光与物质相互作用基础
- 格式:ppt
- 大小:624.00 KB
- 文档页数:40
第14章 光与物质相互作用光通过物质时,由于和物质相互作用,传播情况会发生变化。
这种变化主要表现在两个方面:第一,随着光束深入物质,光强越来越弱,这是因为光的一部分能量被物质吸收,一部分光向各个方向散射所造成的;第二,光在物质中传播的速度小于真空中的光速,而且与频率有关,这就是光的色散现象。
光的散射、吸收和色散是光在介质中传播时的普遍现象,并且是相互联系的。
研究光和物质的相互作用,不仅可以对各种光学现象和光的性质有进一步的理解,而且可以通过对光现象的分析,了解物质的原子、分子结构,测定分子常数等。
§14-1 分子光学的基本概念一 电偶极子模型光是电磁波,物质由分子原子组成,光和物质的相互作用,就是电磁波与原子分子的作用。
或者说是原子分子中的带电粒子,在电磁波的作用下作受迫振动,形成振荡电偶极子。
设光波的频率为ω,作用在原子分子中的带电粒子上的有效电场强度为t E E ωc o s 0= 对于各向同性的介质,带电粒子所受的电场力为t F t qE qE F ωωcos cos 001===此外,每一个带电粒子还受其它电荷的作用,当带电粒子在平衡位置附近做微小振动时,这个力可以等效为准弹性力kr F -=2式中,r 为振移,k 是弹性系数。
另外,电偶极子在振荡时,会不断向外辐射电磁波,这种能量损失可以等效为辐射阻尼力的作用td r d F γ-=3 根据牛顿定律,带电粒子的运动方程为22321td r d m F F F =++ 由此得到微分方程t f r td r d t d r d ωωβc o s 202022=++ 式中,m r 2=β称为阻尼系数,m k =0ω是偶极子的固有频率, mqE m F f 000==。
在第4章中我们已经知道,带电粒子在频率为ω的简谐策动力的作用下作受迫振动,到达稳态时,粒子也以ω (不是其固有频率0ω)的角频率作简谐振动;其表达式为)c o s (ϕω+=t A r式中222200)2()(βωωω+-=f A ,2202tan ωωβωϕ-= 在电场作用下,带电粒子的感生偶极矩 )cos()2()(2222002ϕωβωωω++-==t m E q qr p比较,发现分子的感生电偶极矩与光波的策动电场间存在相位差。
光与物质的粒子体系相互作用的过程是一直以来,光与物质的相互作用一直是自然科学和物理学领域中的重要研究课题。
光作为一种电磁波,具有粒子性质,而物质则由分子、原子和基本粒子等构成。
当光与物质相互作用时,光的粒子性质与物质的粒子体系之间发生一系列的相互作用过程。
1.第一步:光的射入与吸收当光照射到物质上时,它会与物质的分子或原子相互作用。
这种相互作用过程,最基本的表现就是光的吸收。
光的能量被吸收后,被物质的粒子转化为热能或其他形式的能量。
当光被吸收时,物质的电子会吸收光的能量,跃迁到更高能级,从而改变了物质的能级结构。
2.第二步:光的散射与透射除了吸收,光还可以在物质中发生散射和透射。
散射是指光在物质中的粒子上发生的随机散射现象。
当光的波长与物质粒子的尺寸相当时,光的能量会被物质粒子吸收并再次辐射出去,形成散射现象。
透射则是指光通过物质而不被吸收或散射,使得光线能够穿透物质并传播。
3.第三步:光的激发与辐射当物质吸收光能量后,物质的原子或分子的电子会跃迁到激发态。
在激发态下,电子具有较高的能量级,随后会发生自发辐射或受激辐射过程。
自发辐射是指电子从激发态跃迁到较低的能级时,释放出光子的能量。
受激辐射是指电子在受到外界的光激励后,跃迁到较低的能级,并释放出与激发光子相同频率的光子。
4.第四步:光的干涉与衍射当光通过物质或在物质表面发生反射时,会产生干涉和衍射现象。
干涉是指光的波前相遇并相互叠加,形成明暗交替的干涉条纹。
干涉可以通过干涉仪或薄膜等实验现象来观察和研究。
衍射是指光通过物体的缝隙或边缘时发生的弯曲和扩散现象。
衍射现象在光的波动性研究和光的粒子性质验证方面具有重要意义。
总结回顾:光与物质的粒子体系相互作用过程是复杂而多样的。
从光的射入与吸收开始,光的能量被物质的粒子吸收并转化为其他形式的能量。
接下来,光的散射与透射使得光与物质发生相互作用,从而产生散射和透射现象。
随后,物质的电子跃迁到激发态,产生自发辐射和受激辐射的过程。
研究生课程纳米光学(Nano-Optics)第二讲:光与物质的相互作用董国艳中国科学院大学材料科学与光电技术学院1你知道吗?…光进入绝缘体(电介质)会发生什么?电解质材料是否总是透明无损耗的?23本讲内容− 电磁波的产生与传播− 麦克斯韦方程− 本构关系− 时谐场− 电介质的极化− 边界条件− 波动方程− 复介电常数3.微观和宏观材料理论− 自由和束缚电子− 绝缘体/电解质的电磁响应:Lorentz model−金属的电磁响应:Drude model (后面讲讨论)1. 电磁理论2. 材料的光学性能− 吸收4. 利用纳米结构设计光与物质相互作用的实例——生成双折射−散射−色散4①电场和磁场共存②电磁波是横波③电场和磁场方向互相垂直④和传播速度相同、相位相同⑤电磁波速⑥电磁波具有波的共性——在介质分界面处有反射和折射光计算的数学基础是电磁场理论。
由于光是电磁波,因此电磁场理论可以解释和计算光学现象。
1、电磁理论//E H k ⨯HE με=1800s m 10997921-⋅⨯==.c με真空中介质中1v εμ=E H k cn v =00μεεμ=r r με=r ε≈折射率5B电磁波的产生与传播变化的磁场激发电场:E tB ∂∂t D ∂∂变化的电场激发磁场:B EE xBB E 变化的电磁场在空间以一定的速度传播就形成电磁波.6用复数表示,平面波有如下关系exp(ia )=cos a +i sin a平面波的电场可表示为0xp(i i )(,)E r t E e k r t ω=⋅-同样,磁场的复数形式0xp(i i )(,)H r t H e k r t ω=⋅-平面电磁波平面波的电场可表示为)(0t r k E t x E ω-⋅=cos ),(E 0为振幅,t 为时间,ω为角速度,ω=2πf ,f 为频率,k 为波矢,k =2π/λ,r 为位置矢量7旋度公式怎样描述光的波动性质?(1831–1879)∇⋅D =ρext∇⋅B =0∇⨯E =-∂B /∂t ∇⨯H =∂D /∂t +J ext散度公式如果没有外部电荷和电流divergence:散度,curl:旋度,macroscopic:宏观的D=电位移矢量E=电场强度矢量,B=磁感应强度矢量H=磁场强度矢量ρext =外部电荷密度J ext =外部电流密度麦克斯韦方程7–Maxwell’s equations∇⨯H =∂D /∂t连接4个宏观场量E ,H ,D ,B ∇⋅D =0∇⋅B =0∇⨯E =-∂B /∂t 80ρ=⋅∇D t B E ∂∂-=⨯∇0=⋅∇B t D j H ∂∂+=⨯∇ 00div ρ=DtB E ∂∂-=rot 0div =B tDj H ∂∂+=0rot 散度:div = divergence旋度:rot = rotationzk y j x i ∂∂+∂∂+∂∂=∇ 算符说明:麦克斯韦电磁场方程的微分形式∇为微分算子,也称Hamilton 算子, 定义为9标量场的梯度是矢量场:k z j y i x∂∂+∂∂+∂∂=∇φφφφ),,(z y x φφ=矢量场的散度是标量场:k A j A i A A z y x++=zA y A x A A zy x ∂∂+∂∂+∂∂=⋅∇ 矢量场的旋度还是矢量场:k y A x A j x A z A iz A y A A x y z x y z )()()(∂∂-∂∂+∂∂-∂∂+∂∂-∂∂=⨯∇⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∂∂∂∂∂∂=z y x A A A z y x k j i1010真空平行板电容器介电材料电场电位移极化强度金属板表面的(正的与负的)自由电荷介电材料表面的束缚电荷真空介电常数(8.85×10-12As/Vm )相对介电常数电容0εεε=r 电介质的极化11材料可按其对外电场的响应方式区分为两类:导电材料:以电荷长程迁移即传导的方式对外电场作出响应,导体中的自由电荷在电场作用下定向运动,形成传导电流。
光与物质的粒子体系相互作用光与物质的粒子体系相互作用,是研究光学和物质科学的重要课题之一、在物理学中,光可以被看作是由许多粒子组成的光子流动,而物质则由分子、原子和更小的粒子组成。
那么当光与物质相互作用时,会产生怎样的现象呢?最常见的光与物质的相互作用现象之一就是折射。
当光从一个介质传播到另一个介质时,会因为介质的折射率不同而改变传播方向。
这是由于光在介质中的传播速度发生变化,而根据物质的密度和光的频率,光在介质中传播的速度会有所变化,从而导致光线的弯曲。
这一现象在我们日常生活中非常常见,比如当我们将一支笔插入水中时,看起来笔似乎断了一样,这就是光与水相互作用时发生的折射现象。
除了折射之外,光与物质的相互作用还可以导致反射现象。
当光从介质中射到表面上时,一部分光被表面反射回来,这就是我们所熟知的镜面反射。
反射现象的发生是因为光在介质与表面之间发生了界面的折射,从而改变了光的传播方向。
而反射现象不仅仅发生在平面表面上,相同的现象也会发生在曲面上,比如凹镜或凸镜上。
光与物质相互作用还可以导致吸收现象。
当光照射到物质上时,物质会吸收一部分光的能量而发生变化。
这一现象在化学反应中非常常见,比如光照射到一些化学物质时会引发光化学反应。
吸收光的能量还可以导致物质的温度升高,这就是我们在阳光下感到温暖的原因。
此外,光与物质相互作用还可以导致散射现象。
当光碰到物质表面上的微小颗粒时,光的传播方向发生变化,这就是散射现象。
散射会导致光线的弯曲以及颜色的变化,这在大自然中可以观察到,比如蓝天就是由于空气中的微小颗粒将太阳光中的蓝光散射到各个方向所致。
除了以上所述的常见现象,光与物质的相互作用还涉及到一些更复杂的现象,比如干涉和衍射。
干涉是指两束或多束光相遇时产生的明暗干涉条纹,它与光的波动性质密切相关。
而衍射是指光通过有限大小的孔或障碍物时的传播现象,它会导致光的波前发生弯曲和扩散。
这些现象的理解和应用广泛地运用在日常生活和各个科学领域中。
光与物质相互作用的基础研究光与物质相互作用是光学领域中的基础研究课题,对于我们理解光的性质以及应用光学在各个领域具有重要意义。
本文将对光与物质相互作用的基础研究进行探讨,包括光的传播、吸收、散射和发射等方面的现象与机理。
一、光的传播光的传播是光与物质相互作用的基础。
在光学中,我们常常使用的是光在真空中传播的模型,即光是一种电磁波,具有波粒二象性。
在真空中,光的传播速度是固定不变的,约为30万千米每秒。
当光射入介质中时,由于介质的折射率不同,光的传播速度会发生改变,从而引发折射现象。
二、光的吸收光在与物质相互作用的过程中,会被物质吸收。
光的吸收是光与物质相互作用的重要现象,它与物质的能级结构密切相关。
当光射入物质时,光的能量将会被物质吸收,并转化为物质的能量。
这种吸收现象是光与物质相互作用的基础,也是光学材料的设计与应用的关键。
三、光的散射光在与物质相互作用的过程中,可能会发生散射现象。
光的散射是光与物质相互作用后的一种现象,它导致光的传播方向发生改变,并使光的能量分散在空间中。
根据散射的机制不同,我们可以将光的散射分为弹性散射和非弹性散射两种类型。
四、光的发射光的发射是光与物质相互作用的另一种重要现象。
光的发射包括热辐射和荧光发光两种形式。
热辐射是物质受到外界能量激发后的发射,它与物质的温度密切相关。
荧光发光是某些物质在受到激发后的特殊发光形式,这种发光具有很多特殊的性质,例如发射光谱的峰值与受激发能量无关等。
在实际应用中,光与物质相互作用的研究对于光学设备和材料的开发具有重要意义。
例如在光通信领域,我们需要研究光与光纤材料的相互作用,以提高光信号的传输效率和稳定性。
在太阳能电池的研制中,光与半导体材料的相互作用是关键因素,只有充分理解光与物质相互作用的机制,才能提高太阳能电池的光电转化效率。
总之,光与物质相互作用的基础研究对于我们理解光学现象以及应用光学技术具有重要意义。
通过研究光的传播、吸收、散射和发射等现象与机理,我们可以深入探索光学的奥秘,并应用于各个领域的科学研究和工程实践中。
第10章 光与物质的相互作用10.1 内容提要(一)光的波粒二象性 1.普朗克量子假设(1)一个频率为v 的谐振子只能处于一系列不连续的分立状态,在这些状态中,谐振子的能量只能是某一最小能量ε= hv 的整数倍,即hv ,2hv ,3hv ,…,nhv其中n 为正整数,h 是普朗克常量,ε=hv 称为能量子。
(2)当谐振子从一个量子态跃迁到另一个量子态时,谐振子将发射或吸收以能量子(现称为光子)为单位的电磁能。
一个光量子的能量就是两个相邻量子态之间的能量差,即Thh E ==ν (10.1) 而当谐振子停留在原来的量子态时,它将不发射或吸收任何能量。
普朗克的量子假设突破了经典物理学的观念,第一次提出了微观粒子具有分立的能量值,即振子的能量是按量子数做阶梯式分布,后来人们把振子处于某些能量状态,形象地称为处于某个能级。
2.爱因斯坦的光量子学说(1)光电效应:当光照到某些金属的表面时,金属内部的自由电子会逸出金属表面,这种光致电子发射现象叫做光电效应。
(2)爱因斯坦的光量子假设:光束可以看成是由微粒构成的粒子流,这些粒子叫光量子,也叫光子。
光子以光速运动,对于频率为v 的光束,光子的能量为νεh = (10.2)按照爱因斯坦的光子假设,频率为v 的光束可以看作是由许多能量均等于hv 的光子所构成;频率越高,光子的能量越大;对给定频率的光束来说,光的强度越大,就表示光子的数目越多。
(3)爱因斯坦的光电效应方程:0221A m h m +=v ν (10.3) 式(10.3)中A 0为逸出功,221m m v 为电子的初动能。
3.光的波粒二象性(1)光子的能量: λνhch E == (10.4)(2)光子的质量: λνhch m ==2(10.5)(3)光子的动量: λhmc p == (10.6)(二)光的吸收 散射 色散 1.光的吸收(1)朗伯定律:当一束单色光透过一定厚度的介质时,透射光的强度就会降低,并且产生吸收光谱。
光电效应光与物质的直接相互作用光电效应是指当光线照射到金属表面时,会引起金属产生电子的释放现象。
这一现象是光与物质之间直接相互作用的结果,具有重要的科学意义和应用价值。
本文将从几个方面探讨光电效应及其与光与物质的直接相互作用的关系。
一、历史沿革光电效应最早由德国科学家赫兹于1887年发现,并于1905年由爱因斯坦进一步解释。
他认为光的能量是以一定数量的量子形式传递的,这些量子被称为光子。
光电效应的发现和解释为量子物理学的发展奠定了基础。
二、实验现象和理论解释在光电效应实验中,当光照射到金属表面时,如果光的频率足够高,金属表面会发射出电子。
实验结果表明,光电效应的发生与光的频率有关,而与光的强度无关。
这一实验现象对应着光电效应理论的两个重要特征:阈值频率和光电子速率与光强的无关性。
根据光电效应理论,金属表面的电子处于束缚状态,当光照射到金属表面时,光子对金属表面上的电子进行作用。
当光子的能量大于或等于金属表面束缚电子的最低能量,即达到阈值频率时,电子会从金属表面解离出来,形成自由电子。
光电效应的速率和光强无关,主要取决于光子的能量。
三、光电效应的应用光电效应在日常生活中有许多实际应用。
例如,光电效应可被应用于光感器和太阳能电池等器件中。
光感器利用光电效应原理将光能转化为电能,广泛应用于照明、光电自动控制和消费电子产品中。
太阳能电池利用光电效应将太阳光转化为电能,是太阳能利用的重要方式之一。
此外,光电效应还在科学研究中具有重要的应用。
通过研究光电效应,科学家可以了解光的本质和物质的结构。
同时,光电效应还为光学材料的研究以及激光技术的发展提供了重要基础。
四、光电效应的深层原理光电效应的深层原理是光子与物质微观粒子之间的相互作用过程。
光子在与物质相互作用时,可以通过传递能量和动量来影响物质微观粒子的状态。
这一过程涉及到能量守恒和量子力学的基本原理。
量子力学的波粒二象性理论认为光既可以被看作电磁波,也可以被看作粒子(光子)。
光子与物质的相互作用标题:光子与物质的相互作用:探索光与物质之间的奇妙联系简介:光子与物质的相互作用是一个引人入胜的研究领域。
本文将探讨光子与物质之间的相互作用方式,并介绍它们在科学和技术领域的应用。
正文:光子是光的基本单位,是一种电磁波粒子。
物质则包括了构成世界万物的原子和分子。
光子与物质之间的相互作用使得我们能够理解和探索自然界中的各种现象。
首先,光子与物质之间最常见的相互作用形式是吸收和发射。
当光子与物质接触时,物质中的电子可能会吸收光子的能量,并跃迁到一个更高的能级。
这种吸收过程导致了光的衰减或颜色的变化。
相反地,处于激发态的电子可以发射光子,使得物质放出能量并返回到低能级状态。
这种发射过程是我们在日常生活中所见到的各种发光现象的基础,比如夜光材料和激光。
其次,光子与物质之间的相互作用还可以导致光的散射。
当光通过物质时,光子与物质中的原子或分子发生碰撞,导致光的方向改变。
这种散射现象可以解释为什么我们能够看到物体周围的环境,因为光散射后进入我们的眼睛。
不同类型的散射如弹性散射和非弹性散射对应着不同的现象,比如蓝天和红夕阳。
此外,光子与物质之间的相互作用还可以引发电子的运动。
当光子的能量足够高时,它可以击中物质中的电子,使其获得足够的能量以克服束缚力,并进入自由态。
这种光电效应的发现为量子力学的发展做出了重要贡献,并在太阳能电池和光电子学等领域有着广泛的应用。
光子与物质的相互作用在科学研究和技术应用中起着重要作用。
通过研究光子与物质的相互作用,我们能够了解物质的结构和性质,并开发新材料和技术。
比如,通过控制光子与物质的相互作用,可以实现光的传输和通信技术的改进,以及光计算和量子计算的发展。
此外,还可以利用光子与物质的相互作用来实现光谱分析、光学成像和医学诊断等应用。
总之,光子与物质的相互作用是一个引人入胜的领域。
通过探索光子与物质之间的奇妙联系,我们可以更好地理解自然界中的现象,并将其应用于科学研究和技术创新中。
写出光与物质相互作用的爱因斯坦关系式,说明其物理含义
爱因斯坦提出的光与物质相互作用的关系式是光电效应方程,它可以用数学公式表示为:E=h·f
其中:
E 是光子的能量;
h 是普朗克常数,约为6.626×10−34能量单位秒(焦耳·秒);
f 是光的频率。
这个公式说明了光子的能量与光的频率之间存在直接的关系。
具体而言,能量正比于频率,并且比例常数为普朗克常数。
物理含义:
一、能量量子化:光电效应方程的提出支持了能量的量子化理论。
它表明能量并非连续的,而是以量子的形式存在,光子的能量取决于光的频率。
二、光子的粒子性:光电效应证实了光的粒子性质,光子被看作是一种具有能量的微粒,而不仅仅是经典波动理论中的电磁波。
三、阐释光电效应:光电效应是指当光照射到金属表面时,光子能量足够大时,会将金属中的电子释放出来。
爱因斯坦的方程提供了解释光电效应的理论基础,即光子的能量足够大时,能够克服金属对电子的束缚力,使电子脱离金属表面。
这个关系式的提出推动了量子理论的发展,同时也为后来的量子力学打下了基础。
光电效应是指物质在光照射下发生的电子的发射或者电子和正空穴对的形成现象。
光电效应是由于光子能量的吸收而产生的电子激发现象,是一种光与物质相互作用的基本过程。
光电效应主要有外光电效应、内光电效应和光生伏特效应三种。
一、外光电效应1. 外光电效应是指当光线照射在金属或其他导体的表面上,使得金属表面电子呈现出逸出的现象。
外光电效应是由光子能量将金属表面电子激发出金属而引起的。
2. 外光电效应的条件是光子的能量大于金属的功函数值,才能将金属内的电子激发出来。
外光电效应不受外界电场的影响,而且随着光强的增大,逸出的电子速度也会增大。
二、内光电效应1. 内光电效应是指当光线射入半导体或绝缘体时,在其内部也会出现一些电子空穴对,这种现象称为内光电效应。
2. 内光电效应的条件是光子能量大于材料的带隙宽度,才能发生内光电效应。
内光电效应的特点是光子能量小于带隙宽度时,材料内部产生的电子空穴对会很少。
3. 内光电效应的影响是可以通过内光电效应来传输信息和能量,因而在半导体光电器件中有着重要的应用。
三、光生伏特效应1. 光生伏特效应是指当光线穿过PN结时,使PN结两侧出现电势差和电场分布的变化,这种现象称为光生伏特效应。
2. 光生伏特效应的主要原因是光生载流子因电场的影响而发生漂移或扩散,从而在PN结两侧产生电势差。
光生伏特效应是光电二极管和太阳能电池等器件的工作原理基础。
3. 光生伏特效应对于太阳能电池来说具有重要的意义,可以充分利用光能转化为电能的效应,是太阳能电池高效率能源转换的重要物理基础。
在总结一下:- 外光电效应主要发生在金属或导体表面,是光子能量将金属表面电子激发出金属而引起的。
- 内光电效应主要发生在半导体或绝缘体中,是光子能量激发材料内部电子空穴对的现象。
- 光生伏特效应主要发生在PN结中,是光生载流子因电场的影响而产生电势差的现象。
通过对光电效应三种形式的了解,可以更深入地了解光与物质之间的相互作用,为相关器件与技术的研发和应用提供了重要的理论基础。