数字温度计的设计和制作实验报告
- 格式:pdf
- 大小:631.69 KB
- 文档页数:12
数字温度计设计实验报告标题:数字温度计设计实验报告摘要:本实验旨在设计一个数字温度计,并通过实验验证其准确性和稳定性。
实验采用了数字温度传感器和微控制器进行设计,通过对比实验结果和标准温度计的测量结果,验证了数字温度计的准确性和稳定性。
实验结果表明,设计的数字温度计具有较高的测量精度和稳定性,可应用于工业生产和科研领域。
引言:温度是物体内部分子运动的表现,是一个重要的物理量。
在工业生产和科研领域,准确测量温度对于控制生产过程、保证产品质量和研究物质性质具有重要意义。
传统的温度计有玻璃温度计、金属温度计等,但其测量范围有限,且不便于数字化处理。
因此,设计一种数字温度计具有重要意义。
实验设计:本实验采用数字温度传感器和微控制器进行设计。
数字温度传感器采集环境温度,并将信号传输给微控制器进行处理。
微控制器通过内部算法对温度信号进行处理,并将结果显示在数码管上。
实验采用标准温度计测量环境温度,并将结果作为对比实验。
实验步骤:1. 搭建数字温度计实验平台,连接数字温度传感器和微控制器;2. 将标准温度计放置在与数字温度传感器相同的环境中,测量环境温度;3. 同时,数字温度传感器采集环境温度,并将结果显示在数码管上;4. 对比标准温度计和数字温度计的测量结果,分析其准确性和稳定性。
实验结果:经过对比实验,标准温度计和数字温度计的测量结果基本一致,表明设计的数字温度计具有较高的测量精度。
在不同环境温度下,数字温度计的测量结果稳定,显示出良好的稳定性。
因此,设计的数字温度计具有较高的准确性和稳定性,可应用于工业生产和科研领域。
结论:本实验成功设计了一个数字温度计,并验证了其准确性和稳定性。
设计的数字温度计具有较高的测量精度和稳定性,可满足工业生产和科研领域对于温度测量的要求。
未来可以进一步优化设计,提高数字温度计的性能,并拓展其在更广泛的领域应用。
数字温度计设计实验报告一、实验任务温度计是工农业生产及科学研究中最常用的测量仪表。
本课题要求用中小规模集成芯片设计并制作一数字式温度计,即用数字显示被测温度。
具体要求如下:(1). 测量范围-20,150度。
(2). 测量精度0.5度。
(3). 4位LED数码管显示。
通过温度传感器LM35采集到温度信号,经过整形电路送到A/D转换器,然后通过译码器驱动数码管显示温度。
ICL7107集A/D转换和译码器于一体,可以直接驱动数码管,省去了译码器的接线,使电路精简了不少,而且成本也不是很高。
ICL7107只需要很少的外部元件就可以精确测量0到200mv电压,LM35本身就可以将温度线性转换成电压输出。
综上所述,采用LM35采集信号,用ICL7107驱动数码管实现信号的显示。
故采用基于LM35与ICL7107的数字温度计设计方案。
二、原理框图传感器数码管驱A/D转化温度显示温度采集动三、电路原理及其电路组成数字温度计的设计原理图见附录1。
它通过LM35对温度进行采集,通过温度与电压近乎线性关系,以此来确定输出电压和相应的电流,不同的温度对应不同的电压值,故我们可以通过电压电流值经过放大进入到A/D转换器和译码器,再由数码管表示出来。
1、传感电路LM35具有很高的工作精度和较宽的线性工作范围,该器件输出电压与摄氏温度线性成比例。
因而,从使用角度来说,LM35与用开尔文标准的线性温度传感器相比更有优越之处,LM35无需外部校准或微调,可以提供?1/4?的常用的室温精度。
LM35具有以下特点:(1)工作电压:直流4,30V;(2)工作电流:小于133μA(3)输出电压:+6V,-1.0V(4)输出阻抗:1mA 负载时0.1Ω;(5)精度:0.5?精度(在+25?时);(6)漏泄电流:小于60μA;(7)比例因数:线性+10.0mV/?;(8)非线性值:?1/4?;(9)校准方式:直接用摄氏温度校准;(10)封装:密封TO-46 晶体管封装或塑料TO-92 晶体管封装;(11)使用温度范围:-55,+150?额定范围电压输出采用下图接法:2、A/D转化器ICL7107是高性能、低功耗的三位半A\D转换器,同时包含有七段译码器、显示驱动器、参考源和时钟系统。
课程授课教案一、实验目的和要求1.掌握集成运算放大器的工作原理及其应用。
2.掌握温度传感器工作原理及其应用电路。
3. 了解双积分式A/D转换器的工作原理。
4. 熟悉213位A/D转换器MC14433的性能及其引脚功能。
5. 熟悉模拟信号采集和输出数据显示的综合设计与调试方法。
6. 进一步练习较复杂电路系统的综合布线和读图能力。
设计要求如下:1. 设计一个数字式温度计,即用数字显示被测温度。
数字式温度计具体要求为:①测量范围为0~100℃②用4位LED数码管显示。
二、主要仪器和设备1.数字示波器2.数字万用表3.电路元器件:温度传感器 LM35 1片集成运算放大器LM741 1片集成稳压器 MC1403 1片A/D转换器 MC14433 1片七路达林顿晶体管列阵 MC1413 1片BCD七段译码/驱动器 CC4511 1片电阻、电容、电位器若干三、实验内容、原理及步骤1.总体方案设计图1为数字温度计的原理框图。
其工作原理是将被测的温度信号通过传感器转换成随温度变化的电压信号,此电压信号经过放大电路后,通过模数转换器把模拟量转变成数字量,最后将数字量送显示电路,用4位LED数码管显示。
图1 数字温度计原理框图2. 温度传感器及其应用电路温度传感器LM35将温度变化转换为电信号,温度每升高一度,大约输出电压升高10mV。
在25摄氏度时,输出约250mV。
图2(a)、(b)图为LM35测温电路。
(a)基本的测温电路(+2°C to +150°C) (b)全量程的测温电路(−55°C to +150°C)图2(a)、(b)图为LM35测温电路LM35系列封装及引脚参见下图 3。
图 3 LM35系列封装及引脚图3.放大电路放大器使用LM 741普通运放,作为实验用数字温度计,可以满足要求;如果作为长期使用的定型产品,可以选用性能更好、温度漂移更小的OP07等型号的产品,引脚与LM741兼容,可以直接替换使用。
数字温度计一.设计任务书设计一个可测量一定温度范围的数字温度计,并显示出当前温度。
二.设计要求1.基本要求(1)可测量温度范围:000.0℃~102.0℃(2)温度分辨率:0.5℃(3)测量相对误差:≤2%(4)用数码管实时显示被测温度2.提高要求(1)实现多个温度点的实时测量(2)实现温度的分档测量(3)实现零下温度测量并显示3.发挥部分(1)实现摄氏、华氏、开氏的转换并显示(2)温度过高报警三.方案讨论及元件选择1.方案概述温度传感器DS18B20是单线通信,其输出值为数字信号,将其输出的温度数据送给单片机AT89C51处理,转换为温度动态显示。
2.分步讨论(1)温度传感器本方案采用DS18B20温度传感器,其特点为:1)适应电压范围更宽,电压范围:3.0~5.5V,寄生电源方式下可由数据线供。
2)独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯。
3)DS18B20支持多点组网功能,多个DS18B20可以并联在唯一的三线上,实现组网多点测温。
4)DS18B20在使用中不需要任何外围元件,全部传感元件及转换电路集成在形如一只三极管的集成电路内。
5)温范围-55℃~+125℃,在-10~+85℃时精度为±0.5℃。
6)可编程的分辨率为9~12位,对应的可分辨温度分别为0.5℃、0.25℃、0.125℃和0.0625℃,可实现高精度测温。
7)在9位分辨率时最多在93.75ms内把温度转换为数字,12位分辨率时最多在750ms内把温度值转换为数字,速度更快。
8)测量结果直接输出数字温度信号,以“一线总线”串行传送给CPU,同时可传送CRC校验码,具有极强的抗干扰纠错能力。
9)负压特性:电源极性接反时,芯片不会因发热而烧毁,但不能正常工作。
其管脚图为:DS18B20的引脚功能:DQ为数字信号输入/输出端;GND为电源地;VDD为外接供电电源输入端(在寄生电源接线方式时接地(2)动态显示通过单片机与七段显示译码器HCF4511BE结合使用实现HCF4511BE的简介如下:HCF4511BE是一个用于驱动共阴极 LED (数码管)显示器的 BCD 码—七段码译码器,特点:具有BCD转换、消隐和锁存控制、七段译码及驱动功能的CMOS电路能提供较大的拉电流。
数字体温计实验报告数字体温计实验报告引言:数字体温计是一种现代化的温度测量设备,它通过使用传感器和数字显示屏来准确测量人体温度。
本实验旨在探究数字体温计的工作原理、准确性以及与传统温度计的比较。
实验步骤:1. 准备工作:确保实验环境安静、温度适宜,并准备好传统温度计和数字体温计。
2. 实验组织:将实验参与者分为两组,每组使用一种温度计进行测量。
3. 测量方法:首先,使用传统温度计在参与者的腋下测量体温,并记录结果。
然后,使用数字体温计在同一位置测量体温,并记录结果。
4. 重复测量:为了确保准确性,每个参与者的体温都应重复测量两次。
5. 数据分析:将所有测量结果进行整理和比较,并计算平均值和标准差。
实验结果:通过对多个参与者进行测量,我们得出了以下结果:1. 数字体温计的测量结果与传统温度计的结果非常接近,差异较小。
2. 数字体温计的测量速度较快,几乎可以即时显示温度值。
3. 数字体温计的使用更加方便,无需摇晃或等待温度计稳定。
4. 数字体温计的数字显示屏清晰可见,易于读取。
讨论:数字体温计在准确性和便携性方面表现出色。
由于其使用数字显示屏,读取温度更加方便,尤其适用于老年人和儿童。
此外,数字体温计还具有防水功能,可以更好地保护设备免受污染。
然而,仍有一些问题需要解决。
数字体温计需要电池供电,如果电池电量不足,可能会影响准确性。
此外,数字体温计的价格相对较高,有些人可能无法承担。
结论:通过本次实验,我们发现数字体温计是一种准确、方便且易于使用的温度测量设备。
它在测量速度和读取方面具有明显优势,并且与传统温度计的测量结果相当接近。
然而,由于其依赖电池供电和较高的价格,我们仍需权衡其优势和不足,选择适合自己的温度测量设备。
展望:随着科技的不断发展,数字体温计可能会进一步改进和创新。
例如,可以加入智能功能,如与手机连接,记录和跟踪体温变化。
此外,还可以研究更环保的电池替代方案,以减少对电池的依赖。
我们期待数字体温计在未来的发展中能够更好地满足人们的需求。
项目编号:大学生课外开放实验校级普通项目实验报告立项时间:项目名称:数显温度计的设计与制作学生姓名:指导教师:学院:完成时间:2014.5设备与实验室管理处制0. 引言单片机技术作为计算机技术的一个分支,广泛地应用于工业控制,智能仪器仪表,机电一体化产品,家用电器等各个领域。
“单片机原理与应用”在工科院校各专业中已作为一门重要的技术基础课而普遍开设。
学生在课程设计,毕业设计,科研项目中会广泛应用到单片机知识,而且,进入社会后也会广泛接触到单片机的工程项目。
鉴于此,提高“单片机原理及应用”课的教学效果,让学生参与课程设计实习甚为重要。
单片机应用技术涉及的内容十分广泛,如何使学生在有限的时间内掌握单片机应用的基本原理及方法,是一个很有价值的教学项目。
为此,我们进行了“单片机的学习与应用”方面的课程设计,锻炼学生的动脑动手以及协作能力。
单片机课程设计是针对模拟电子技术,数字逻辑电路,电路,单片机的原理及应用课程的要求,对我们进行综合性实践训练的实践学习环节,它包括选择课设任务、软件设计,硬件设计,调试和编写课设报告等实践内容。
通过此次课程设计实现以下三个目标:第一,让学生初步掌握单片机课程的试验、设计方法,即学生根据设计要求和性能约束,查阅文献资料,收集、分析类似的相关题目,并通过元器件的组装调试等实践环节,使最终硬件电路达到题目要求的性能指标;第二,课程设计为后续的毕业设计打好基础,毕业设计是系统的工程设计实践,而课程设计的着眼点是让学生开始从理论学习的轨道上逐渐引向实际运用,从已学过的定性分析、定量计算的方法,逐步掌握工程设计的步骤和方法,了解科学实验的程序和实施方法。
第三,培养学生勤于思考乐于动手的习惯,同时通过设计并制作单片机类产品,使学生能够自己不断地学习接受新知识(如在本课设题目中存在智能测温器件DS18B20,就是课堂环节中不曾提及的“新器件”),通过多人的合作解决现实中存在的问题,从而不断地增强学生在该方面的自信心及兴趣,也提高了学生的动手能力,对学生以后步入社会参加工作打下一定良好的实践基础。
数字温度计实验报告实验名称:数字温度计制作实验实验目的:掌握数字温度计的制作过程及其原理,理解数字温度计的工作原理,培养实验操作能力和实验思维能力。
实验原理:数字温度计是用单片机芯片作为控制器,将温度传感器检测到的模拟信号转化为数字信号,再通过液晶显示屏实时显示温度值。
实验器材:1.数字温度计DIY套件2.电子元器件(电阻、电容、晶体振荡器、液晶显示器)3.电路板4.焊锡工具、插头线5.温度计测试仪器(模拟温度计、数字温度计)实验步骤:1.准备工作:(1)将电路板放置于安全、平稳的场所,清理干净表面。
(2)将电路板和电子元器件分类放置。
2.焊接电子元器件:(1)先将较小、比较短的元器件焊接上去。
如电容、电阻。
(2)再将较大、比较长的元器件焊接上去。
如晶体振荡器、液晶显示器。
3.安装液晶显示器:(1)连接液晶屏的后面板和电路板的对应接口。
(2)将液晶屏锁入安装板中,轻轻按压。
4.测试电路板:(1)使用模拟温度计测量温度,将温度传感器插入电路板。
(2)开启电源,读取电路板上液晶屏的显示数值和模拟温度计的数值,检测温度计的精度。
5.校正电路板:(1)进入电路板的校准程序,根据实测温度值和电路板显示的温度值进行校准。
(2)校准后,再次使用模拟温度计测量温度,检测校准的效果。
实验结果:根据实验结果,我们制作出了一个精度较高的数字温度计,它可以显示出实时温度值,可广泛应用于各种实际场合。
结论:通过此次实验,基本掌握了数字温度计的制作过程及其原理,加深了对数字温度计的理解,提升了实验操作能力和实验思维能力。
数字温度计的设计与制作实验报告数字温度计的设计与制作实验报告一、实验目的本实验旨在通过设计与制作数字温度计,深入理解温度测量原理及实现方式,锻炼电路设计与验证实验能力。
二、实验原理数字温度计是通过测量热敏电阻(PTC或NTC)的电阻值来计算温度的。
当温度升高时,热敏电阻的电阻值也会升高,反之亦然。
该实验利用了热敏电阻的这一特性,通过将热敏电阻串联到一定电路中,便可测量到其电阻值的变化,从而得到温度值。
此外,数字显示器可以根据电路中的控制信号对电阻值进行计算和显示,以数字形式直观显示温度。
三、实验器材与耗材器材:热敏电阻、AD转换芯片、单片机、数字显示器、蜂鸣器、键盘、面包板、杜邦线等。
耗材:焊锡、铜线、电池、电阻等。
四、实验步骤1.接线。
将热敏电阻串联到一个电路中,连接到AD转换芯片的AIN0输入端,并将AIN1连接到参考电压源。
2.编写单片机程序。
通过查询AD转换器的输出值,计算出热敏电阻的电阻值,并转换为温度值。
然后将温度值显示在数字显示器上,并输出报警信号到蜂鸣器。
3.测试验证。
使用温度计紧贴测试物体表面,观察数字显示器和蜂鸣器的反应,逐步校准温度计并记录数据。
五、实验结果实验结果表明,数字温度计的设计与制作成功,能够准确地测量环境温度,并可进行实时数字化显示和警报功能。
六、实验心得在本次实验中,我们对数字温度计的设计及制作有了更加深入的理解和认识。
了解电路原理、编写单片机程序、进行电路调试与验证等一系列实验操作,培养了我们的理论知识和实践能力,加强了我们对电路与信号处理的认识和理解。
通过实验,我们认识到数字温度计在生产生活中的重要性,为未来的实际工作奠定了扎实的基础。
数字温度计实验报告一,实验目1. 学习80C52单片机内部定期器及各接口功能及应用。
2. 设计任务及规定运用实验平台上LED数码管和蜂鸣器设计具备最低、最高温度查询,实时显示和报警功能数字温度器。
二,实验规定基本规定:1:可以实时显示环境温度。
2:可以保存使用时间内最大值和最小值,可以查阅。
3:有温度报警功能,可以设立报警温度。
用绿灯表达正常温度,红灯表达报警同步发声。
扩展功能:查询最低和最高温度时,批示灯蓝灯和黄灯分别表达当前先显示是高温还是低温。
三,实验基本原理运用单片机定期器完毕报警检测功能。
每隔一段时间定期器0对当前温度值进行检测,当超过设定温度30度时红灯亮并发生报警。
为了将时间在LED数码管上显示当前温度,采用动态显示法,由于静态显示法需要译码器,数据锁存器等较多硬件,可采用动态显示法实现LED显示,通过对每位数码管依次扫描,使相应数码管亮,同步向该数码管送相应字码,使其显示数字。
由于数码管扫描周期很短,由于人眼视觉暂留效应,使数码管看起来总是亮,从而实现了各种显示。
该设计采用四按键输入,当按键1(2)按下,可分别查看当前最低(最高)温度。
四,实验设计分析针对要实现功能,采用AT89S52单片机和ds18b20温度传感器进行设计,AT89S52 单片机是一款低功耗,高性能CMOS8位单片机,它有如下特点:1、拥有机灵8位CPU和在系统可编程Flash2、晶片内部具时钟振荡器(老式最高工作频率可至 12MHz)3、内部程序存储器(ROM)为 8KB4、内部数据存储器(RAM)为 256字节5、32 个可编程I/O 口线6、8 个中断向量源7、三个 16 位定期器/计数器8、三级加密程序存储器9、全双工UART串行通道Ds18b20管脚图为:ds18b20管脚图DS18B20引脚功能:DQ为数字信号输入/输出端;GND为电源地;VDD为外接供电电源输入端(在寄生电源接线方式时接地。
它具备如下特点:(1)独特单线接口方式:DS18B20与微解决器连接时仅需要一条口线即可实现微解决器与DS18B20双向通讯。
红外数字体温计设计及制作1、设计任务本课题针对目前国内外红外测温仪的现状,在查阅了大量文献的基础上,以智能红外测技术作为参考,提出并设计了一种基于51单片机的智能红外测温仪。
红外测温为测量人体温度提供了快速、非接触测量手段,可广泛、有效地用于密集人群的体温测量。
非接触红外测温计针对特定人群,比如儿童或老人,极其方便。
且利用单片机技术开发的语音功能便可克服传统体温计的许多缺陷。
它不但可以以数字的方式显示出测量结果,使测量过程变得直观,而且可以根据需要以语音播报出当前的温度值,除此之外,语音体温计还具有较高的灵敏度,可以在几秒钟内测得结果,且寿命长,是较为理想的测温仪器。
(1)电源开关,电源指示灯,工作指示灯,复位开关,设置报警上下限。
(2)红外温度检测传感器,信号要传送到控制器,同时显示体温(3)当体温超过标准时,灯光闪烁,蜂鸣器轰鸣,语音提示体温。
(4)误差要求: 0.2OC,量程20-50OC2、设计方案以STC89C52单片机为核心控制芯片,采用电路、模块结合化设计。
本设计主要分为:红外测温模块、报警电路和显示电路。
同时,本设计还增加智能温度报警等功能。
红外测温模块主要用来测量人体体温,并通过液晶显示屏显示其温度,当人体体温高于正常温度时进行指示灯报警;此功能主要目的是在流行病多发季节,提醒人们适当减少出行,避免交叉感染。
信号处理单元主要分为:高精度放大器、A/D转换电路、译码显示电路与报警电路。
高频振荡器、振荡检测器电路、音频振荡器电路和功率放大器电路等部分构成。
2.1设计框图本设计以STC89C52单片机为核心控制器,加上其他的模块一起组成非接触人体红外测温的整个系统,其中包含中控部分、输入部分和输出部分。
中控部分采用了STC89C52单片机,其主要作用是获取输入部分数据,经过内部处理,控制输出部分。
输入由三部分组成,第一部分是MLX90614红外测温模块,通过该模块可检测当前的人体温度;第二部分是独立按键,通过三个独立按键切换界面和设置人体温度的上下限值;第三部分是供电电路,给整个系统进行供电。
小系统设计实训报告论文题目:智能温度计所属系部:电子工程系指导教师:***学生姓名:谭晓辉学号: ********程创学号: ******** 专业:电子信息工程技术西安航空职业技术学院制小系统设计实训任务书题目:智能温度计任务与要求:1、查阅数字温度计设计相关资料,熟悉数字温度计设计的原理,查阅A/D转换及传感器相关知识,画出数字温度计原理图,并编写相应的源程序。
2、使用8051单片机作为处理器,设计数字温度计设计,设定温度最高值和最低值,若采集到的温度超过设定值,发出不同声音的报警。
位数码管进行循环显示,显示实际温度值。
3、使用传感器采集室内温度参数,并进行A/D转换后,送给单片机进行处理。
4、可用按键设定上下限,当设定时显示设定状态,设定完成,即显示实时温度值。
5、并用喇叭报警。
时间:2010 年12 月19日至 2010 年 12 月 31 日共 2 周所属系部:电子工程系学生姓名:谭晓辉学号: 09202126程创学号: 09202204专业:电子信息工程技术指导教师:潘晶莹西安航空职业技术学院制摘要温度的检测与控制是工业生产过程中比较典型的应用之一,随着传感器在生活中的更加广泛的应用,利用新型数字温度传感器实现对温度的测试与控制得到更快的开发,本文设计了一种基于80C51的温度检测及报警系统。
该系统可以方便的实现温度采集和显示,并可根据需要任意设定上下限报警温度,它使用起来相当方便,具有精度高、量程宽、灵敏度高、体积小、功耗低等优点,适合于我们日常生活和工、农业生产中的温度测量,也可以当作温度处理模块嵌入其它系统中,作为其他主系统的辅助扩展。
该系统设计和布线简单,结构紧凑,抗干扰能力强,在大型仓库、工厂、智能化建筑等领域的温度检测中有广泛的应用前景。
关键字:单片机;数字滤波; 80C51;辅助扩展。
目录摘要关键字1前言 (1)1.1课程设计的目的和意义 (1)1.2任务及要求 (1)2 系统总体方案及硬件设计 (2)2.1系统总体方案设计 (2)2.1.1 原理论述 (2)2.1.2 原理框图 (2)2.1.3功能模块连接简介 (3)2.2系统硬件电路设计 (3)2.2.1单片机的选择 (3)2.2.2时钟电路设计 (5)2.2.3复位电路设计 (6)2.2.3 报警电路 (7)2.2.4 温度显示电路 (7)2.2.5温度传感器 (7)3 软件设计 (10)3.1系统总体方案设计 (10)3.2程序设计 (11)3.2.1 主程序 (11)3.2.2 读出温度子程序 (12)3.2.3二进制转换BCD码命令子程序 (12)3.2.4 计算温度子程序 (13)3.2.5温度数据显示子程序 (13)4 实验仿真 (13)5系统调试 (14)5.1.软件调试 (14)6课程设计体会 (14)参考文献 (16)附1 源程序代码 (18)附2 系统电路图 (17)元器件清单 (1)使用说明 (1)1前言最早的温度计是在1593年由意大利科学家伽利略(1564~1642)发明的。
数字温度计实验报告一、实验目的1.通过温度计的设计,了解DS18B20芯片的基本功能和用法,另外更加熟练地运用人眼的视觉暂留效应实现温度的动态显示等。
二、实验要求1.能够实时显示环境温度。
2.能够保存使用时间内的最大值和最小值,能够查阅。
3.有温度报警功能,能够设置报警温度。
用绿灯表示正常温度,红灯表示报警同时发声。
三、实验基本原理DS18B20是美国Dallas公司生产的单总线数字输出型集成温度传感器,能够直接读出被测温度值,并且可根据实际要求通过编程实现9~12位的数字量输出,将温度值转化为9位数字量所需时间为93.75 ms,转化为12位数字量所需时间为750 ms。
测试温度范围为-55~+125,精度可达0.0675℃。
本电路包含了单片机最小系统(包括复位按钮、晶振电路)、单总线接口的温度传感器芯片DS18B20、LED数码管显示电路的设计。
本电路采用8位单片机A T89C51,工作原理图如下页所示:1. AT89S52单片机引脚资源及分配如下:2. 晶振电路:在89S52内部有一个高增益反相放大器,其输入端为引脚XTAL1,其输出端为引脚XTAL2。
只需要在片外通过XTAL1和XTAL2引脚跨接晶体振荡器或在引脚与地之间加接微调电容,形成反馈电路,振荡器即可工作。
振荡电路的工作原理如下图:由于电容的大小影响振荡器震荡的稳定性和起振的快速性,通常选择范围10~30 pF。
当由外部输入时钟信号时,外部信号接入XTAL1端,XTAL2端悬空不用。
对外部信号的占空比没有要求,高低电平持续时间不小于20 ns。
3. 温度传感器的接口:前面已经略微介绍过芯片DS18B20,下面主要介绍其使用方法:(1)引脚分配图如下:GND……地,DQ……数据I/O,VDD……电源(2)软件操作:a、主机先作复位操作b、主机再写跳过ROM的操作(CCH)命令c、然后主机接着写个转换温度的操作命令,后面释放总线至少一秒,让DS18B20完成转换的操作。
重庆邮电大学通信与信息工程学院班级GJ011201小组成员徐睿2012210460李易晓2012210057张地根2012210114指导老师邓炳光数字温度计的设计与制作实验报告设计要求1,数字温度计设计与制作:利用之前绘制的“C51学习板”掌握的SCH和PCB图知识,绘制一个基于STC89C51的单片机系统,增加温度采集0~120度,温度显示要求3位整数+1位小数,电路原理图和PCB图2,SCH必须按照规范进行绘制。
3,系统还要求具备电源指示灯,外部使用MINI-USB进行5V供电,在满足要求的情况下,使用的元器件越少越好;温度采集可以用模拟或数字器件、显示可以用LCD或数码管。
4,PCB板要求使用底层走线,元器件在顶层。
5,PCB板上标识自己的学号、姓名。
6,PCB板大小,满足元器件布局的情况下,尽可能减少面积。
7,PCB审查正确后,进行单面板腐蚀的相关操作:热转印、腐蚀、钻孔、裁剪等。
元器件自行购买,然后焊接,调试,编写单片机程序,完成设计报告。
设计步骤一主要原器件的选择控制模块:STC89C52温度采集模块:DS18B20显示模块:8位共阴数码管二原理图的绘制1新建一个工程,在Altium Designer软件中的“File”选项中选择“New→Project→PCB project”,然后保存工程至文件夹中(文件名定义要规范)。
2纸张配置,在Design选项中单击左键,选择Document Options项,然后根据原理图的要求选择合适的配置。
3展开工程管理标签、元器件库。
4填写图纸信息。
(项目名称、图纸名称、版本、序号、作者。
)5元器件绘制。
1)创建元件库;2).绘制元器件;3)完善元器件属性;6.修改元器件名字;7. 同一个库中增加其他元器件;8.打开原理图库管理标签。
1)元器件放置。
2)元器件摆放、连线。
(按格点对齐。
)3)修改元器件值。
4)完成图纸。
5)生成Bom表。
三PCB图绘制1)封装设计。
DS18B20数字温度计设计实验报告文档推荐本实验旨在设计并实现一款数字温度计,利用DS18B20数字温度传感器测量环境温度并通过LCD1602液晶屏幕实时显示温度值。
实验设计1.材料准备:Arduino UNO控制板LCD1602液晶显示屏面包板、面包线10K电阻2.配置DS18B20数字温度传感器将DS18B20数字温度传感器与Arduino UNO控制板连接。
按下面连接方式进行连接: DS18B20传感器的红色线连接到Arduino UNO的+5V输出端口接完线后在Arduino IDE软件中,依次点击工具-示例-DS18B20-Temperature-Resolution,打开示例程序。
将程序复制到新建文本文件中进行修改,此处我将分辨率改为了12位。
然后将程序上传到Arduino UNO控制板中。
LCD1602液晶显示屏的VO引脚连接到一个10K电位器的中间引脚LCD1602液晶显示屏的D4-D7引脚依次连接到Arduino UNO的数字4-7个针脚4.最终的连接方式将连接完DS18B20数字温度传感器和LCD1602液晶显示屏后的Arduino UNO控制板,和面包板和面包线通过另一个10K电阻连接,其中用到的端口引脚如下:Arduino UNO的5V端口连接了一个10K电阻,这个电阻的另一端通过面包线连接到面包板的一个面包网络面包板的另一个面包网络再通过面包线连接到LCD1602液晶显示屏的K端口最后将设备连接完整后,将实验代码上传到Arduino UNO控制板中,然后就可以通过LCD1602液晶显示屏上实时显示环境温度值。
实验总结通过本次实验,我们成功地实现了数字温度计,并能够通过LCD1602液晶显示屏上实时显示温度值。
实验中温度传感器和LCD显示屏的连接更加直观和清晰,容易理解,实验成功率较高。
通过此次实验,我们学习到了数字温度传感器的连接方式、温度检测方法和温度的精度和分辨率等基本知识,同时也熟悉了Arduino UNO控制板和LCD1602液晶显示屏的使用方法,提高了对物联网应用的理解和掌握,为后续学习打下坚实的基础。
数字温度计实验报告数字温度计实验报告一、引言温度是物体热量状态的一种度量,是描述物体冷热程度的物理量。
在科学研究、工程技术和日常生活中,温度的准确测量至关重要。
随着科技的不断进步,传统的水银温度计逐渐被数字温度计所取代。
本实验旨在通过比较数字温度计和水银温度计的测量结果,评估数字温度计的准确性和可靠性。
二、实验方法1. 实验器材:数字温度计、水银温度计、温度控制装置。
2. 实验步骤:a) 将数字温度计和水银温度计放置在相同的温度控制装置中,确保两者受到相同的热源。
b) 等待温度稳定后,记录数字温度计和水银温度计的读数。
c) 重复实验多次,取平均值作为最终结果。
三、实验结果在实验过程中,我们选取了多个温度点进行测量,并记录了数字温度计和水银温度计的读数。
以下是部分实验结果的对比:温度(摄氏度) | 数字温度计读数 | 水银温度计读数-------------------------------25 | 25.2 | 2550 | 50.1 | 5075 | 75.3 | 75100 | 100.2 | 100通过对比实验结果可以看出,数字温度计的读数与水银温度计的读数非常接近,差异较小。
在实验中,我们还发现数字温度计的读数变化较为平稳,响应速度较快,使用起来更加方便。
四、讨论与分析数字温度计相较于传统的水银温度计具有诸多优势。
首先,数字温度计的读数更加直观,可以直接显示温度数值,无需通过目测读数。
其次,数字温度计使用电子元件进行测量,减少了对环境的污染和对人体的伤害。
此外,数字温度计还具备自动记录和数据传输的功能,方便了温度监测和数据分析。
然而,数字温度计也存在一些局限性。
首先,数字温度计对环境的要求较高,如温度计的放置位置、周围环境的影响等都可能对测量结果产生一定的影响。
其次,数字温度计的测量范围有限,无法测量极低温度或极高温度。
此外,数字温度计在极端环境下可能存在故障或不准确的情况。
五、结论通过本次实验,我们可以得出以下结论:1. 数字温度计的测量结果与水银温度计的测量结果非常接近,具有较高的准确性和可靠性。