越来越广泛,这些先进的技术不仅提高了核电厂的安全性和可靠性,还提高了核电厂的运行效率和经济性。
本文将介绍核电厂数字化仪表与控制系统的应用现状与发展趋势。
一、应用现状1. 数字化仪表与控制系统在核电厂中的应用数字化仪表是指使用数字技术替代原有的模拟仪表,数字化控制系统则是使用数字技术替代原有的模拟控制系统。
数字化仪表与控制系统的应用,使得核电厂的监测、控制和保护等功能更加可靠和高效。
数字化仪表具有抗干扰能力强、精度高、易于维护等优点,而数字化控制系统具有分布式、智能化、网络化等特点。
目前,全球大部分核电厂已经采用了数字化仪表与控制系统,并且很多核电厂正在进行数字化改造。
数字化仪表与控制系统在核电厂的安全中扮演着非常重要的角色。
它们可以实时监测核电厂的运行参数,保证核电厂的安全性。
在发生异常事件时,数字化仪表与控制系统能够迅速响应,及时采取措施,减小事故的危害程度。
数字化仪表与控制系统的应用大大提高了核电厂的安全性。
数字化仪表与控制系统的应用还提高了核电厂的经济性。
由于数字化技术的应用,核电厂的运行效率得到了提高,能够减少人力资源的消耗,减小能源损耗,提高了核电厂的经济效益。
二、发展趋势1. 智能化数字化仪表与控制系统将会向着智能化的方向发展。
随着人工智能技术的发展,数字化仪表与控制系统将会具备更加智能的功能。
智能化的数字化仪表与控制系统将会更加自动化、自适应、自修复,能够更好地满足核电厂对于安全、高效、经济的要求。
2. 网络化未来的数字化仪表与控制系统将会更加网络化。
这将使得核电厂的信息化水平得到进一步提高,能够实现远程监控、远程维护等功能。
通过互联网,数字化仪表与控制系统能够实现更加智能的运行。
3. 安全性数字化仪表与控制系统在安全性方面将会有更进一步的提升。
核电厂运行过程中,对于安全性的要求是非常高的,数字化仪表与控制系统将会向着更加安全可靠的方向发展,能够更好地保证核电厂的安全。
浅谈AP1000核电厂安全级仪控系统1 概述AP1000核电厂采用了全数字化仪控系统,其中保护和安全监测系统(PMS)属于安全级,其余均为非核安全级。
PMS系统为电厂提供反应堆停堆、专设安全设施、核级数据处理三大主要功能。
PMS系统直接关系到核电站的安全运行,是AP1000机组中最为重要的仪控系统,因此该系统现场安装的全过程需要高度关注。
2 PMS安装工程分类及施工要点PMS系统安装的实体工作可分解成三大类:处理机柜、电缆与光缆、中子探测器。
2.1 处理机柜PMS总共包含39个DCS(集散控制系统)标准机柜,尺寸约为700*750*2300(宽*深*高),按照功能分为NIC(核仪表子系统柜)、BCC(双稳态逻辑处理器柜)、ILC(符合逻辑处理器柜)、MTP(检修试验柜)、QDP(核级数据处理子系统柜)、SVC(爆破阀控制子系统)、SOE(顺序事件记录柜)。
PMS机柜按照不同的安全序列分别布置在辅助厂房内的6个房间内,成排布置。
PMS属于精密电子设备,对安装环境的要求高,温度必须控制在10℃~25℃、相对湿度控制在20%~75%、空气中无粉尘和腐蚀性气體。
AP1000首堆工程中,现场参照ASME NQA-1的标准,在PMS房间建立了增强的Ⅲ级清洁区,不仅对进入人员、进入材料、区域内的焊接、切割、打磨等动火作业加以控制,还专门设置了临时空调、除湿机、吸尘器等设施改善安装环境。
PMS机柜的安装过程大体包括五个步骤:(1)卸车。
按照核电厂物项分类原则,有抗震要求的PMS机柜属于B类物项,卸车时应十分注意机柜顶部吊耳的受力均衡性,以防止机柜结构变形。
为此,首堆工程中采用了一种方形平衡梁,并与其他辅助吊具一起进行了150%静载试验;(2)引入房间。
PMS机柜要求竖直搬运,但受限于厂房内门洞高度,通过时需要倾斜。
此时应注意倾斜时必须确保柜门在两侧而不至于受压变形。
首堆工程中专门设计了一种翻转运输小车,为提高厂房内搬运效率;(3)调平。
核电厂数字化仪表与控制系统的应用现状与发展趋势随着科技的迅猛发展和人们对清洁能源的迫切需求,核能作为清洁、高效的能源方式备受关注。
而随着核电厂的发展,数字化仪表与控制系统在核电厂中的应用也越发重要。
本文将在此展开对于核电厂数字化仪表与控制系统的应用现状与发展趋势进行探讨。
一、应用现状1. 数字化仪表数字化仪表是核电厂中非常重要的一部分,它可以实时监测和显示重要的参数,为操作人员提供决策支持。
数控仪表可以有效提高核电厂的安全性和效率,确保核反应堆的稳定运行。
当前数字化仪表在核电厂中的应用已经十分广泛,各种参数的检测、监控和显示都离不开数字化仪表的支持。
2. 控制系统核电厂的控制系统是核反应堆的“大脑”,它对核反应堆进行全面的控制和监测,确保核反应堆的安全运行。
在核电厂中,控制系统的作用十分重要,它不仅需要保证反应堆的安全运行,还需要保证核电厂可以稳定、高效地发电。
目前核电厂的控制系统已经逐渐向数字化方向发展,数字化控制系统可以提高核电厂的自动化水平,减少人为因素对于核反应堆的影响。
二、发展趋势1. 数字化仪表与控制系统的整合随着科技的不断进步,数字化仪表与控制系统的整合已经成为未来的发展趋势。
数字化仪表可以实时获取各种参数的信息,并将这些信息传输给控制系统,控制系统可以根据这些信息进行反应堆的控制。
数字化仪表与控制系统的整合可以提高核电厂的自动化水平,减少人为因素的干扰,确保核反应堆的安全运行。
2. 数据互联网化数据互联网化是数字化仪表与控制系统的另一个发展方向。
通过数据互联网化,核电厂可以实现设备的远程监测和控制,人员可以通过远程监控平台对核电厂进行实时监测,及时发现问题并进行处理。
数据互联网化可以提高核电厂的运行效率,节约人力和物力成本,同时也可以提高核电厂的安全性和可靠性。
3. 人工智能技术的应用人工智能技术是当下的热门话题,它的应用也有望成为核电厂数字化仪表与控制系统的未来发展方向。
人工智能技术可以对核电厂的运行数据进行分析和处理,从而预测可能发生的故障和问题,并提供相应的建议和处理方案。
核电厂安全仪表控制系统的发展
发表时间:2018-12-14T09:42:21.997Z 来源:《建筑学研究前沿》2018年第23期作者:李欢[导读] 核电厂的保护系统用来在核电厂异常和事故工况下停堆并且缓解事故状况。
核电站保护系统是核安全级系统,并且应在安全设计要求的引导下开发
李欢
中核辽宁核电有限公司辽宁省兴城市 125112 摘要:核电厂的保护系统用来在核电厂异常和事故工况下停堆并且缓解事故状况。
核电站保护系统是核安全级系统,并且应在安全设计要求的引导下开发。
核仪表与控制系统开发项目正在开发数字化保护系统和安全级可编程逻辑控制器。
为了优化核电站保护系统的设计,可编程逻辑控制器应该满足通讯、实时性、可靠性、性能、设备硬件鉴定和软件整定的要求等。
在核仪表与控制系统开发项目下开发的数字
化核电站保护系统和可编程逻辑控制器将用于升级现有运行核电厂的仪表与控制系统和新的核电厂仪表控制系统。
关键词:反应堆保护系统;核电仪表;安全 1核电厂保护系统的设计趋势核电站保护系统(DR)应该在核电厂异常和事故工况下自动停堆并且缓解事故状况。
因此,一个核电站保护系统包括一个反应堆保护系统和一个工程安全设施启动系统。
其中,反应堆保护系统的作用是:在异常情况下自动停堆;工程安全设施启动系统则用于开启阀和泵来缓解事故情况。
通常,一个反应堆保护系统包括4个通道,每个通道拥有相同的构造和设备。
每个反应堆保护系统的通道从4个独立的Class-IE仪表通道中的一个获得过程参数的值,如果其中一个过程参数的值超过了设定的事故保护定值,系统通道则输出停堆信号。
如图1所示,每个通道包含一个双稳态触发器BP、与门触发器CP、测试处理器TP。
双稳态触发器比较过程参数值和事故保护定值,然后产生停堆状态信号。
与门触发器对这个停堆状态信号进行4取2逻辑判断。
测试处理器则对双稳态触发器和与门触发器进行维护和测试。
工程安全设施启动系统使用从反应堆保护系统得来的初始信号,来产生启动安全设施(如泵、阀)用的启动信号。
通常情况下,为了满足冗余需求,工程安全设施启动系统要有两套,每套都需要具有工程安全设施的功能,如:安全注入启动、外壳隔离启动、外壳喷射启动、Main-Stream-Isolation和辅冷却水启动。
核电站保护系统的主要设计要求如下:
核电站的仪表和控制系统是核电站的重要组成部分,机组的安全、可靠、经济运行在很大程度上取决于I&C设备的性能水平。
随着计算机及其软件技术的快速发展,核电站的I&C系统也由传统的模拟控制发展到模拟-数字控制,进而发展到全数字式控制。
目前,国内外核电站主控制系统的发展基本上可以分为三个阶段。
2.1以模拟量组合单元仪表为主的控制系统
目前,已在我国运行的300MW秦山核电站主控制系统,应用FOXBORO公司的SPEC200组装仪表(包括MICRO-SPEC-200),该产品已广泛应用在诶过和世界上80多座核电站。
大亚湾2*900MW核电站主控制系统采用Baily9020系统,它也属于这一类。
模拟量仪表采用小规模集成电路、运算放大器为基础的元件来控制,逻辑量采用继电器等硬逻辑电路来控制。
因而,系统所需要的仪表器件数量多,运行操作管理和维护工作任务重,主控制室也显得较大。
2.2以模拟量和数字量混合运用的主控制系统
这实际是模拟量加上数字式分散控制系统(DCS)。
除模拟量外,数字量则依托以大规模集成电路为基础的数字技术、网络通信技术、CRT显示技术等,形成模拟量控制、逻辑量控制、保护系统综合考虑的网络型分散控制系统。
其特点是系统所需仪表数量大为减少,系统大量采用硬件和软件自诊断技术、冗余技术,提高了系统运行可靠性,采用网络通信技术,使系统数据管理更加科学和方便。
为了确保核电站安全可靠运行,这些新技术的应用也是经过大量反复的试验验证后,逐步先运用于常规岛等辅助系统,而核岛仍采用模拟量为主的控制。
2.3集成数字式主控制系统
集成数字式与上一类不同之处,不仅在常规岛、BOP部分采用数字技术,而且在核岛部分、涉及核安全保护和控制的回路等也都采用数字化控制技术。
对于一座核电站来说,要使其安全、稳定的运行,很大程度上取决于每一个涉及核安全及保护回路的控制系统的可靠性。
正因此,从设计到建造都严格的选用满足上述要求的成熟产品。
所以,核电站由原来模拟控制,进展到模拟与数字混合控制,发展到目前最新的集成全数字化控制,这是新一代核电站仪表与控制系统产品升级的主要标志。
它也是新一代先进的核电机组,无论是先进的压水堆(APWR),还是先进的沸水堆(ABWR)等先进机型的重要标志之一。
3安全重要仪控系统所需标准
鉴于核电安全重要仪控系统功能的多样性和系统的复杂性,其设计、建造和运行涉及系统设计、设备制造和安装、设备维护等一系列的安全相关标准。
在系统设计方面,所需的标准有安全重要仪控变量的确定及其相应系统的配置、安全重要仪控功能的分类、功能系统的可靠性和可运行性设计、主控制室的综合设计、信息处理和传输以及人因工程的应用;在设备制造和安装方面,所需要的标准有设备的设计、制造、鉴定以及系统的集成、安装和调试;在设备维护方面,所需的标准主要有设备的定期监督试验与检查、老化管理和维修。
4结论
在本文中,介绍在核仪表与控制系统制系统开发项目下开发的核电站保护系统拥有完整的冗余体系和在线自检功能这将提高可维护性和可靠性。
在核仪表与控制系统开发项目下开发的安全可编程逻辑控制器,又被称作POSAFE-Q它的软件和硬件都是依据安全相关软件生命周期和安全硬件标准开发的。
这样安全相关软件的设计和验证与确认方法,安全性分析方法,和经过鉴定的硬件设计技术等都将在开发项目中实现,且可以延伸到其他的工业领域。
参考文献
[1]李映林.数字化核电站智能诊断系统研究[D].哈尔滨工程大学,2008.
[2]郑明光,徐济鋆,张劲舜,沈增耀.压水堆核电厂仪表控制与计算机化的发展概况[J].核技术,2000(12):899-904.
[3]史觊,蒋明瑜,郑健超,马云青.核电站仪表与控制(I&C)系统数字化关键技术研究现状[J].测控技术,2004(02):29-32.
[4]张灶峰.OPC技术在核电站化容系统仿真中的应用研究[D].上海交通大学,2007.
[5]赵忻.核电站仪控系统自动化的综合分析[J].科技风,2010(24):279.。