现代控制理论参数估计方法
- 格式:pptx
- 大小:1.44 MB
- 文档页数:86
参数估计的方法及应用参数估计是统计学中的一个重要方法,用于根据已知数据估计总体的未知参数。
它是统计推断的基础,广泛应用于各个领域,包括医学、金融、市场调研等。
下面将介绍几种常见的参数估计方法及其应用。
1. 点估计点估计是参数估计中最简单的一种方法,通过计算样本数据的统计量来估计总体参数的值。
最常用的点估计方法是样本均值和样本方差,分别用来估计总体均值和总体方差。
例如,在市场调研中,可以通过抽样调查估计某一产品的平均满意度,从而评估市场反应。
2. 区间估计区间估计是参数估计中更常用的一种方法,它不仅给出了参数的一个点估计,还给出了一个区间估计,用于表达估计值的不确定性。
典型的区间估计方法有置信区间和预测区间。
2.1 置信区间置信区间是用于估计总体参数的一个区间范围,表示参数值落在该区间内的概率。
置信区间一般由样本统计量和抽样分布的分位数确定,常见的置信区间有均值的置信区间和比例的置信区间。
比如,一个医生想要估计一种药物对某种疾病的治疗效果,可以从患者中随机抽取一部分人群服用该药物,然后计算患者的治愈率。
利用样本中的治愈率和抽样分布的分位数,可以构建出一个置信区间,用于估计总体的治愈率。
2.2 预测区间预测区间是用于预测个体观测值的一个区间范围,表示个体观测值落在该区间内的概率。
和置信区间不同的是,预测区间不仅考虑参数的估计误差,还考虑了个体观测值的不确定性。
例如,在金融领域,投资者可以利用历史收益率估计某只股票的未来收益率,并通过构建预测区间来评估投资风险。
3. 极大似然估计极大似然估计是一种常用的参数估计方法,它基于样本数据的概率分布,通过寻找使得样本观测值出现的概率最大的参数值来估计总体参数。
例如,在医学研究中,研究人员可以根据已知的疾病发病率和病人的临床症状,利用极大似然估计方法来估计某一疾病的传染率。
4. 贝叶斯估计贝叶斯估计是一种基于贝叶斯统计原理的参数估计方法,它将参数看作是随机变量,并基于先验概率和样本数据来计算后验概率分布。
参数估计与辨识在自动控制中的应用一、引言在自动控制领域中,参数估计和辨识是非常重要的研究内容,也是控制系统设计和优化的基石之一。
参数估计和辨识的目的是根据系统已知的输入输出数据,估计或辨识出未知的系统参数,从而实现对系统的分析、建模和控制。
本文将在介绍参数估计和辨识的基本概念和方法的基础上,重点讨论它们在自动控制中的应用。
二、参数估计参数估计是指根据实验数据,估计一个或多个未知参数的值。
在自动控制中,常常需要对系统的参数进行估计,这些参数包括系统的结构参数和内部参数。
系统的结构参数一般是已知的,比如物理尺寸、系统阶次等;而系统的内部参数一般是未知的,比如惯性、阻尼等。
对于这些未知参数,我们需要通过实验数据来估计它们的值。
最常用的参数估计方法是最小二乘法。
最小二乘法的基本思想是通过拟合一个合适的数学模型,使模型预测的输出值与实验测量值的误差达到最小。
在自动控制中,最小二乘法常用于根据输入输出数据估计系统的传递函数或状态空间模型。
最小二乘法的实现可以采用线性回归分析、非线性最小二乘法等方法。
另一个常用的估计方法是极大似然估计。
极大似然估计的基本思想是利用已知的数据,计算未知参数的概率分布函数的最大值,从而估计参数的值。
在自动控制中,极大似然估计法常用于估计高斯白噪声的参数,比如噪声方差。
除了最小二乘法和极大似然估计,还有其他一些参数估计方法,比如扩展卡尔曼滤波、无迹卡尔曼滤波、粒子滤波等。
它们在不同的场景下有不同的优缺点。
参数估计的选择应当根据具体应用场景进行,以满足控制系统的性能要求。
三、辨识辨识是指根据实验数据,识别出一个或多个未知的系统模型。
与参数估计不同,辨识的目的是构建一个系统的数学模型,从而实现对系统的分析和控制。
常见的辨识方法包括传统的系统辨识方法和人工智能的数据驱动学习方法。
传统的系统辨识方法主要是基于数学模型的估计方法,包括频域辨识方法和时域辨识方法。
其中,最常用的方法是频域辨识方法,多采用奇异值分解、系统辨识法和模态分析法,已经取得了广泛的应用。
参数估计的三种方法参数估计是统计学中的一项重要任务,其目的是通过已知的样本数据来推断未知的总体参数。
常用的参数估计方法包括点估计、区间估计和最大似然估计。
点估计是一种常见的参数估计方法,其目标是通过样本数据估计出总体参数的一个“最佳”的值。
其中最简单的点估计方法是样本均值估计。
假设我们有一个总体,其均值为μ,我们从总体中随机抽取一个样本,并计算出样本的平均值x。
根据大数定律,当样本容量足够大时,样本均值会无偏地估计总体均值,即E(x) = μ。
因此,我们可以用样本的平均值作为总体均值的点估计。
另一个常用的点估计方法是极大似然估计。
极大似然估计的思想是寻找参数值,使得给定观测数据出现的概率最大。
具体来说,我们定义一个参数θ的似然函数L(θ|x),其中θ是参数,x是观测数据。
极大似然估计即求解使得似然函数取得最大值的θ值。
举个例子,假设我们有一个二项分布的总体,其中参数p表示成功的概率,我们从总体中抽取一个样本,得到x个成功的观测值。
那么,样本观测出现的概率可以表示为二项分布的概率质量函数,即L(p|x) = C(nx, x) * p^x * (1-p)^(n-x),其中C(nx, x)是组合数。
我们通过求解使得似然函数取得最大值的p值,来估计总体成功的概率。
与点估计相比,区间估计提供了一个更加全面的参数估计结果。
区间估计指的是通过样本数据推断总体参数的一个区间范围。
常用的区间估计方法包括置信区间和预测区间。
置信区间是指通过已知样本数据得到的一个参数估计区间,使得这个估计区间能以一个预先定义的置信水平包含总体参数的真值。
置信水平通常由置信系数(1-α)来表示,其中α为显著性水平。
置信区间的计算方法根据不同的总体分布和参数类型而异。
举个例子,当总体为正态分布且总体方差已知时,可以利用正态分布的性质计算得到一个置信区间。
预测区间是指通过对总体参数的一个估计,再结合对新样本观测的不确定性,得到一个对新样本值的一个区间估计。
参数估计方法参数估计是统计学中的一个重要概念,它是指根据样本数据推断总体参数的过程。
在实际应用中,我们往往需要利用已知数据来估计总体的各种参数,比如均值、方差、比例等。
参数估计方法有很多种,其中最常用的包括最大似然估计和贝叶斯估计。
本文将对这两种参数估计方法进行详细介绍,并分析它们的优缺点。
最大似然估计是一种常用的参数估计方法,它是建立在似然函数的基础上的。
似然函数是关于总体参数的函数,它衡量了在给定参数下观察到样本数据的概率。
最大似然估计的思想是寻找一个参数值,使得观察到的样本数据出现的概率最大。
换句话说,就是要找到一个参数值,使得观察到的样本数据出现的可能性最大化。
最大似然估计的优点是计算简单,且在大样本情况下具有较好的渐近性质。
但是,最大似然估计也有一些局限性,比如对于小样本情况下可能会出现估计不准确的问题。
另一种常用的参数估计方法是贝叶斯估计。
贝叶斯估计是建立在贝叶斯定理的基础上的,它将参数看作是一个随机变量,而不是一个固定但未知的常数。
在贝叶斯估计中,我们需要先假设参数的先验分布,然后根据观察到的样本数据,利用贝叶斯定理来计算参数的后验分布。
贝叶斯估计的优点是能够充分利用先验信息,尤其在小样本情况下具有较好的稳定性。
但是,贝叶斯估计也存在一些问题,比如对于先验分布的选择比较敏感,且计算复杂度较高。
在实际应用中,我们需要根据具体的问题和数据特点来选择合适的参数估计方法。
对于大样本情况,最大似然估计可能是一个不错的选择,因为它具有较好的渐近性质。
而对于小样本情况,贝叶斯估计可能更适合,因为它能够充分利用先验信息,提高估计的稳定性。
当然,除了最大似然估计和贝叶斯估计之外,还有很多其他的参数估计方法,比如矩估计、区间估计等,每种方法都有其特点和适用范围。
总之,参数估计是统计学中的一个重要概念,它涉及到如何根据已知数据来推断总体的各种参数。
最大似然估计和贝叶斯估计是两种常用的参数估计方法,它们各有优缺点,适用于不同的情况。
第七章 参数估计第一节 基本概念1、概念网络图{}⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧→⎭⎬⎫⎩⎨⎧单正态总体的区间估计区间估计一致性有效性无偏性估计量的评选标准极大似然估计矩估计点估计从样本推断总体2、重要公式和结论例7.1:设总体),(~b a U X ,求对a, b 的矩估计量。
例7.2:设n x x x ,,,,21 是总体的一个样本,试证(1);2110351321x x x ++=∧μ (2);12541313212x x x ++=∧μ(3).12143313213x x x -+=∧μ都是总体均值u 的无偏估计,并比较有效性。
例7.3:设n x x x ,,,,21 是取自总体),(~2σμN X 的样本,试证∑=--=ni i x x n S 122)(11 是2σ的相合估计量。
第二节 重点考核点矩估计和极大似然估计;估计量的优劣;区间估计第三节 常见题型1、矩估计和极大似然估计例7.4:设0),,0(~>θθU X ,求θ的最大似然估计量及矩估计量。
例7.5:设总体X 的密度函数为⎪⎩⎪⎨⎧≥=--.,0,1)(/)(其他μθθμx e x f x其中θ>0, θ,μ为未知参数,n X X X ,,,21 为取自X 的样本。
试求θ,μ的极大似然估计量。
2、估计量的优劣例7.6:设n 个随机变量n x x x ,,,21 独立同分布,,)(11,1,)(122121∑∑==--===n i i n i i x x n S x n x x D σ 则(A )S 是σ的无偏估计量;(B )S 是σ的最大似然估计量; (C )S 是σ的相合估计量;(D )x S 与2相互独立。
例7.7:设总体X 的密度函数为⎪⎩⎪⎨⎧<<-=,,0,0),(6)(3其他θθθx x xx fn X X X ,,,21 是取自X 的简单随机样本。
(1) 求θ的矩估计量∧θ;(2) 求∧θ的方差D (∧θ);(3) 讨论∧θ的无偏性和一致性(相合性)。
现代控制理论建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。
在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法。
[1] 现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。
它所采用的方法和算法也更适合于在数字计算机上进行。
现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。
神经网络控制神经网络是由所谓神经元的简单单元按并行结构经过可调的连接权构成的网络。
神经网络的种类很多,控制中常用的有多层前向BP网络,RBF网络,Hopfield网络以及自适应共振理论模型(ART)等。
[4]神经网络控制就是利用神经网络这种工具从机理上对人脑进行简单结构模拟的新型控制和辨识方法。
神经网络在控制系统中可充当对象的模型,还可充当控制器。
常见的神经网络控制结构有:⑴参数估计自适应控制系统;⑵内模控制系统;⑶预测控制系统;⑷模型参考自适应系统;⑸变结构控制系统。
神经网络控制的主要特点是:可以描述任意非线性系统;用于非线性系统的辨识和估计;对于复杂不确定性问题具有自适应能力;快速优化计算能力;具有分布式储存能力,可实现在线、离线学习。
有人提出以Hopfield网络实现一种多分辨率体视协同算法,该算法以逐级融合的方式自动完成由粗到细,直至全分辨率的匹配和建立。
又有人提出一种网络自组织控制器,采用变斜率的最速梯度下降学习算法,应用在非线性跟踪控制中。
今后需进一步探讨的问题是提高网络的学习速度,提出新的网络结构,创造出更适用于控制的专用神经网络。
现代控制理论是在20世纪50年代中期迅速兴起的空间技术的推动下发展起来的。
空间技术的发展迫切要求建立新的控制原理,以解决诸如把宇宙火箭和人造卫星用最少燃料或最短时间准确地发射到预定轨道一类的控制问题。
这类控制问题十分复杂,采用经典控制理论难以解决。
1958年,苏联科学家Л.С.庞特里亚金提出了名为极大值原理的综合控制系统的新方法。
在这之前,美国学者R.贝尔曼于1954年创立了动态规划,并在1956年应用于控制过程。
他们的研究成果解决了空间技术中出现的复杂控制问题,并开拓了控制理论中最优控制理论这一新的领域。
1960~1961年,美国学者R.E.卡尔曼和R.S.布什建立了卡尔曼-布什滤波理论,因而有可能有效地考虑控制问题中所存在的随机噪声的影响,把控制理论的研究范围扩大,包括了更为复杂的控制问题。
几乎在同一时期内,贝尔曼、卡尔曼等人把状态空间法系统地引入控制理论中。
状态空间法对揭示和认识控制系统的许多重要特性具有关键的作用。
其中能控性和能观测性尤为重要,成为控制理论两个最基本的概念。
到60年代初,一套以状态空间法、极大值原理、动态规划、卡尔曼-布什滤波为基础的分析和设计控制系统的新的原理和方法已经确立,这标志着现代控制理论的形成。
学科内容现代控制理论所包含的学科内容十分广泛,主要的方面有:线性系统理论、非线性系统理论、最优控制理论、随机控制理论和适应控制理论。
线性系统理论它是现代控制理论中最为基本和比较成熟的一个分支,着重于研究线性系统中状态的控制和观测问题,其基本的分析和综合方法是状态空间法。
按所采用的数学工具,线性系统理论通常分成为三个学派:基于几何概念和方法的几何理论,代表人物是W.M.旺纳姆;基于抽象代数方法的代数理论,代表人物是R.E.卡尔曼;基于复变量方法的频域理论,代表人物是H.H.罗森布罗克。
非线性系统理论非线性系统的分析和综合理论尚不完善。
研究领域主要还限于系统的运动稳定性、双线性系统的控制和观测问题、非线性反馈问题等。
第六章参数估计参数估计是指在统计学中,根据从总体中获取的样本数据,对总体参数的值进行估计的一种方法。
参数估计是统计推断的基础,它通过样本数据来推断总体的特征,并给出一个接近总体参数真值的估计值。
在本章中,我们将介绍参数估计的方法和一些常用的估计量。
一、点估计点估计是参数估计的一种方法,它是通过一个单一的数值来估计总体参数的值。
在点估计中,我们通过样本数据计算出一个估计量,作为总体参数的估计值。
点估计的关键是选择一个合适的估计量,这个估计量应当是无偏的、一致的以及有效的。
1.无偏性在参数估计中,无偏性是指估计量的期望值等于被估计的参数的真值。
如果一个估计量的期望值等于被估计参数的真值,则称该估计量是无偏的。
例如,对于总体均值的估计,样本均值是一个无偏估计量。
2.一致性在参数估计中,一致性是指随着样本容量的增加,估计量的值趋于总体参数的真值。
如果一个估计量的值在样本容量趋向无穷时收敛到被估计参数的真值,则称该估计量是一致的。
一致性是估计量的重要性质,它保证了估计量在大样本情况下的准确性。
3.有效性在参数估计中,有效性是指估计量的方差最小。
如果一个估计量的方差比其他估计量的方差都小,则称该估计量是有效的。
有效性是估计量的理想性质,它表示估计量具有较好的精确性。
二、区间估计区间估计是参数估计的另一种方法,它不仅给出了总体参数的一个点估计,还给出了一个置信区间。
置信区间是总体参数的一个估计范围,反映了总体参数的不确定性。
1.置信水平在区间估计中,置信水平是指在一次次重复取样中,估计的置信区间包含总体参数的比例。
通常使用95%或99%的置信水平。
2.置信区间的构造构造置信区间的方法有多种,常见的有正态分布的置信区间、t分布的置信区间以及bootstrap的置信区间等。
其中,正态分布的置信区间适用于大样本情况,t分布的置信区间适用于小样本情况,bootstrap的置信区间则是一种非参数方法。
3.置信区间的解释置信区间的解释是指一个置信区间中的统计学意义。
参数估计与系统辨识方法在控制系统设计中的应用控制系统设计是应用于各个领域的一项重要技术,在工业、航空航天、汽车、医疗等众多领域中都有广泛应用。
参数估计和系统辨识是控制系统设计中的两个关键步骤,它们能够帮助我们理解和预测系统的行为,并提供了优化控制器设计的依据。
一、参数估计的概念与应用参数估计是指通过实验数据和数学模型来估计控制系统中的未知参数。
在控制系统设计中,我们通常使用数学模型来描述系统的动态行为,该模型一般包含一些未知参数。
参数估计的目标是通过观测到的输入输出数据,利用统计方法来估计这些未知参数的值。
参数估计在控制系统设计中具有广泛的应用。
首先,参数估计可以用于设计控制器。
通过对系统进行实验,并通过估计系统参数的值,我们可以得到一个准确的数学模型,从而设计出更为有效的控制器。
其次,参数估计还可以用于系统诊断和故障检测。
通过估计系统参数的变化趋势,我们可以及时检测到系统故障,并采取相应的措施进行维修和调整。
此外,参数估计还可以用于系统预测和优化。
通过估计系统参数的值,我们可以预测系统在不同工况下的性能,并进行相应的优化设计。
二、常用的参数估计方法在控制系统设计中,常用的参数估计方法包括最小二乘法(Least Squares),极大似然估计法(Maximum Likelihood),贝叶斯估计法(Bayesian Estimation)等。
1. 最小二乘法:最小二乘法是一种常用的参数估计方法,它通过最小化观测值和数学模型之间的差异来估计参数的值。
最小二乘法具有良好的稳定性和统计性能,在实际应用中广泛使用。
2. 极大似然估计法:极大似然估计法是另一种常用的参数估计方法,它基于统计学理论,通过最大化参数的似然函数来估计参数的值。
极大似然估计法在参数估计中具有一定的理论基础,但计算复杂度较高。
3. 贝叶斯估计法:贝叶斯估计法是一种基于贝叶斯统计理论的参数估计方法,它通过先验信息和观测数据来估计参数的值。
参数估计的方法与原理参数估计是统计学中的重要概念,用于根据样本数据来估计总体参数的值。
在统计分析中,我们经常需要通过对样本数据的分析来推断总体的性质。
而参数估计的方法和原理则帮助我们确定如何从样本数据中得出总体参数的估计值。
一、参数估计的概念参数估计是统计学中的基本问题,在研究中起到了至关重要的作用。
参数是用来描述总体特征的数值,如平均值、方差等。
参数估计则是根据从总体中抽取的样本数据,对总体参数进行估计。
参数估计可以分为点估计和区间估计两种方式。
1. 点估计点估计是通过样本数据得到总体参数的一个单一数值估计。
常用的点估计方法包括最大似然估计和矩估计。
最大似然估计是指在给定模型的条件下,选择使观测数据出现的可能性最大的参数值作为估计值。
矩估计则是通过样本矩对总体矩的估计来得到参数的估计值。
2. 区间估计区间估计是指对总体参数进行一个区间的估计,该区间包含了真实参数值的可能范围。
常用的区间估计方法有置信区间估计和贝叶斯区间估计。
置信区间估计是通过样本数据得到参数的一个区间估计,该区间中的值有一定的置信度可以包含真实参数值。
贝叶斯区间估计则基于贝叶斯定理,通过样本数据和先验信息来得到参数的一个区间估计。
二、参数估计的方法参数估计的方法包括最大似然估计、矩估计、贝叶斯估计等。
不同的方法适用于不同的情况和模型。
1. 最大似然估计最大似然估计是一种常用的参数估计方法,它假设样本数据是独立同分布的。
最大似然估计的基本思想是找到使观测数据概率最大的参数值。
具体而言,最大似然估计是通过求解目标函数的最大值来得到参数的估计值。
最大似然估计具有一致性、渐进正态性等良好的统计性质,在实际应用中广泛使用。
2. 矩估计矩估计是一种基于样本矩对总体矩的估计来得到参数的方法。
矩估计的基本思想是将总体矩与样本矩相等,然后解方程得到参数的估计值。
矩估计方法简单易用,但在样本较小或模型复杂的情况下可能存在偏差较大的问题。
3. 贝叶斯估计贝叶斯估计是一种基于贝叶斯定理的参数估计方法,它将样本数据和先验信息结合起来得到参数的估计值。
控制系统中的模型识别与参数估计在控制系统中,模型识别和参数估计起着至关重要的作用。
模型识别是指通过实验或者数学建模的方法,从系统输入和输出数据中推断出系统的动态特性,以便设计控制器。
参数估计是指用已知的模型结构和一定的观测数据,通过参数估计算法来估计模型中未知参数的值。
本文将介绍控制系统中模型识别与参数估计的基本概念和方法,并探讨其在实际应用中的重要性和挑战。
一、模型识别的基本概念与方法模型识别是控制系统设计的关键步骤之一。
它可以通过实验或者数学建模的方法,从系统的输入输出数据中推断出系统的动态特性,进而用于控制器的设计。
在模型识别中,我们通常假设系统具有一定的结构形式,并用参数来描述系统动态特性。
常用的模型识别方法包括系统辨识方法、频域分析方法和基于机器学习的方法。
其中,系统辨识方法是应用最广泛的方法之一。
它基于系统辨识理论,利用输入输出数据来估计系统的参数。
常见的系统辨识方法包括最小二乘法、极大似然估计和递推最小二乘法等。
频域分析方法则通过对系统的频率响应进行分析,推断出系统的动态特性。
基于机器学习的方法主要利用大数据和人工智能算法,从系统的历史数据中学习和推断出系统的模型。
二、参数估计的基本概念与方法参数估计是指在已知系统模型结构的情况下,通过实验或者观测数据来估计模型中未知参数的值。
参数估计对于控制系统的设计和性能分析具有重要意义。
常用的参数估计方法包括最小二乘法、极大似然估计、扩展卡尔曼滤波和粒子滤波等。
最小二乘法是应用最广泛的方法之一,它通过最小化实际输出与模型预测输出之间的误差来估计参数的值。
极大似然估计则是基于统计学原理,通过最大化观测数据的似然函数来估计参数的值。
扩展卡尔曼滤波和粒子滤波是一类递推滤波算法,可以用于非线性系统的参数估计。
三、模型识别与参数估计在实际应用中的重要性和挑战模型识别与参数估计在控制系统的设计和性能分析中具有重要的作用。
它们可以帮助工程师从实际系统中推断出系统的动态特性,并根据推断结果设计出合适的控制器。
参数估计的方法有参数估计是统计学中的一个重要概念,用于通过样本数据来推断总体参数的值。
在参数估计中,我们假设总体服从某种概率分布,然后根据样本数据来估计或推断总体参数的值。
常见的参数估计方法有点估计和区间估计。
点估计是指通过样本数据来估计总体参数的值,并给出一个具体的数值作为估计值。
常见的点估计方法包括最大似然估计和矩估计。
最大似然估计(Maximum Likelihood Estimation, MLE)是基于最大化似然函数的原理进行参数估计。
似然函数是一个用来描述样本数据出现概率的函数,而最大似然估计就是寻找使得样本数据出现概率最大的参数值。
通常通过对似然函数求导,然后令导数等于0,得到对应的参数估计值。
最大似然估计具有良好的性质,如一致性、渐进正态性和渐进效率。
矩估计(Method of Moments Estimation, MOM)是基于样本矩与总体矩之间的对应关系进行参数估计。
样本矩是样本数据的平均值、方差等统计量,而总体矩是总体分布的均值、方差等参数。
通过令样本矩与总体矩相等,可以推出对应的参数估计值。
矩估计虽然较为简单,但在某些情况下可能会有多个参数估计值,需要额外的条件来确定。
区间估计是用于估计总体参数的一个范围,即给出一个置信区间来包含真实的总体参数。
在区间估计中,我们首先根据样本数据计算一个统计量的抽样分布,并确定一个置信水平(如95%置信水平)。
然后,在抽样分布中找到一个区间,使得该区间包含真实参数的概率等于置信水平。
这个区间就是参数的置信区间。
常见的区间估计方法包括正态分布的区间估计和t分布的区间估计。
正态分布的区间估计是基于正态分布理论进行参数估计。
当样本量较大(一般大于30)、总体方差已知时,可以使用正态分布的区间估计方法。
其中最常用的方法是使用样本均值和总体标准差的比值,构造标准正态分布的置信区间。
t分布的区间估计是基于t分布理论进行参数估计。
当样本量较小(一般小于30)或总体方差未知时,应使用t分布的区间估计方法。