高并发下的网站架构
- 格式:pptx
- 大小:2.23 MB
- 文档页数:30
万亿级企业级三⾼(⾼可⽤、⾼并发、⾼可靠)微服务架构设计和实践介绍打造顶级思维模型篇,以企业三⾼微服务架构设计为例,打造⾃⼰顶级思维模型;⼀直关注⽞姐,以下介绍和启发都是来源与⽞姐课程分享,每天学习进步加油!⽬录领域驱动设计DDD与实践微服务架构设计与拆分⽅法论(拆分⽅法论、架构设计折中、折中思维模型、应⽤实践)微服务架构业务真是案例同步/异步模式深度剖析(阿⾥/腾讯云/异步架构模式)顶级思维模型深度剖析1. 领域驱动设计DDD与实践Domain Driven Desgin (领域驱动设计),领域驱动设计就是⾯向对象编程,DDD(领域驱动设计)不是贫⾎模型、充⾎模型、领域模型降本增效DDD本质就是服务⾼内聚、低耦合DDD落地⽅式就是按照业务领域拆分服务2. 微服务架构设计与拆分⽅法论业务侧(垂直⽅向):领域驱动设计,垂直拆分DDD与⽬前微服务分层结构如下:Entity->ModelAggredateRoot->LogicService->Controller架构侧(⽔平⽅向):⽔平拆分综上所述微服务就是领域驱动设计和架构⽔平拆分,微服务可以分为服务和数据;2.1 业务侧(垂直⽅向):领域驱动设计和实践业务领域设计拆分原则也可以从物理和逻辑进⾏拆分,物理就是强耦合,逻辑是弱耦合,⽐如:⽤户、商品、订单、交易,⽤户与商品、商品与订单、商品与交易都是逻辑关系,即可以把服务拆分为:⽤户服务、商品服务、订单服务、交易服务;也可以从逻辑进⾏拆分,如⽤户服务会有注册、登录请求,注册为写请求,登录为读请求进⾏拆分(API);所有的拆分⼀定要从业务⾓度去考虑,任何脱离业务的架构都是耍流氓;选择优雅的解决⽅案。
2.2 ⽔平⽅向:架构功能拆分和实践⽔平拆分分层图以上是通过软件架构功能进⾏⽔平拆分服务,以及每⼀层拆分服务对应功能;备注:每⼀层服务访问都是从上到下,不允许⽔平服务层访问⼆⼿交易平台微服务架构实践在以上服务分层架构上⾯,也可以把⼀些公共的功能进⾏提取出公共的服务,即微服务中台架构。
高并发任务调度系统的架构设计随着互联网的迅猛发展,越来越多的应用场景需要处理大量的并发任务。
为了能够高效地处理这些任务,高并发任务调度系统应运而生。
本文将围绕高并发任务调度系统的架构设计展开讨论,并介绍其核心组件和工作流程。
一、架构设计概述高并发任务调度系统的架构设计旨在实现任务的快速调度和高效处理。
它通常由调度器、任务队列、执行器和监控器等核心组件构成。
1. 调度器:调度器是整个系统的核心,负责根据任务的优先级和调度策略,将任务分配给可用的执行器进行处理。
调度器需要具备高并发处理能力和动态可调度的特性,以应对不同任务场景的需求。
2. 任务队列:任务队列用于存储待执行的任务,它可以是基于内存的队列或分布式消息队列。
任务队列的设计应考虑到高并发情况下的并发读写和数据一致性等问题。
3. 执行器:执行器是任务的实际执行者,它负责从任务队列中获取任务并执行。
执行器需要具备高并发执行能力和任务执行状态的监控与管理能力,以确保任务能够按时完成并保证任务执行的质量。
4. 监控器:监控器用于监控整个任务调度系统的运行状态和性能指标。
它能够实时采集系统的运行数据并进行分析,以便及时发现和解决潜在的问题。
二、任务调度流程高并发任务调度系统的核心工作流程如下:1. 任务提交:用户通过接口或其他方式将任务提交到任务调度系统。
2. 任务分配:调度器根据任务的优先级和调度策略,将任务分配给可用的执行器。
任务分配可以采用轮询、负载均衡或其他算法。
3. 任务执行:执行器从任务队列中获取任务,并根据任务的类型和要求进行具体的执行。
执行过程中,执行器需要记录任务的执行状态和结果。
4. 任务完成:任务执行完成后,执行器将执行结果返回给调度器,并将任务标记为已完成。
5. 监控与管理:监控器实时采集任务调度系统的运行数据,并进行分析和展示。
同时,监控器还能够对任务执行状态和系统性能进行监控和管理。
三、关键技术和挑战在设计高并发任务调度系统时,需要考虑以下关键技术和挑战:1. 并发处理:高并发任务调度系统需要具备高并发处理能力,能够同时处理大量的任务请求。
高并发系统的架构设计与优化随着互联网的不断发展,高并发系统越来越普遍,而高并发系统的架构设计和优化成为了很多企业所关注的重点。
本文将从架构设计入手,探讨高并发系统的优化方法。
一、架构设计高并发系统的架构设计是整个系统的基础。
一个好的架构设计可以为后续的优化工作打下基础,降低后期工作难度和成本。
1.分布式架构分布式架构是实现高并发系统的重要手段之一。
将系统拆分为多个模块,通过网络通信协作完成一定的任务。
这样可以将压力分散到多台服务器上,灵活地扩容和缩容。
2.微服务架构微服务架构是将整个系统拆分成若干个小服务模块,每个模块有独立的代码和资源。
这样设计可以更快地开发和部署,避免整个系统因为某个模块的问题而宕机。
同时,微服务架构也可以使用不同的技术栈和语言,让各个模块做到最优化,进一步提高整个系统的性能。
3.缓存技术缓存技术是高并发系统的重要手段之一,可以将常用的数据在内存中存储起来,避免每次请求都从数据库中读取,降低系统的负载。
常见的缓存技术有Redis、Memcached等。
二、优化方法在架构设计的基础上,对于高并发系统,还需要进行一定的优化工作,以达到更好的性能和稳定性。
1.数据库优化数据库是高并发系统的瓶颈之一,因此需要进行一些优化工作,缓解对数据库的压力。
(1)使用索引使用合适的索引可以提高数据的查询速度,降低数据库的负载。
但是,索引建立得不好,反而会影响性能,因此需要有一定的数据库设计和优化经验。
(2)水平切分和垂直切分当数据库的数据量达到一定程度的时候,需要对其进行水平切分或垂直切分,将不同的数据存储在不同的服务器上,避免单一数据库过载。
2.负载均衡负载均衡是高并发系统必须考虑的问题之一,可以将请求平均分配到不同的服务器上,提高系统的稳定性和吞吐量。
常见的负载均衡算法有轮询算法、加权轮询算法、随机算法等。
3.CDN加速CDN是指内容分发网络,可以将网站的静态资源存储在离用户最近的服务器上,加快用户访问速度。
电商高并发解决方案电商行业的快速发展带来了巨大的商机,同时也给电商平台带来了高并发访问的挑战。
在电商促销活动、热门商品上线以及大规模推广等情况下,高并发访问可能会导致网站崩溃、卡顿等问题,进而引发用户流失和信誉下降。
因此,设计和实施高并发解决方案是电商平台的重要任务之一。
一、优化系统架构电商平台的系统架构是保证高并发处理的基础。
首先,需要采用分布式架构来应对潜在的高并发问题。
将系统分成多个模块并在多个服务器上部署,可以增加系统的承载能力。
其次,使用缓存系统来减轻数据库负载。
将频繁访问的数据缓存在内存中,可以大幅度提高系统的读取速度。
此外,使用负载均衡技术可以将请求均匀地分配给多个服务器,从而平衡系统负载,提高响应速度。
二、数据库优化电商平台的数据库是存储和处理大量数据的关键。
为了应对高并发情况,可以从以下几个方面进行优化。
首先,合理设计数据库表结构,避免不必要的冗余字段和表连接操作,提高数据库查询性能。
其次,使用索引来加速数据查询。
根据常用查询条件,合理添加索引可以大幅度提高查询速度。
此外,使用数据库读写分离技术,将读操作和写操作分开处理,可以提高系统的吞吐量。
三、缓存技术的应用缓存技术是解决高并发问题的有效手段之一。
通过将热门商品、广告图片等频繁访问的数据缓存在缓存服务器中,可以降低数据库的负载,提高系统的响应速度。
同时,可以使用分布式缓存技术,将缓存数据分布在多个节点上,减少单点故障的风险。
四、静态资源优化电商平台中,大量的静态资源如图片、CSS和JavaScript文件会占据大量的带宽和加载时间。
为了提高系统的响应速度,可以将这些静态资源部署在CDN(Content Delivery Network)上。
CDN利用全球分布的节点来缓存静态资源,当用户请求时,可以从离其最近的节点获取资源,极大地减少了资源加载的时间。
五、异步处理技术在电商平台中,一些耗时的操作如订单确认、库存更新等可能会导致系统响应变慢。
高并发系统设计的架构与优化随着数字化进程的深入和社会信息化的加速,互联网应用的高并发要求越来越高。
在此背景下,如何设计和优化高并发系统成为了信息技术领域研究的热点问题。
本文将从系统架构和优化两方面进行探讨。
一、系统架构设计高并发系统的架构设计是保证系统稳定性和可扩展性的关键。
一个好的架构设计方案应该具备以下特点。
1. 数据库读写分离在高并发场景下,数据库成为系统瓶颈之一。
为了解决这个问题,通常采取读写分离的策略。
即将读操作和写操作分别由不同的数据库实例处理。
这样既可以提高数据库的读写效率,又可以减轻数据库的负担,从而降低系统崩溃的风险。
2. 负载均衡负载均衡是为了让系统能够平衡地分配压力,从而使得系统总体上的吞吐量最大化。
通常采取硬件负载均衡或软件负载均衡。
硬件负载均衡通常使用专门的负载均衡服务器,而软件负载均衡则通过程序来实现。
无论哪种负载均衡方式,都必须能够实现节点之间的数据同步。
3. 分布式存储分布式存储可以解决单点故障以及数据存储管理问题。
系统可以将数据分散存储到多个节点上,这些节点之间可以互相备份,如果其中一个节点发生故障,其他节点可以顶替其工作。
从长远来看,分布式存储也可以更好地适应系统的扩展性需求。
4. 缓存机制缓存技术可以将数据存储在内存中,加快系统的响应速度,并可以有效减轻数据库的压力。
常用的缓存技术有Redis、Memcached等。
这些技术可以让系统数据更快地访问,从而更好的满足用户的需求。
5. 异步消息队列在高并发系统中,异步消息队列可以保证数据的异步化处理和传递。
异步方式可以移除数据的实时性要求,从而减缓系统的压力。
同时,消息队列适合处理大量的数据流,可以提高系统的性能。
二、系统优化除了系统架构的设计外,还需要进行系统优化,以进一步提高系统的性能和稳定性。
优化方面可以从以下几个方面入手。
1. 数据库优化数据库是高并发系统中的一个重要组成部分。
针对数据库,主要的优化手段包括合理使用索引、优化SQL语句、使用缓存等。
高并发应用数据库解决方案在当今的信息化社会中,高并发应用的需求越来越普遍。
无论是电子商务、社交媒体还是在线游戏,都需要应对大量用户同时访问的情况。
而这种高并发的访问量对数据库的性能提出了更高的要求。
本文将介绍几种常见的高并发应用数据库解决方案,帮助您选择适合自己应用的方案。
一、读写分离架构读写分离是一种常见的解决高并发问题的方法。
该架构通过将读和写操作分离到不同的数据库实例中,可以提升系统的整体性能。
通常情况下,读操作远远多于写操作,因此将读操作分散到多个从数据库中可以有效减轻主数据库的负载。
同时,通过主从同步机制,保证数据的一致性。
在读写分离架构中,主数据库负责处理写操作,而从数据库负责处理读操作。
对于一些数据一致性要求较高的应用场景,可以使用主从同步工具实时同步数据,确保数据的一致性。
二、数据库分库分表数据库分库分表是一种常见的垂直拆分数据库的方式。
该方式通过将不同的数据分散到多个数据库实例中,减轻单一数据库的压力,提高系统的整体性能。
具体而言,将数据库按照业务功能或者数据类型进行拆分,每个数据库实例只负责处理相关的业务数据。
在数据库分库分表的架构中,常使用分片技术来实现数据的拆分和路由。
通过对数据进行分片,可以将数据分散到不同的数据库中,提高系统的并发读写能力。
三、缓存技术的应用缓存技术是常见的提高系统性能的手段之一。
通过使用缓存,可以将一部分热点数据存储在内存中,提高数据的访问速度。
对于高并发应用来说,缓存技术可以有效减轻数据库的压力。
常见的缓存技术包括内存数据库、分布式缓存和CDN等。
通过使用这些技术,可以将部分数据直接缓存在内存中,减少对数据库的访问。
四、数据库水平拆分数据库水平拆分是一种常见的解决高并发问题的方法。
该方式通过将一个表的数据拆分到多个数据库中,减少单一数据库的查询压力,提高系统的并发能力。
数据库水平拆分可以根据数据的某一字段进行拆分,例如按照用户ID进行拆分。
通过这样的方式,可以将不同的数据分散存储到不同的数据库中,提高系统的并发读写能力。
概述淘宝是中国最大的电商网站之一,每天有数以亿计的用户访问淘宝平台。
在高并发的访问环境下,如何保证淘宝的稳定性和可用性是一个重要的挑战。
本文将介绍淘宝高并发解决方案,包括架构设计、缓存优化、数据库优化以及负载均衡。
架构设计淘宝采用了分布式架构来应对高并发的访问压力。
整个系统被划分为多个服务模块,每个模块独立运行,并通过消息队列进行通信。
这种架构设计可以有效地提高系统的可伸缩性和可扩展性。
缓存优化为了减轻数据库的压力,淘宝采用了大量的缓存来加速数据访问。
其中,最核心的缓存技术是利用Redis来缓存热点数据。
通过将频繁访问的数据放入Redis缓存中,可以大大提高系统的响应速度和吞吐量。
淘宝还利用CDN(内容分发网络)来缓存静态资源,例如商品图片、CSS文件和JavaScript文件。
CDN可以将这些静态资源缓存在全球各地的节点上,用户可以就近访问这些缓存节点,从而提高访问速度。
数据库优化淘宝使用了分布式数据库来处理海量的数据。
数据库采用主从复制的方式,将读写操作分散到多个数据库节点上,从而提高数据库的并发处理能力。
为了减少数据库查询的负载,淘宝采用了数据库分库分表的技术。
将数据按照一定的规则分散到多个数据库和表中,从而均衡数据库的负载,并且降低了单个数据库的数据量和并发访问量。
此外,淘宝还采用了数据库的读写分离技术。
将读操作和写操作分别路由到不同的数据库节点上,从而提高数据库的读写性能。
负载均衡淘宝使用了负载均衡技术来分发用户的请求,以实现高并发的访问。
主要的负载均衡技术包括DNS负载均衡和反向代理负载均衡。
DNS负载均衡将用户的请求解析到多个服务器的IP地址上,从而使得用户的请求被均衡地分发到不同的服务器上。
反向代理负载均衡则是通过将用户的请求发送到多个反向代理服务器上,由反向代理服务器再将请求分发给后端的多个应用服务器。
这样可以均衡地分担用户的请求压力,提高系统的并发处理能力。
总结淘宝面临着海量用户的高并发访问压力,为了保证系统的稳定性和可用性,需要在架构设计、缓存优化、数据库优化和负载均衡等方面进行优化。
面向高并发的Web系统架构设计作者:庄欠满来源:《科技创新导报》2013年第04期摘要:近年来互联网的普及以及Web2.0技术的兴起和发展使得Web系统的用户数不断增多,系统在运行过程中面临着高并发对性能的挑战。
大量的并发访问导致了网络阻塞、数据处理滞后、系统性能降低甚至运行瘫痪。
该文分析了Web性能的影响因素,研究了面向高并发的Web系统架构设计,从数据访问、负载均衡、程序设计等方面提出了优化系统架构设计的方法和策略。
关键词:高并发 Web系统负载均衡架构设计中图分类号:TP39 文献标识码:A 文章编号:1674-098X(2013)02(a)-0033-01互联网的发展和Web编程技术相互促进,拥有数亿用户的Web系统在互联网中层出不穷,这些系统需要为海量用户提供高效的数据访问和应用服务。
高并发是拥有大数量级别用户数的Web系统必须要面对和解决的问题和挑战。
高并发访问使得系统每小时承担上千万的访问次数,为服务器的处理能力带来了巨大压力,如果没有对Web系统设计进行优化,将影响系统的运行速度,进而影响用户的访问体验,甚至导致Web系统服务中断。
为了应对高并发,信息系统的运行与维护部门通常是采取增加服务器等硬件设备来进行系统扩充和升级的解决办法,然而硬件设备的成本预算并不能完全满足高并发对系统的性能要求,需要对Web系统进行架构设计优化来整合系统的软件和硬件,使其充分发挥出应有的功能和作用在高并发网络环境中提供良好的Web应用服务。
1 系统架构设计1.1 高并发对Web系统性能的影响高并发是指在同一时刻有大量用户访问对系统进行信息服务请求或者应用功能使用,高并发对系统的请求响应时间、数据处理速度、系统性能和可靠性都产生了影响。
Web系统的服务资源包括网络带宽、页面缓存、系统内存、数据存储、数据处理和应用服务等,当用户在远端访问Web系统时,Web系统将响应用户的访问请求在服务端进行资源调度。
在访问用户数量较少的时候,Web系统的吞吐量还未达到饱和,可以保证为用户提供高性能和高可靠的信息服务;当访问用户数量较多的时候,Web系统的吞吐量趋近饱和,此时访问用户数量如果继续增加,Web系统的吞吐量由于资源紧张和进程死锁等原因将下降甚至产生阻塞,导致用户端请求得不到响应使得用户以为服务器出现了脱机现象。