2020-2022年高考物理真题分专题训练 专题06 万有引力定律与航天(学生版)
- 格式:doc
- 大小:450.00 KB
- 文档页数:7
高考物理新力学知识点之万有引力与航天技巧及练习题含答案一、选择题1.我国发射的“嫦娥一号”卫星经过多次加速、变轨后,最终成功进入环月工作轨道.如图所示,卫星既可以在离月球比较近的圆轨道a上运动,也可以在离月球比较远的圆轨道b上运动.下列说法正确的是A.卫星在a上运行的线速度小于在b上运行的线速度B.卫星在a上运行的周期大于在b上运行的周期C.卫星在a上运行的角速度小于在b上运行的角速度D.卫星在a上运行时受到的万有引力大于在b上运行时的万有引力2.一人造地球卫星绕地球做匀速圆周运动,假如该卫星变轨后仍做匀速圆周运动,动能增大为原来的4倍,不考虑卫星质量的变化,则变轨前后卫星的()A.向心加速度大小之比为1∶4B.轨道半径之比为4∶1C.周期之比为4∶1D.角速度大小之比为1∶23.关于地球同步通讯卫星,下列说法中正确的是()A.它的轨道可以是椭圆B.各国发射的这种卫星轨道半径都一样C.它不一定在赤道上空运行D.它运行的线速度一定大于第一宇宙速度4.如图为中国月球探测工程的形象标志,象征着探测月球的终极梦想。
假想人类不断向月球“移民”,经过较长时间后,月球和地球仍可视为均匀球体,地球的总质量仍大于月球的总质量,月球仍按原轨道运行,则以下说法中正确的是()A.月地之间的万有引力将变大B.月球绕地球运动的周期将变小C.月球绕地球运动的向心加速度将变大D.月球表面的重力加速度将变小5.2019年春节期间上映的国产科幻电影《流浪地球》,获得了口碑和票房双丰收。
影片中人类为了防止地球被膨胀后的太阳吞噬,利用巨型发动机使地球公转轨道的半径越来越大,逐渐飞离太阳系,在飞离太阳系的之前,下列说法正确的是()A.地球角速度越来越大B.地球线速度越来越大C.地球向心加速度越来越大D .地球公转周期越来越大6.由于某种原因,人造地球卫星的轨道半径减小了,那么卫星的( ) A .速率变大,周期变小 B .速率变小,周期变大 C .速率变大,周期变大D .速率变小,周期变小7.2018年2月,我国500 m 口径射电望远镜(天眼)发现毫秒脉冲星“J0318+0253”,其自转周期T =5.19 ms ,假设星体为质量均匀分布的球体,已知万有引力常量为11226.6710N m /kg -⨯⋅.以周期T 稳定自转的星体的密度最小值约为( )A .93510kg /m ⨯B .123510kg /m ⨯C .153510kg /m ⨯D .183510kg /m ⨯8.研究火星是人类探索向火星移民的一个重要步骤。
十年高考分类汇编专题06万有引力与航天(2011-2020)目录题型一、考查万有引力定律、万有引力提供物体重力的综合类问题 ............................................ 1 题型二、考查万有引力提供卫星做圆周运动向心力的相关规律 .................................................... 6 题型三、考查飞船的变轨类问题 ...................................................................................................... 18 题型四、考查万有引力与能量结合的综合类问题 .......................................................................... 20 题型五、考查双星与三星系统的规律 .............................................................................................. 21 题型六、关于开普勒三定律的相关考查 .......................................................................................... 22 题型七、天体运动综合类大题 . (25)题型一、考查万有引力定律、万有引力提供物体重力的综合类问题1.(2020全国1).火星的质量约为地球质量的110,半径约为地球半径的12,则同一物体在火星表面与在地球表面受到的引力的比值约为( ) A. 0.2B. 0.4C. 2.0D. 2.5【考点】万有引力在非绕行问题中的应用 【答案】B【解析】设物体质量为m ,在火星表面所受引力的大小为F 1,则在火星表面有:1121M mF GR 在地球表面所受引力的大小为F 2,则在地球表面有:2222M mF GR 由题意知有:12110M M ;1212R R故联立以上公式可得:21122221140.4101F M R F M R ==⨯=。
精选06 万有引力定律与航天1.我国“嫦娥四号探月工程”实现了人类飞行器第一次在月球背面着陆,为此发射了提供通信中继服务的“鹊桥”卫星,并定点在如图所示的地月连线外侧的位置L处。
“鹊桥”卫星与月球保持相对静止一起绕地球运动。
“鹊桥”卫星、月球绕地球运动的加速度大小分别为a1、a2,线速度大小分别为v1、v2,周期分别为T1、T2,轨道半径分别为r1、r2,下列关系正确的是()A. T1<T2B. a1=a2=0C. v1 >v2 D. T12r13=T22r23【答案】C【解析】AD、鹊桥卫星在月球外侧与月球一起绕地球圆周运动,与月球保持相对静止,其周期与月球绕地周期相同,故AD错误;B、根据a=rω2=r4π2T2可知,鹊桥卫星的轨道半径大于月球的轨道半径,故其绕地球运动的加速度大于月球绕地球运动的加速度,故B错误;C、据v=rω=r2πT可知,鹊桥卫星的轨道半径大,线速度大,故C正确。
故选:C。
鹊桥卫星与月球一起绕地球圆周运动,周期相同,根据半径关系分析向心加速度的大小关系以及线速度的大小关系。
解决本题关键是由题意得到轨道半径和周期关系,再根据描述圆周运动物理量之间的关系求解即可。
2.据报道,2019年11月5日,中国在西昌卫星发射中心用长征三号乙运载火箭,成功发射第四十九颗北斗导航卫星。
该卫星发射成功,标志着北斗三号系统3颗倾斜地球同步轨道卫星全部发射完毕。
该卫星在发射过程中经过四次变轨进入同步轨道,如图所示为第四次变轨的示意图,卫星先沿椭圆轨道Ⅱ飞行,后在远地点A处实现变轨,由椭圆轨道Ⅱ进入同步轨道Ⅰ.下列说法中正确的是()A. 在轨道Ⅰ上的周期比地球自转周期大B. 在轨道Ⅰ上的速度比在轨道Ⅱ上任意一点的速度小C. 在轨道Ⅰ上的机械能比在轨道Ⅱ上任意一点的机械能大D. 在轨道Ⅰ上的加速度比在轨道Ⅱ上任意一点的加速度大【答案】C【解析】解:A、轨道Ⅰ是同步轨道,周期等于地球的自转周期,故A错误;B、在轨道Ⅱ上的A点速度较小,万有引力大于所需要的向心力,会做近心运动,要想进入圆轨道Ⅰ,需加速,使万有引力等于所需要的向心力,所以在轨道Ⅰ经过A点的速度大于在轨道Ⅱ上经过A点时的速度,即在轨道Ⅰ上的速度不是比在轨道Ⅱ上任意一点的速度都小,故B错误;C、卫星在轨道Ⅱ做椭圆运动时只有万有引力做功,机械能守恒,从轨道Ⅱ上转移到轨道Ⅰ上需要加速,所以卫星在轨道Ⅰ上的机械能比在轨道Ⅱ上任意一点的机械能都大,故C正确;D、在轨道Ⅱ和轨道Ⅰ上经过A点时所受的万有引力相等,所以加速度也相等,故D错误。
2020高考物理二轮复习题型归纳与训练专题六 万有引力与航天题型一 开普勒三定律的理解和应用【例1】(2018·高考全国卷Ⅲ)为了探测引力波,“天琴计划”预计发射地球卫星P ,其轨道半径约为地球半径的16倍;另一地球卫星Q 的轨道半径约为地球半径的4倍.P 与Q 的周期之比约为 ( )A .2∶1B .4∶1C .8∶1D .16∶1【答案】 C【解析】 由G Mm r 2=mr 4π2T 2知,T 2r 3=4π2GM ,则两卫星T 2P T 2Q =r 3P r 3Q.因为r P ∶r Q =4∶1,故T P ∶T Q =8∶1.题型二 万有引力定律的理解【例2】近期天文学界有很多新发现,若某一新发现的星体质量为m 、半径为R 、自转周期为T 、引力常量为G .下列说法正确的是( )A .如果该星体的自转周期T <2π R 3Gm,则该星体会解体 B .如果该星体的自转周期T >2πR 3Gm ,则该星体会解体 C .该星体表面的引力加速度为Gm R D .如果有卫星靠近该星体表面做匀速圆周运动,则该卫星的速度大小为Gm R【答案】 AD 【解析】 如果在该星体“赤道”表面有一物体,质量为m ′,当它受到的万有引力大于跟随星体自转所需的向心力时,即G mm ′R 2>m ′R 4π2T2时,有T >2πR 3Gm ,此时,星体处于稳定状态不会解体,而当该星体的自转周期T <2πR 3Gm时,星体会解体,故选项A 正确,B 错误;在该星体表面,有G mm ′R 2=m ′g ′,所以g ′=G m R 2,故选项C 错误;如果有质量为m ″的卫星靠近该星体表面做匀速圆周运动,有G mm ″R 2=m ″v 2R ,解得v =Gm R,故选项D 正确. 题型三 天体质量和密度的估算【例3】为了研究某彗星,人类先后发射了两颗人造卫星.卫星A 在彗星表面附近做匀速圆 周运动,运行速度为v ,周期为T ;卫星B 绕彗星做匀速圆周运动的半径是彗星半径的n 倍.万 有引力常量为G ,则下列计算不正确的是 ( ) A .彗星的半径为vT 2π B .彗星的质量为v 3T 4πGC .彗星的密度为3πGT 2D .卫星B 的运行角速度为2πT n 3【答案】 ACD【解析】 由题意可知,卫星A 绕彗星表面做匀速圆周运动,则彗星的半径满足:R =vT 2π,故A 正确;根据G Mm R 2=m v 2R ,解得M =v 3T 2πG ,故B 错误;彗星的密度为ρ=M V =M 43πR 3=3πGT 2,故C 正确;根据G Mm r 2=mω2r ,GMm R 2=mR 4π2T 2,r =nR ,则卫星B 的运行角速度为2πT n 3,故D 正确.题型四 卫星运动及变轨问题【例11】(2019·陕西省宝鸡市质检二)如图所示,质量为m 的人造地球卫星与地心的距离为r 时,引力势能可表示为E p =-GMm r,其中G 为引力常量,M 为地球质量,该卫星原来在半径为R 1的轨道Ⅰ上绕地球做匀速圆周运动,经过椭圆轨道Ⅱ的变轨过程进入半径为R 3的圆形轨道Ⅲ继续绕地球运动,其中P 点为Ⅰ轨道与Ⅱ轨道的切点,Q 点为Ⅱ轨道与Ⅲ轨道的切点,下列判断正确的是( )A .卫星在轨道Ⅰ上的动能为G Mm 2R 1B .卫星在轨道Ⅲ上的机械能等于-G Mm 2R 3C .卫星在Ⅱ轨道经过Q 点时的加速度小于在Ⅲ轨道上经过Q 点时的加速度D .卫星在Ⅰ轨道上经过P 点时的速率大于在Ⅱ轨道上经过P 点时的速率【答案】 AB【解析】 在轨道Ⅰ上,有:G Mm R 12=m v 12R 1,解得:v 1=GM R 1,则动能为E k1=12mv 12=GMm 2R 1,故A 正确;在轨道Ⅲ上,有:G Mm R 32=m v 32R 3,解得:v 3=GM R 3,则动能为E k3=12mv 32=GMm 2R 3,引力势能为E p =-GMm R 3,则机械能为E =E k3+E p =-GMm 2R 3,故B 正确;由G Mm R Q2=ma 得:a =GM R Q2,两个轨道上Q 点到地心的距离不变,故向心加速度的大小不变,故C 错误;卫星要从Ⅰ轨道变到Ⅱ轨道上,经过P 点时必须点火加速,即卫星在Ⅰ轨道上经过P 点时的速率小于在Ⅱ轨道上经过P 点时的速率,故D 错误.题型五 双星模型【例5】2017年,人类第一次直接探测到来自双中子星合并的引力波.根据科学家们复原的 过程,在两颗中子星合并前约100 s 时,它们相距约400 km ,绕二者连线上的某点每秒转动12圈.将两颗中子星都看作是质量均匀分布的球体,由这些数据、万有引力常量并利用牛顿力学知识,可以估算出这一时刻两颗中子星 ( )A .质量之积B .质量之和C .速率之和D .各自的自转角速度【答案】 BC【解析】 两颗中子星运动到某位置的示意图如图所示.每秒转动12圈,角速度已知,中子星运动时,由万有引力提供向心力得Gm 1m 2l 2=m 1ω2r 1① Gm 1m 2l 2=m 2ω2r 2② l =r 1+r 2③由①②③式得G (m 1+m 2)l 2=ω2l ,所以m 1+m 2=ω2l 3G , 质量之和可以估算.由线速度与角速度的关系v =ωr 得v 1=ωr 1④v 2=ωr 2⑤由③④⑤式得v 1+v 2=ω(r 1+r 2)=ωl ,速率之和可以估算.质量之积和各自自转的角速度无法求解.【强化训练】1.假设有一星球的密度与地球相同,但它表面处的重力加速度是地球表面重力加速度的4倍,则该星球的质量是地球质量的( )A.14 B .4倍 C .16倍 D .64倍2.火星成为我国深空探测的第二颗星球,假设火星探测器在着陆前,绕火星表面匀速飞行(不计周围其他天体的影响),宇航员测出飞行N 圈用时t ,已知地球质量为M ,地球半径为R ,火星半径为r ,地球表面重力加速度为g 。
专题05万有引力与航天一、单选题1(2023·山东·统考高考真题)牛顿认为物体落地是由于地球对物体的吸引,这种吸引力可能与天体间(如地球与月球)的引力具有相同的性质、且都满足F∝Mmr2。
已知地月之间的距离r大约是地球半径的60倍,地球表面的重力加速度为g,根据牛顿的猜想,月球绕地球公转的周期为()A.30πr gB.30πgr C.120πrg D.120πgr【答案】C【详解】设地球半径为R,由题知,地球表面的重力加速度为g,则有mg=G M地m R2月球绕地球公转有G M地m月r2=m月4π2T2r r=60R联立有T=120πr g故选C。
2(2023·北京·统考高考真题)2022年10月9日,我国综合性太阳探测卫星“夸父一号”成功发射,实现了对太阳探测的跨越式突破。
“夸父一号”卫星绕地球做匀速圆周运动,距地面高度约为720km,运行一圈所用时间约为100分钟。
如图所示,为了随时跟踪和观测太阳的活动,“夸父一号”在随地球绕太阳公转的过程中,需要其轨道平面始终与太阳保持固定的取向,使太阳光能照射到“夸父一号”,下列说法正确的是()A.“夸父一号”的运行轨道平面平均每天转动的角度约为1°B.“夸父一号”绕地球做圆周运动的速度大于7.9km/sC.“夸父一号”绕地球做圆周运动的向心加速度大于地球表面的重力加速度D.由题干信息,根据开普勒第三定律,可求出日地间平均距离【答案】A【详解】A.因为“夸父一号”轨道要始终保持要太阳光照射到,则在一年之内转动360°角,即轨道平面平均每天约转动1°,故A正确;B.第一宇宙速度是所有绕地球做圆周运动的卫星的最大环绕速度,则“夸父一号”的速度小于7.9km/s,故B错误;C.根据=maG Mmr2可知“夸父一号”绕地球做圆周运动的向心加速度小于地球表面的重力加速度,故C错误;D.“夸父一号”绕地球转动,地球绕太阳转动,中心天体不同,则根据题中信息不能求解地球与太阳的距离,故D错误。
2020年高考物理真题分类汇编(详解+精校) 万有引力和航天1.(2020年高考·北京理综卷)由于通讯和广播等方面的需要,许多国家发射了地球同步轨道卫星,这些卫星的( )A .质量可以不同B .轨道半径可以不同C .轨道平面可以不同D .速率可以不同1.A 解析:地球同步轨道卫星轨道必须在赤道平面内,离地球高度相同的同一轨道上,角速度、线速度、周期一定,与卫星的质量无关。
A 正确,B 、C 、D 错误。
2.(2020年高考·福建理综卷)“嫦娥二号”是我国月球探测第二期工程的先导星。
若测得“嫦娥二号”在月球(可视为密度均匀的球体)表面附近圆形轨道运行的周期T ,已知引力常量为G ,半径为R 的球体体积公式334R V π=,则可估算月球的A .密度B .质量C .半径D .自转周期2.A 解析:“嫦娥二号”在近月表面做周期已知的匀速圆周运动,有2224Mm G m R R Tπ=⋅。
由于月球半径R 未知,所以无法估算质量M ,但结合球体体积公式可估算密度(与3MR 成正比),A 正确。
不能将“嫦娥二号”的周期与月球的自转周期混淆,无法求出月球的自转周期。
3.(2020年高考·江苏理综卷)一行星绕恒星作圆周运动。
由天文观测可得,其运动周期为T ,速度为v ,引力常量为G ,则A .恒星的质量为32v T G πB .行星的质量为2324v GT πC .行星运动的轨道半径为2vT πD .行星运动的加速度为2vTπ 3.ACD 解析:根据222()Mm F G m r T π==、 2rv Tπ=得:32v T M G π=、2vT r π=,A 、C 正确,B 错误;根据2v a r =、2v r r T πω==得:2va Tπ=,D 正确。
4.(2020年高考·广东理综卷)已知地球质量为M ,半径为R ,自转周期为T ,地球同步卫星质量为m ,引力常量为G 。
【2019最新】精选高考物理试题分项版汇编系列专题06万有引力与航天含解析一、单选题1.科学家经过深入观测研究,发现月球正逐渐离我们远去,并且将越来越暗。
有地理学家观察了现存击中鹦鹉螺化石,发现其贝壳上的波状螺纹具有树木年轮一样的功能,螺纹分许多隔,每隔上波状生长线在30条左右,与现代农历一个月的天数完全相同。
观察发现,鹦鹉螺的波状生长线每天长一条,每月长一隔。
研究显示,鹦鹉螺的贝壳上的生长线,现代是30条,中生代白垩纪是22条,侏罗纪是18条,奥陶纪是9条。
已知地球表面的重力加速度为g ,地球半径为,现在月球到地球的距离约为38万公里。
始终将月球绕地球的运动视为圆周轨道,由以上条件可以估算奥陶纪月球到地球的距离约为()6400kmA. B. C. D. 81.710m ⨯88.410m ⨯71.710m ⨯78.410m ⨯ 【答案】A2.2017年6月15日,我国在酒泉卫星发射中心用长征四号乙运载火箭成功发射硬X 射线调制望远镜卫星“慧眼”。
“慧眼”的成功发射将显著提升我国大型科学卫星研制水平,填补我国国X 射线探测卫星的空白,实现我国在空间高能天体物理领域由地面观测向天地联合观测的超越。
“慧眼”研究的对象主要是黑洞、中子星和射线暴等致密天体和爆发现象。
在利用“慧眼”观测美丽的银河系时,若发现某双黑洞间的距离为L ,只在彼此之间的万有引力作用下做匀速圆周运动,其运动周期为T ,引力常量为G ,则双黑洞总质量为()A. B. C. D. 2324L GT π23243L GT π3224GL T π2324T GLπ 【答案】A【解析】对双黑洞中的任一黑洞:得2121122m m G m r L T π⎛⎫= ⎪⎝⎭22122m G r L T π⎛⎫= ⎪⎝⎭ 对另一黑洞:得2122222m m G m r L T π⎛⎫= ⎪⎝⎭21222m G r L T π⎛⎫= ⎪⎝⎭又联立可得:12r r L +=2221122222m m G G r r L L T T ππ⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭则即()()2211222m m G r r L T π+⎛⎫=+ ⎪⎝⎭222M G L L T π⎛⎫= ⎪⎝⎭双黑洞总质量。
(每日一练)(文末附答案)人教版2022年高中物理万有引力与航天专项训练题单选题1、科学家发现,距离地球2764光年的宇宙空间存在适合生命居住的双星系统。
假设构成双星系统的恒星a、b 距离其他天体很远,它们都绕着二者连线上的某点做匀速圆周运动。
其中恒星a不断吸附宇宙中的尘埃而使得质量缓慢增大,恒星b的质量和二者之间距离均保持不变,两恒星均可视为质量分布均匀的球体,则下列说法正确的是()A.恒星b的加速度大小缓慢增大B.恒星b的线速度大小缓慢减小C.恒星a的角速度大小缓慢减小D.恒星a的轨道半径缓慢增大2、下列物理学史正确的是()A.万有引力常量是卡文迪许通过实验测量并计算得出的B.牛顿发现了万有引力定律并通过精确的计算得出万有引力常量C.开普勒提出行星运动规律,并发现了万有引力定律D.伽利略发现万有引力定律并得出万有引力常量3、下列关于万有引力和万有引力定律的理解正确的是()A.不能看作质点的两物体间不存在相互作用的引力计算B.只有天体间的引力才能用F=G m1m2r2知,两质点间距离r减小时,它们之间的引力增大C.由F=G m1m2r2D.引力常量的大小首先是由牛顿测出来的,且等于6.67×10-11 N·m2/kg24、人造地球卫星绕地球旋转时,既具有动能又具有引力势能(引力势能实际上是卫星与地球共有的,简略地说此势能是人造卫星所具有的)。
设地球的质量为M,半径为R,取离地无限远处为引力势能零点,则距离地心为r,质量为m的物体引力势能为E p=−GMmr(G为引力常量),假设质量为m的飞船在距地心r1的近地点速度为v1,下列说法中错误的是()A.飞船在椭圆轨道上正常运行时具有的机械能GMm2r1B.飞船在椭圆轨道距离地心r2时的速度大小√v12+2GMr2−2GMr1C.地球的第一宇宙速度√GMRD.该飞船在近地点的加速度为G Mr125、太阳光自太阳表面到达地球的时间为500s,已知万有引力常量为G=6.67×10−11N⋅m2kg2⁄,则太阳的质量最接近()A.2×1024kgB.2×1027kgC.2×1030kgD.2×1033kg6、在万有引力定律的发现历程中,下列叙述符合史实的是()A.卡文迪许通过实验推算出来引力常量G的值,被誉为第一个能“称量地球质量”的人B.丹麦天文学家第谷经过多年的天文观测和记录,提出了“日心说”的观点C.开普勒通过分析第谷的天文观测数据,发现了万有引力定律D.伽利略利用“地—月系统”验证了万有引力定律的正确性,使得万有引力定律得到了推广和更广泛的应用7、下列有关天体运动的说法正确的是()A.绕太阳运行的行星,轨道半长轴越长,公转的周期就越小B.在月球绕地球运动中,r3T2=k中的T表示月球自转的周期C.对于任意一个行星,它与太阳的连线在相等的时间内扫过的面积相等D .若地球绕太阳运动的轨道半长轴为a 1,周期为T 1,月球绕地球运动轨道的半长轴为a 2,周期为T 2,则根据开普勒第三定律有:a 13T 12=a 23T 22多选题8、如图是行星绕太阳运行的示意图,下列说法正确的是( )A .行星在A 点所受太阳引力最大B .行星在B 点所受太阳引力最大C .行星速率最大时在B 点D .行星速率最大时在A 点9、2017年1月23日,我国首颗1米分辨率C 频段多极化合成孔径雷达(SAS )卫星“高分三号”正式投入使用,某天文爱好者观测卫星绕地球做匀速圆周运动时,发现该卫星每经过时间t 通过的弧长为l ,该弧长对应的圆心角为θ弧度,已知万有引力常量为G ,则下列说法正确的是( )A .卫星绕地球做匀速圆周运动的线速度大小为ltB .卫星绕地球做匀速圆周运动的角速度为2πθt C .地球的质量为l 3Gθt 2 D .卫星的质量为t 2Gθl 310、中国火星探测器“天问一号”历经200多天成功闯过“四关”,第一关:抓住发射“窗口期”开启“地火转移”;第二关:抓住被火星捕获的机会精准刹车;第三关:绕“火”飞行寻找最佳着陆点;第四关:安全着陆开展火星表面探测任务。
万有引力与航天专题1.[2024·安徽卷] 2024年3月20日,我国探月工程四期鹊桥二号中继星成功发射升空.当抵达距离月球表面某高度时,鹊桥二号开始进行近月制动,并顺利进入捕获轨道运行,如图所示,轨道的半长轴约为51 900 km.后经多次轨道调整,进入冻结轨道运行,轨道的半长轴约为9900 km,周期约为24 h.则鹊桥二号在捕获轨道运行时()A.周期约为144 hB.近月点的速度大于远月点的速度C.近月点的速度小于在冻结轨道运行时近月点的速度D.近月点的加速度大于在冻结轨道运行时近月点的加速度1.B[解析] 冻结轨道和捕获轨道的中心天体是月球,根据开普勒第三定律得T12R13=T22R23,整理得T2=T1√R23R13≈288 h,A错误;根据开普勒第二定律得,鹊桥二号在捕获轨道运行时在近月点的速度大于在远月点的速度,B正确;在近月点从捕获轨道到冻结轨道变轨时,鹊桥二号需要减速进行近月制动,故鹊桥二号在捕获轨道近月点的速度大于在冻结轨道运行时近月点的速度,C错误;在两轨道的近月点所受的万有引力相同,根据牛顿第二定律可知,在捕获轨道运行时近月点的加速度等于在冻结轨道运行时近月点的加速度,D错误.2.[2024·北京卷] 科学家根据天文观测提出宇宙膨胀模型:在宇宙大尺度上,所有的宇宙物质(星体等)在做彼此远离运动,且质量始终均匀分布,在宇宙中所有位置观测的结果都一样.以某一点O为观测点,以质量为m的小星体(记为P)为观测对象.当前P到O点的距离为r0,宇宙的密度为ρ0.(1)求小星体P远离到2r0处时宇宙的密度ρ;(2)以O点为球心,以小星体P到O点的距离为半径建立球面.P受到的万有引力相当于球内质量集中于O点对P的引力.已知质量为m1和m2、距离为R的两个质点间的引力势能E p=-G m1m2R,G为引力常量.仅考虑万有引力和P远离O点的径向运动.①求小星体P从r0处远离到2r0处的过程中动能的变化量ΔE k;②宇宙中各星体远离观测点的速率v满足哈勃定律v=Hr,其中r为星体到观测点的距离,H为哈勃系数.H与时间t有关但与r无关,分析说明H随t增大还是减小.2.(1)18ρ0 (2)①-23G πρ0m r 02 ②H 随t 增大而减小[解析] (1)在宇宙中所有位置观测的结果都一样,则小星体P 运动前后距离O 点半径为r 0和2r 0的球内质量相同,即ρ0·43πr 03=ρ·43π(2r 0)3解得小星体P 远离到2r 0处时宇宙的密度ρ=18ρ0(2)①此球内的质量M =ρ0·43πr 03 P 从r 0处远离到2r 0处,由能量守恒定律得 动能的变化量ΔE k =-G Mmr 0-(-GMm 2r 0)=-23G πρ0m r 02 ②由①知星体的速度随r 0增大而减小,星体到观测点距离越大运动时间t 越长,由v =Hr知,H 减小,故H 随t 增大而减小3.[2024·甘肃卷] 小杰想在离地表一定高度的天宫实验室内,通过测量以下物理量得到天宫实验室轨道处的重力加速度,可行的是 ( ) A .用弹簧测力计测出已知质量的砝码所受的重力 B .测量单摆摆线长度、摆球半径以及摆动周期 C .从高处释放一个重物,测量其下落高度和时间D .测量天宫实验室绕地球做匀速圆周运动的周期和轨道半径3.D [解析] 在天宫实验室内,物体处于完全失重状态,重力提供了物体绕地球做匀速圆周运动的向心力,故A 、B 、C 中的实验均无法得到天宫实验室轨道处的重力加速度;物体所受的万有引力提供物体绕地球做匀速圆周运动的向心力,有mg =G Mm r 2=m 4π2T 2r ,整理得轨道处的重力加速度为g =4π2T 2r ,故通过测量天宫实验室绕地球做匀速圆周运动的周期和轨道半径可行,D 正确.4.(多选)[2024·广东卷] 如图所示,探测器及其保护背罩通过弹性轻绳连接降落伞,在接近某行星表面时以60 m/s 的速度竖直匀速下落.此时启动“背罩分离”,探测器与背罩断开连接,背罩与降落伞保持连接.已知探测器质量为1000 kg,背罩质量为50 kg,该行星的质量和半径分别为地球的110和12.地球表面重力加速度大小g 取10 m/s 2.忽略大气对探测器和背罩的阻力.下列说法正确的有 ( )A .该行星表面的重力加速度大小为4 m/s 2B .该行星的第一宇宙速度为7.9 km/sC .“背罩分离”后瞬间,背罩的加速度大小为80 m/s 2D .“背罩分离”后瞬间,探测器所受重力对其做功的功率为30 kW4.AC [解析] 设地球的质量为M ,半径为R ,行星的质量为M',半径为R',在星球表面可近似认为物体所受重力等于其所受万有引力,有GMm R2=mg ,可得GM =gR 2,同理,在该行星表面有GM'=g'R'2,联立得该星球表面的重力加速度g'=M 'R 2MR '2g =110×22×10 m/s 2=4 m/s 2,A 正确;地球的第一宇宙速度v =√GMR=7.9 km/s,则该行星的第一宇宙速度v'=√GM 'R '=√15×GM R =√15×7.9 km/s,B 错误;探测器及其保护背罩通过弹性轻绳连接降落伞,在接近某行星表面时以v =60 m/s 的速度竖直匀速下落,此时背罩受到降落伞的拉力F =(m 探+m 背)g'=4200 N,“背罩分离”后瞬间,由牛顿第二定律有F -m 背g'=m 背a ,解得背罩的加速度大小为a =80 m/s 2,C 正确;“背罩分离”后瞬间,探测器所受重力对其做功的功率为P =m 探g'v =1000×4×60 W=2.4×105 W=240 kW,D 错误.5.[2024·广西卷] 潮汐现象出现的原因之一是在地球的不同位置海水受到月球的引力不相同.图中a 、b 和c 处单位质量的海水受月球引力大小在( )A .a 处最大B .b 处最大C .c 处最大D .a 、c 处相等,b 处最小5.A [解析] 根据万有引力公式F =G Mm R 2,可知图中a 处单位质量的海水受到月球的引力最大,故选A .6.[2024·海南卷] 神舟十七号载人飞船返回舱于2024年4月30日在东风着陆场成功着陆,在飞船返回至离地面十几公里时打开主伞飞船快速减速,返回舱速度大大减小,在减速过程中()A.返回舱处于超重状态B.返回舱处于失重状态C.主伞的拉力不做功D.重力对返回舱做负功6.A[解析] 返回舱在减速过程中,加速度竖直向上,处于超重状态,故A正确,B错误;主伞的拉力与返回舱运动方向相反,对返回舱做负功,故C错误;返回舱的重力与返回舱运动方向相同,重力对返回舱做正功,故D错误.7.[2024·海南卷] 嫦娥六号进入环月圆轨道,周期为T,轨道高度与月球半径之比为k,引力常量为G,则月球的平均密度为 ()A.3π(1+k)3GT2k3B.3πGT2C.π(1+k)3GT2k D.3πGT2(1+k)37.D[解析] 设月球半径为R,质量为M,对嫦娥六号,根据万有引力提供向心力得G Mm [(k+1)R]2=m4π2T2·(k+1)R,月球的体积V=43πR3,月球的平均密度ρ=MV,联立可得ρ=3πGT2(1+k)3,故选D.8.(多选)[2024·河北卷] 2024年3月20日,“鹊桥二号”中继星成功发射升空,为“嫦娥六号”在月球背面的探月任务提供地月间中继通讯.“鹊桥二号”采用周期为24 h的环月椭圆冻结轨道(如图所示),近月点A距月心约为2.0×103 km,远月点B距月心约为1.8×104 km,CD 为椭圆轨道的短轴,下列说法正确的是()A.“鹊桥二号”从C经B到D的运动时间为12 hB.“鹊桥二号”在A、B两点的加速度大小之比约为81∶1C.“鹊桥二号”在C、D两点的速度方向垂直于其与月心的连线D.“鹊桥二号”在地球表面附近的发射速度大于7.9 km/s且小于11.2 km/s8.BD[解析] “鹊桥二号”围绕月球沿椭圆轨道运动,根据开普勒第二定律可知,在近地点A处的速度最大,在远地点B处的速度最小,则从C→B→D的平均速率小于从D→A→C 的平均速率,所以从C→B→D的运动时间大于半个周期,即大于12 h,A错误;在A点,根据牛顿第二定律有G Mm(r OA)2=ma A,在B点,根据牛顿第二定律有G Mm(r OB)2=ma B,联立解得“鹊桥二号”在A、B两点的加速度大小之比约为a A∶a B=81∶1,B正确;物体做曲线运动时速度方向沿该点的切线方向,所以“鹊桥二号”在C、D两点的速度方向不垂直于其与月心的连线,C错误;“鹊桥二号”发射后围绕月球沿椭圆轨道运动,并未脱离地球引力束缚,所以“鹊桥二号”在地球表面附近的发射速度大于7.9 km/s且小于11.2 km/s,D正确.9.[2024·湖北卷] 太空碎片会对航天器带来危害.设空间站在地球附近沿逆时针方向做匀速圆周运动,如图中实线所示.为了避开碎片,空间站在P点向图中箭头所指径向方向极短时间喷射气体,使空间站获得一定的反冲速度,从而实现变轨.变轨后的轨道如图中虚线所示,其半长轴大于原轨道半径.则()A.空间站变轨前、后在P点的加速度相同B.空间站变轨后的运动周期比变轨前的小C.空间站变轨后在P点的速度比变轨前的小D.空间站变轨前的速度比变轨后在近地点的大9.A[解析] 空间站在P点变轨前、后所受到的万有引力不变,根据牛顿第二定律可知F 万=ma加,则空间站变轨前、后在P点的加速度相同,故A正确;空间站的圆轨道运动可以看作特殊的椭圆轨道运动,因为变轨后其轨道半长轴大于原轨道半径,根据开普勒第三定律可知a 2T2=k,则空间站变轨后的运动周期比变轨前的大,故B错误;变轨后在P点获得方向沿径向指向地球的反冲速度,与原来做圆周运动的速度合成,合速度大于原来的速度,故C错误;由于空间站变轨后在P点的速度比变轨前的大,但变轨后在P点的速度比同一轨道上在近地点的速度小,所以空间站变轨前的速度比变轨后在近地点的小,故D错误.10.(多选)[2024·湖南卷] 2024年5月3日,“嫦娥六号”探测器顺利进入地月转移轨道,正式开启月球之旅.相较于“嫦娥四号”和“嫦娥五号”,本次的主要任务是登陆月球背面进行月壤采集,并通过升空器将月壤转移至绕月运行的返回舱,返回舱再通过返回轨道返回地球.设返回舱绕月运行的轨道为圆轨道,半径近似为月球半径.已知月球表面重力加速度约为地球表面的16,月球半径约为地球半径的14.关于返回舱在该绕月轨道上的运动,下列说法正确的是( )A .其相对于月球的速度大于地球第一宇宙速度B .其相对于月球的速度小于地球第一宇宙速度C .其绕月飞行周期约为地球上近地圆轨道卫星周期的√23倍 D .其绕月飞行周期约为地球上近地圆轨道卫星周期的√32倍10.BD [解析] 返回舱绕月运行的轨道为圆轨道,半径近似为月球半径,则由万有引力提供向心力,有GM 月m r 月2=mv 月2r 月,根据在月球表面万有引力和重力的关系有GM 月m r 月2=mg 月,联立解得v 月=√g 月r 月,由于第一宇宙速度为近地卫星的环绕速度,同理可得v 地=√g 地r 地,则v 月v 地=√g 月g 地·r 月r 地=√16×14=√612,所以v 月<v 地,故A 错误,B 正确;根据线速度和周期的关系有T =2πv ·r ,则T 月T 地=r 月r 地·v 地v 月=14×√6=√32,故C 错误,D 正确.11.[2024·江西卷] “嫦娥六号”探测器于2024年5月8日进入环月轨道,后续经调整环月轨道高度和倾角,实施月球背面软着陆.当探测器的轨道半径从r 1调整到r 2时(两轨道均可视为圆形轨道),其动能和周期从E k1、T 1分别变为E k2、T 2.下列选项正确的是 ( )A .E k1E k2=r 2r 1,T 1T 2=√r 13√r 2B .E k1E k2=r 1r 2,T 1T 2=√r 13√r 2C .E k1E k2=r 2r 1,T 1T 2=√r 23√r 1D .E k1E k2=r 1r 2,T 1T 2=√r 23√r 1311.A [解析] 探测器环月运行,由万有引力提供向心力有G Mmr 2=m v 2r ,得v 2=GMr,其中M 为月球质量,m 为“嫦娥六号”质量,动能E k =12mv 2,则E k1E k2=r2r 1,B 、D错误;同理,由G Mm r 2=m 4π2T2r得T =√4π2r 3GM ,则T 1T 2=√r 13r 23,A 正确,C 错误.12.[2024·辽宁卷] 如图甲所示,将一弹簧振子竖直悬挂,以小球的平衡位置为坐标原点O ,竖直向上为正方向,建立x 轴.若将小球从弹簧原长处由静止释放,其在地球与某球状天体表面做简谐运动的图像如图乙所示(不考虑自转影响).设地球、该天体的平均密度分别为ρ1和ρ2,地球半径是该天体半径的n 倍,ρ1ρ2的值为 ( )A .2nB .n 2C .2n D .12n12.C [解析] 设地球表面的重力加速度为g ,球状天体表面的重力加速度为g',弹簧的劲度系数为k ,根据简谐运动的对称性有k ·4A -mg =mg ,k ·2A -mg'=mg',解得gg '=2,设球状天体的半径为R ,则地球的半径为nR ,在地球表面有G ρ1·43π(nR )3·m(nR )2=mg ,在球状天体表面有G ρ2·43πR 3·mR 2=mg',联立解得ρ1ρ2=2n,故C 正确.13.[2024·全国甲卷] 2024年5月,“嫦娥六号”探测器发射成功,开启了人类首次从月球背面采样返回之旅.将采得的样品带回地球,飞行器需经过月面起飞、环月飞行、月地转移等过程.月球表面自由落体加速度约为地球表面自由落体加速度的16.下列说法正确的是 ( )A .在环月飞行时,样品所受合力为零B .若将样品放置在月球正面,它对月球表面压力等于零C .样品在不同过程中受到的引力不同,所以质量也不同D .样品放置在月球背面时对月球的压力比放置在地球表面时对地球的压力小13.D [解析] 在环月飞行时,样品所受合力提供所需的向心力,不为零,故A 错误;若将样品放置在月球正面,则它处于平衡状态,它对月球表面压力大小等于它在月球表面的重力大小,由于月球表面自由落体加速度约为地球表面自由落体加速度的16,则样品在地球表面的重力大于在月球表面的重力,所以样品放置在月球背面时对月球的压力比放置在地球表面时对地球的压力小,故B 错误,D 正确;样品在不同过程中受到的引力不同,但样品的质量不变,故C 错误.14.[2024·山东卷] “鹊桥二号”中继星环绕月球运行,其24小时椭圆轨道的半长轴为a.已知地球同步卫星的轨道半径为r ,则月球与地球质量之比可表示为 ( )A .√r 3a 3 B .√a 3r3C .r 3a3 D .a 3r314.D [解析] “鹊桥二号”中继星环绕月球运动的24小时椭圆轨道的半长轴为a ,则其24小时圆轨道的半径也为a ,由万有引力提供向心力得G M 月m 中a 2=m 中(2πT )2a ,对地球同步卫星,由万有引力提供向心力得GM 地m 同r 2=m 同(2πT )2r ,联立解得M 月M 地=a 3r 3,D 正确.15.[2024·新课标卷] 天文学家发现,在太阳系外的一颗红矮星有两颗行星绕其运行,其中行星GJ1002c 的轨道近似为圆,轨道半径约为日地距离的0.07倍,周期约为0.06年,则这颗红矮星的质量约为太阳质量的 ( ) A .0.001倍 B .0.1倍 C .10倍 D .1000倍15.B [解析] 设红矮星的质量为M 1,行星GJ1002c 的质量为m 1,轨道半径为r 1,运动周期为T 1;太阳的质量为M 2,地球的质量为m 2,日地距离为r 2,地球运动的周期为T 2;根据万有引力定律提供向心力有GM 1m 1r 12=m 14π2T 12r 1,G M 2m 2r 22=m 24π2T 22r 2,联立可得M 1M 2=(r 1r 2)3·(T 2T 1)2,由于行星GJ1002c 的轨道半径约为日地距离的0.07倍,周期约为0.06年,可得M 1M 2≈0.0730.062≈0.1,选B 正确.16.[2024·浙江6月选考] 与地球公转轨道“外切”的小行星甲和“内切”的小行星乙的公转轨道如图所示,假设这些小行星与地球的公转轨道都在同一平面内,地球的公转半径为R ,小行星甲的远日点到太阳的距离为R 1,小行星乙的近日点到太阳的距离为 R 2,则 ( )A .小行星甲在远日点的速度大于近日点的速度B .小行星乙在远日点的加速度小于地球公转加速度C .小行星甲与乙的运行周期之比T1T 2=√R 13R 23D .甲、乙两行星从远日点到近日点的时间之比t 1t 2=√(R 1+R)3(R 2+R)316.D [解析] 由开普勒第二定律知小行星甲在远日点的速度小于在近日点的速度,A 错误;小行星乙在远日点到太阳的距离与地球到太阳的距离相等,由G Mmr 2=ma 可知,小行星乙在远日点的加速度和地球公转加速度大小相等,B 错误;根据开普勒第三定律有(R 1+R 2)3T 12=(R 2+R 2)3T 22,解得T 1T 2=√(R 1+R)3(R 2+R)3,C错误;甲、乙两行星从远日点到近日点的时间之比t 1t 2=T 12T 22=√(R 1+R)3(R 2+R)3,D 正确.。
专题06 万有引力定律与航天【2022年高考题组】1、(2022·湖南卷·T8)如图,火星与地球近似在同一平面内,绕太阳沿同一方向做匀速圆周运动,火星的轨道半径大约是地球的1.5倍。
地球上的观测者在大多数的时间内观测到火星相对于恒星背景由西向东运动,称为顺行;有时观测到火星由东向西运动,称为逆行。
当火星、地球、太阳三者在同一直线上,且太阳和火星位于地球两侧时,称为火星冲日。
忽略地球自转,只考虑太阳对行星的引力,下列说法正确的是()A. 827倍B. 在冲日处,地球上的观测者观测到火星的运动为顺行C. 在冲日处,地球上的观测者观测到火星的运动为逆行D. 在冲日处,火星相对于地球的速度最小2、(2022·广东卷·T2)“祝融号”火星车需要“休眠”以度过火星寒冷的冬季。
假设火星和地球的冬季是各自公转周期的四分之一,且火星的冬季时长约为地球的1.88倍。
火星和地球绕太阳的公转均可视为匀速圆周运动。
下列关于火星、地球公转的说法正确的是()A. 火星公转的线速度比地球的大B. 火星公转的角速度比地球的大C. 火星公转的半径比地球的小D. 火星公转的加速度比地球的小3、(2022·山东卷·T6)“羲和号”是我国首颗太阳探测科学技术试验卫星。
如图所示,该卫星围绕地球的运动视为匀速圆周运动,轨道平面与赤道平面接近垂直。
卫星每天在相同时刻,沿相同方向经过地球表面A点正上方,恰好绕地球运行n圈。
已知地球半径为地轴R,自转周期为T,地球表面重力加速度为g,则“羲和号”卫星轨道距地面高度为()A.1223222π⎛⎫-⎪⎝⎭gR TRnB.1223222π⎛⎫⎪⎝⎭gR TnC.1223224π⎛⎫-⎪⎝⎭gR TRnD.1223224π⎛⎫⎪⎝⎭gR Tn4、(2022·全国乙卷·T14)2022年3月,中国航天员翟志刚、王亚平、叶光富在离地球表面约400km的“天宫二号”空间站上通过天地连线,为同学们上了一堂精彩的科学课。
通过直播画面可以看到,在近地圆轨道上飞行的“天宫二号”中,航天员可以自由地漂浮,这表明他们()A. 所受地球引力的大小近似为零B. 所受地球引力与飞船对其作用力两者的合力近似为零C. 所受地球引力的大小与其随飞船运动所需向心力的大小近似相等D. 在地球表面上所受引力的大小小于其随飞船运动所需向心力的大小5、(2022·浙江6月卷·T6)神州十三号飞船采用“快速返回技术”,在近地轨道上,返回舱脱离天和核心舱,在圆轨道环绕并择机返回地面。
则()A. 天和核心舱所处的圆轨道距地面高度越高,环绕速度越大B. 返回舱中的宇航员处于失重状态,不受地球的引力C. 质量不同的返回舱与天和核心舱可以在同一轨道运行D. 返回舱穿越大气层返回地面过程中,机械能守恒6、(2022·浙江1月卷·T8)“天问一号”从地球发射后,在如图甲所示的P点沿地火转移轨道到Q点,再依次进入如图乙所示的调相轨道和停泊轨道,则天问一号()A. 发射速度介于7.9km/s与11.2km/s之间B. 从P点转移到Q点的时间小于6个月C. 在环绕火星的停泊轨道运行的周期比在调相轨道上小D. 在地火转移轨道运动时的速度均大于地球绕太阳的速度7.(2022·湖北·T2) 2022年5月,我国成功完成了天舟四号货运飞船与空间站的对接,形成的组合体在地球引力作用下绕地球做圆周运动,周期约90分钟。
下列说法正确的是()A. 组合体中的货物处于超重状态B. 组合体的速度大小略大于第一宇宙速度C. 组合体的角速度大小比地球同步卫星的大D. 组合体的加速度大小比地球同步卫星的小【2021年高考题组】1. (2021·山东卷)从“玉兔”登月到“祝融”探火,我国星际探测事业实现了由地月系到行星际的跨越。
已知火星质量约为月球的9倍,半径约为月球的2倍,“祝融”火星车的质量约为“玉兔”月球车的2倍。
在着陆前,“祝融”和“玉兔”都会经历一个由着陆平台支撑的悬停过程。
悬停时,“祝融”与“玉兔”所受陆平台的作用力大小之比为()A. 9∶1B. 9∶2C. 36∶1D. 72∶12. (2021·全国卷甲卷)2021年2月,执行我国火星探测任务的“天问一号”探测器在成功实施三次近火制动后,进入运行周期约为1.8×105s的椭圆形停泊轨道,轨道与火星表面的最近距离约为2.8×105m。
已知火星半径约为3.4×106m ,火星表面处自由落体的加速度大小约为3.7m/s 2,则“天问一号”的停泊轨道与火星表面的最远距离约为( ) A. 6×105m B. 6×106mC. 6×107mD. 6×108m3. (2021·全国卷乙卷) 全国乙卷第5题. 科学家对银河系中心附近的恒星S2进行了多年的持续观测,给出1994年到2002年间S2的位置如图所示。
科学家认为S2的运动轨迹是半长轴约为1000AU (太阳到地球的距离为1AU )的椭圆,银河系中心可能存在超大质量黑洞。
这项研究工作获得了2020年诺贝尔物理学奖。
若认为S2所受的作用力主要为该大质量黑洞的引力,设太阳的质量为M ,可以推测出该黑洞质量约为( )A. 4410M ⨯B. 6410M ⨯C. 8410M ⨯D. 10410M ⨯4. (2021·湖南卷) 2021年4月29日,中国空间站天和核心舱发射升空,准确进入预定轨道。
根据任务安排,后续将发射问天实验舱和梦天实验舱,计划2022年完成空间站在轨建造。
核心舱绕地球飞行的轨道可视为圆轨道,轨道离地面的高度约为地球半径的116。
下列说法正确的是( )A. 核心舱进入轨道后所受地球的万有引力大小约为它在地面时的21617⎛⎫ ⎪⎝⎭倍 B. 核心舱在轨道上飞行的速度大于7.9km/s C. 核心舱在轨道上飞行的周期小于24hD. 后续加挂实验舱后,空间站由于质量增大,轨道半径将变小5. (2021·广东卷) 2021年4月,我国自主研发的空间站“天和”核心舱成功发射并入轨运行,若核心舱绕地球的运行可视为匀速圆周运动,已知引力常量,由下列物理量能计算出地球质量的是( )A. 核心舱的质量和绕地半径B. 核心舱的质量和绕地周期C. 核心舱的绕地角速度和绕地周期D. 核心舱的绕地线速度和绕地半径6. (2021·河北卷)“祝融号”火星车登陆火星之前,“天问一号”探测器沿椭圆形的停泊轨道绕火星飞行,其周期为2个火星日,假设某飞船沿圆轨道绕火星飞行,其周期也为2个火星日,已知一个火星日的时长约为一个地球日,火星质量约为地球质量的0.1倍,则该飞船的轨道半径与地球同步卫星的轨道半径的比值约为()A. 34B. 314C. 352D. 3257. (2021·浙江卷)空间站在地球外层的稀薄大气中绕行,因气体阻力的影响,轨道高度会发生变化。
空间站安装有发动机,可对轨道进行修正。
图中给出了国际空间站在2020.02-2020.08期间离地高度随时间变化的曲线,则空间站()A. 绕地运行速度约为2.0km/sB. 绕地运行速度约为8.0km/sC. 在4月份绕行的任意两小时内机械能可视为守恒D. 在5月份绕行的任意两小时内机械能可视为守恒【2020年高考题组】1.(2020·新课标卷)火星的质量约为地球质量的110,半径约为地球半径的12,则同一物体在火星表面与在地球表面受到的引力的比值约为( ) A. 0.2B. 0.4C. 2.0D. 2.52.(2020·新课标卷)若一均匀球形星体的密度为ρ,引力常量为G ,则在该星体表面附近沿圆轨道绕其运动的卫星的周期是( )A.B.C.D.3. (2020·新课标卷)“嫦娥四号”探测器于2019年1月在月球背面成功着陆,着陆前曾绕月球飞行,某段时间可认为绕月做匀速圆周运动,圆周半径为月球半径的K 倍。
已知地球半径R 是月球半径的P 倍,地球质量是月球质量的Q 倍,地球表面重力加速度大小为g 。
则“嫦娥四号”绕月球做圆周运动的速率为( )A.B.C.D.4. (2020·江苏卷)甲、乙两颗人造卫星质量相等,均绕地球做圆周运动,甲的轨道半径是乙的2倍。
下列应用公式进行的推论正确的有( )A. 由v =倍B. 由2a r ω=可知,甲的向心加速度是乙的2倍C. 由2MmF Gr =可知,甲的向心力是乙的14D. 由32r k T=可知,甲的周期是乙的5. (2020·山东卷)我国将在今年择机执行“天问1号”火星探测任务。
质量为m 的着陆器在着陆火星前,会在火星表面附近经历一个时长为t 0、速度由v 0减速到零的过程。
已知火星的质量约为地球的0.1倍,半径约为地球的0.5倍,地球表面的重力加速度大小为g ,忽略火星大气阻力。
若该减速过程可视为一个竖直向下的匀减速直线运动,此过程中着陆器受到的制动力大小约为( ) A. 000.4v m g t ⎛⎫- ⎪⎝⎭B. 000.4+v m g t ⎛⎫⎪⎝⎭C. 000.2v m g t ⎛⎫- ⎪⎝⎭D. 000.2+v m g t ⎛⎫⎪⎝⎭6. (2020·天津卷)北斗问天,国之夙愿。
我国北斗三号系统的收官之星是地球静止轨道卫星,其轨道半径约为地球半径的7倍。
与近地轨道卫星相比,地球静止轨道卫星( )A. 周期大B. 线速度大C. 角速度大D. 加速度大7. (2020·浙江卷)火星探测任务“天问一号”的标识如图所示。
若火星和地球绕太阳的运动均可视为匀速圆周运动,火星公转轨道半径与地球公转轨道半径之比为3∶2,则火星与地球绕太阳运动的()A. 轨道周长之比为2∶3B. 32C. 角速度大小之比为233D. 向心加速度大小之比为9∶4。