数学中考复习必背知识点
- 格式:docx
- 大小:12.83 KB
- 文档页数:3
中考数学复习知识点归纳总结7篇篇1一、数与代数(一)数的认识1. 自然数的认识:自然数是指用以计量事物的件数或表示事物次序的数。
即用数码0,1,2,3,4……所表示的数。
中考中可能会涉及自然数的连续性及自然数的个数等问题。
复习时需要注意对自然数概念的理解及运用。
2. 整数的认识:整数包括正整数、零和负整数。
在中考复习中,需要掌握整数的性质、运算规则以及与分数的区别等知识点。
(二)代数式与方程1. 代数式的认识:代数式是由数字、字母和数学符号组成的一种数学表达式。
在中考复习中,需要掌握代数式的简化、代入计算等知识点。
同时还需要加强对代数式在实际问题中应用的能力培养。
如与面积计算、路程问题等结合出题的情况很常见。
例如“给出多边形的一条边长为a米,与其相邻的两边之差的代数式是:______________”。
因此类题目较为灵活,需要考生具备一定的数学思维和解题技巧。
(三)数的运算与性质篇2一、数与代数(一)数的认识1. 自然数的认识:自然数是指用以计量事物的件数或表示事物次序的数。
即用数码0,1,2,3,4……所表示的数。
2. 整数的认识:整数是自然数中的一部分,包括正整数和负整数。
它们在日常生活中的应用非常广泛。
3. 小数、分数与百分数的认识:熟练掌握小数、分数与百分数的概念及其相互转化,对于数学计算和应用题的解答至关重要。
(二)代数知识1. 代数式的认识与运算:掌握代数式的概念、性质及运算规则,能够熟练进行代数式的化简、求值等。
2. 方程与不等式的应用:掌握一元一次方程、不等式及其解法,能够灵活运用方程与不等式解决实际问题。
二、几何知识(一)平面几何1. 图形的认识:熟练掌握各种基本图形的性质、分类及相互之间的关系。
2. 图形的测量:掌握各种图形的周长、面积等测量方法,能够熟练计算图形的面积和周长。
3. 图形的变换:了解图形的平移、旋转、翻折等变换方式,掌握其性质和应用。
(二)立体几何1. 长方体与正方体的认识:掌握长方体与正方体的性质、体积和表面积的计算方法。
中考数学必考知识点大全1.整数的加减乘除运算:掌握整数的加减乘除运算法则,包括加法、减法、乘法和除法。
2.分数的加减乘除运算:掌握分数的加减乘除运算法则,包括分数的加法、减法、乘法和除法。
3.百分数的计算:掌握百分数的计算方法,包括百分数的转化和百分数之间的比较。
4.小数的加减乘除运算:掌握小数的加减乘除运算法则,包括小数的加法、减法、乘法和除法。
5.整式的加减乘除运算:掌握整式的加减乘除运算法则,包括整式的加法、减法、乘法和除法。
6.一元一次方程与一元一次不等式:掌握一元一次方程和一元一次不等式的解法和问题的应用。
7.二次根式:掌握二次根式的定义和性质,包括二次根式的化简和运算。
8.平方根与立方根:掌握平方根和立方根的计算方法和性质,包括平方根和立方根的开放计算和化简。
9.平面图形的面积和周长:掌握各种平面图形的面积和周长的计算方法,包括矩形、正方形、三角形、梯形、圆等。
10.空间图形的体积和表面积:掌握各种空间图形的体积和表面积的计算方法,包括长方体、正方体、三棱锥、四棱锥、棱柱、棱台、球等。
11.初等概率与统计:掌握初等概率和统计的基本概念和计算方法,包括样本空间、事件、概率、频率、直方图等。
12.等比数列与等差数列:掌握等比数列和等差数列的定义和性质,包括等比数列和等差数列的通项公式和求和公式。
13.直角三角形的性质与应用:掌握直角三角形的性质和定理,包括勾股定理、正弦定理、余弦定理等。
14.平行线与相交线:掌握平行线和相交线的基本性质和判定方法,包括平行线的性质、相交线的性质和相交线的角度关系。
15.二次函数与二次方程:掌握二次函数和二次方程的定义和性质,包括二次函数的图像、二次方程的解法和二次函数和二次方程在实际问题中的应用。
中考数学必考知识点
1.整数和有理数:了解整数和有理数的概念及其性质,包括整数的正
负性、大小比较以及有理数的表示和运算法则。
2.分数与小数:掌握分数与小数的相互转换方法,包括分数的化简、
通分与约分,小数的读写与四则运算。
3.百分数与比例:理解百分数与比例的概念,掌握百分数的计算与应用,比例与比例关系的应用。
4.二次根式与简单的三角函数:了解二次根式的定义与性质,包括二
次根式的相互转换和计算,以及简单的三角函数的定义和运算。
5.一次函数与图像:掌握一次函数的概念,理解线性关系,掌握一次
函数的图像、性质和应用。
6.坐标系与图形:了解平面直角坐标系的概念及其性质,认识常见图
形的坐标特征,包括点、线、线段、角以及相关的距离和面积计算。
7.相似与全等:理解相似和全等的概念,掌握相似和全等的判定条件,以及相似比和全等的运用。
8.平面几何与立体几何:熟练掌握平面图形的性质和计算,包括三角形、四边形、圆等的周长、面积和相关性质,以及立体图形的性质和计算,包括长方体、正方体、圆柱体、圆锥体等的体积和表面积计算。
9.统计与概率:了解统计与概率的基本概念,掌握统计的方法和技巧,包括数据的整理和分析,概率的计算和应用。
10.代数式与方程:掌握代数式的基本运算法则,理解并掌握方程的
概念、解法及应用,包括一元一次方程、简单一元二次方程的解法。
这些是中考数学必考的基本知识点,学生在备考中应该重点掌握这些知识,加强对概念的理解,熟练掌握运算方法,能够应用灵活,灵活运用解题思路和方法解决各类数学问题。
中考数学总复习知识点总结版一、代数与函数1.数的性质(1)整数的基本性质:加法、减法、乘法、除法(2)正数、负数、零的性质(3)有理数的性质:加法、减法、乘法、除法(4)无理数的性质:开方、近似2.代数式的运算(1)多项式的四则运算(2)平方差公式、完全平方公式(3)配方法则、公因式提取法、公式法3.一元一次方程与不等式(1)方程的定义、解的概念(2)等式的性质:等式的加减乘除、等式性质的保持(3)一元一次方程:解的判定、运算规则、解的性质(4)一元一次不等式:解的判定、运算规则、不等式性质的保持(5)一次方程与一次不等式的应用4.二元一次方程与不等式(1)二元一次方程:解的判定、运算规则、解的性质(2)二元一次不等式:解的判定、运算规则、不等式性质的保持(3)图像法解方程与不等式5.函数与方程(1)函数的概念与性质(2)函数关系与方程关系(3)画函数图像和考察函数关系6.一次函数(1)函数关系与表达式(2)函数图像及其性质(3)一次函数的应用7.二次函数(1)函数关系与表达式(2)函数图像及其性质(3)二次函数的最值与解的判定(4)二次函数的应用:消费问题、运动问题、面积体积问题二、几何与空间1.图形相似与相等(1)图形的基本概念和性质:点、线、面(2)图形的相似:形状相同、内角相等(3)图形的相等:边长、角度相等(4)判定图形相似和相等的条件2.角与弧(1)角的概念和性质:角的定义、对应角、相等角、补角、余角(2)弧的概念和性质:弧长、弧的度量、弧与角的关系、弧与弦的关系3.直线与平面(1)直线的性质:直线上的点、直线上的角(2)平面的性质:平面内的直线、平面内的角4.线段与射线(1)线段的性质:线段的长度、线段的中点(2)射线的性质:射线的起点、射线上的点5.平行线与垂直线(1)平行线的性质:平行线与转角、平行线的性质(2)垂直线的性质:垂线的性质、垂直线的判断6.三角形(1)三角形的概念和性质:三角形的定义、内角和、外角和(2)三角形的分类:按边长、按角度分类(3)三角形的相似:既相似又全等、全等不相似(4)三角形的性质:内角和、外角和、三角形中的中线、中位线、高线7.四边形(1)四边形的概念和性质:四边形的定义、四角和、四边和、对角线(2)矩形、正方形、菱形、平行四边形、梯形的性质8.圆(1)圆的基本概念和性质:圆的定义、圆心、半径、直径、弦、弧、弧度制(2)圆的相关性质:相等弧长对应的圆周角相等、相等弧相等(3)定点在圆上的直线与圆的位置关系三、数据与统计1.数据的描述(1)数据的收集、整理和描述(2)数据的中心趋势:平均数、中位数、众数(3)数据的离散程度:极差、标准差、方差2.数据的分析(1)统计图的绘制和分析:条形图、折线图、饼图、频率分布直方图(2)对比数据的分析:百分数、比值以上就是中考数学的总复习知识点总结,希望能对你的复习有所帮助。
2024初中数学知识点中考总复习总结归纳一、整数和分数运算1.整数的四则运算:加法、减法、乘法、除法2.分数的四则运算:分数的加减法、乘法、除法3.整数与分数的混合运算:转化为同种形式进行运算二、多项式的运算1.单项式与多项式的加减法:同类项的合并2.多项式的乘法:使用分配律展开式相乘,并合并同类项3.多项式的除法:使用长除法进行整除或整除后的简化三、方程与不等式1.一元一次方程:基本概念、解方程的基本方法(逆运算、倒数、代入等)2.一元一次方程的应用:问题转化为方程、代入解的检验等3.一元二次方程的解:配方法、求根公式4.一元二次方程的应用:问题转化为方程、代入解的检验等5.一元一次不等式:基本概念、解不等式的基本方法(逆运算、倒数、代入等)6.一元一次不等式的应用:问题转化为不等式、代入解的检验等四、数形结合与图形的性质1.平面图形的拓展:几何图形的基本概念、性质和判定方法(例如多边形、平行四边形、正方形等)2.三角形与四边形的面积:基本公式的推导和应用3.三角形的相似与全等:判断相似与全等的条件及应用4.圆的性质与关系:圆心角、弧长、扇形和面积的计算5.空间几何体的计算:体积和表面积的计算五、几何与运动的关系1.几何与坐标系:点的坐标及其在平面直角坐标系中的性质2.直线与圆的方程:点斜式、斜截式和截距式的互相转换及应用3.运动方程:速度、时间、距离之间的关系及其应用六、数据与概率1.数据的整理与处理:频数、频率、中位数、众数、范围等的计算和应用2.统计图的绘制与分析:条形图、折线图、扇形图等的绘制和分析3.概率的计算:事件的排列组合、概率的计算公式以上是2024初中数学中考的一些重要知识点的总结归纳,希望对您的复习有帮助。
中考数学常考知识点整理(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如演讲致辞、合同协议、条据文书、策划方案、总结报告、简历模板、心得体会、工作材料、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this store provides various types of practical sample essays, such as speeches, contracts, agreements, documents, planning plans, summary reports, resume templates, experience, work materials, teaching materials, other sample essays, etc. Please pay attention to the different formats and writing methods of the model essay!中考数学常考知识点整理中考数学常考知识点整理大全为避免中考忘记知识,熟背考点。
中考数学必背知识点(精简必背)中考数学必背知识点一、不为零的量1.分式 $\frac{A}{B}$,分母 $B\neq 0$;2.二次方程 $ax^2+bx+c=0$($a\neq 0$);3.一次函数 $y=kx+b$($k\neq 0$);4.反比例函数 $y=\frac{k}{x}$($k\neq 0$);5.二次函数 $y=ax^2+bx+c=0$($a\neq 0$)。
二、非负数1.$|a|\geq 0$;2.$a\geq 0$($a\geq 0$);3.$a^{2n}\geq 0$($n$ 为自然数)。
三、绝对值:$|a|=\begin{cases}a。
& a\geq 0\\-a。
& a<0\end{cases}$四、重要概念1.平方根与算术平方根:如果 $x^2=a$($a\geq 0$),则称 $x$ 为 $a$ 的平方根,记作:$x=\pm\sqrt{a}$,其中$x=\sqrt{a}$ 称为 $x$ 的算术平方根;2.负指数:$a^{-p}=\frac{1}{a^p}$;3.零指数:$a=1$($a\neq 0$);4.科学计数法:$a\times 10^n$($n$ 为整数,$1\leqa<10$)。
五、重要公式一)幂的运算性质1.同底数幂的乘法法则:$a^m\timesa^n=a^{m+n}$($a\neq 0$,$m$,$n$ 都是正数);2.幂的乘方法则:$(a^m)^n=a^{mn}$($m$,$n$ 都是正数);3.积的乘方法则:$(ab)^n=a^n\times b^n$($n$ 为正整数);4.同底数幂的除法法则:$\frac{a^m}{a^n}=a^{m-n}$($a\neq 0$,$m$,$n$ 都是正数,且 $m>n$)。
二)整式的运算1.平方差公式:$(a+b)(a-b)=a^2-b^2$;2.完全平方公式:$(a\pm b)^2=a^2\pm 2ab+b^2$。
中考数学必考知识点归纳一、数与代数。
1. 有理数。
- 有理数的概念:整数和分数统称为有理数。
整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。
- 数轴:规定了原点、正方向和单位长度的直线叫做数轴。
数轴上的点与有理数一一对应。
- 相反数:只有符号不同的两个数叫做互为相反数,0的相反数是0。
若a与b互为相反数,则a + b=0。
- 绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
即| a|=a(a≥0) -a(a<0)。
- 有理数的运算:- 加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0,绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数。
- 减法法则:减去一个数等于加上这个数的相反数。
- 乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。
- 除法法则:除以一个不等于0的数,等于乘这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数都得0。
- 乘方:求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。
a^n 中,a叫做底数,n叫做指数。
2. 实数。
- 无理数:无限不循环小数叫做无理数,如√(2)、π等。
- 实数的概念:有理数和无理数统称为实数。
实数与数轴上的点一一对应。
- 实数的运算:实数的运算顺序为先算乘方、开方,再算乘除,最后算加减;有括号的先算括号里面的。
3. 代数式。
- 代数式的概念:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式,单独的一个数或者一个字母也是代数式。
- 整式:单项式和多项式统称为整式。
单项式是数与字母的乘积,单独的一个数或一个字母也是单项式;多项式是几个单项式的和。
- 整式的加减:实质是合并同类项,同类项是指所含字母相同,并且相同字母的指数也相同的项。
中考数学必考知识点中考数学的必考知识点主要包括以下内容:一、数与代数运算1.数的基本概念:整数、有理数、实数、自然数、负数、正数等2.整数的加减乘除运算及性质3.分数的加减乘除运算及性质4.百分数、纯小数、循环小数的相互转换和运算5.正比例、反比例关系及其应用6.代数式的概念和基本运算:加法、乘法、合并同类项、分配律等7.一次方程与一次方程组的概念、解法及应用二、几何与空间1.图形的分类与性质:点、线、面、角2.直角、全等、相似三角形及其性质3.平行线与平行线的性质:同位角、内错角、对顶角等4.三角形内外角的关系、三角形中位线、高线的性质5.平面镶嵌、园的常见性质、多边形的周长和面积计算三、函数与方程1.函数的概念:自变量、函数值、定义域、值域等2.一次函数和二次函数的概念、图像和性质3.代数方程的解法:一次方程、二次方程的解法及应用4.不等式的解法及其应用四、数据与统计1.数据的收集和整理:频数、频率、众数等2.统计图的绘制:折线图、柱状图、饼图等3.平均数的计算:算术平均数、加权平均数等4.相关系数和回归直线的概念及计算方法五、概率与统计1.基本概念:试验、随机事件、样本空间、事件等2.概率的计算:古典概型、条件概率、事件的独立性等3.概率树的绘制及应用4.排列与组合的概念和计算方法六、应用题1.复合运算:综合运用多个知识点解决实际问题2.数学建模:运用数学知识解决实际问题3.空间几何、概率统计等知识在实际问题中的应用以上是中考数学的必考知识点的一个大致概括,具体考纲可能因不同地区、不同年份而有所不同。
在备考中,一定要结合教材进行系统学习,并进行大量的练习和题型熟悉,同时特别重视基础知识的巩固和应用题的拓展训练,这样才能全面提升数学水平,取得好成绩。
初中中考数学必考知识点
一、整数与有理数
1. 整数的概念及性质
2. 整数的加减乘除运算法则
3. 整数的混合运算
4. 有理数的概念及性质
5. 有理数的加减乘除运算法则
6. 有理数的比较大小
7. 有理数的混合运算
二、代数与方程
1. 代数式的概念及运算法则
2. 一元一次方程的概念及解法
3. 一元一次方程组的概念及解法
4. 二元一次方程组的概念及解法
5. 带有绝对值符号的方程及不等式
三、几何与图形
1. 角的概念及种类
2. 一次构图问题
3. 二次构图问题
4. 三角形的性质及分类
5. 直角三角形与勾股定理
6. 平面镶嵌问题
四、数据与统计
1. 平均数、中位数和众数的概念及计算方法
2. 折线图的绘制与解读
3. 条形统计图、饼图和表格的制作与分析
五、函数与图像
1. 函数的概念及表示方法
2. 一次函数与二次函数的性质
3. 函数图象的绘制及分析
六、概率与统计
1. 概率的基本概念及计算方法
2. 抽样调查与统计的基本方法
3. 事件的概念及概率的运算规则
七、空间与变换
1. 空间图形的展开与剖视图的绘制
2. 刚体变换的概念及性质
以上是初中中考数学中的必考知识点,掌握了这些知识,就能对数学考试有一个较为全面的准备。
希望同学们能够认真学习,掌握这些知识,并在考试中取得优异的成绩!。
数学中考复习必背知识点
数学中考复习必背知识点
1实数的知识点1、数轴------规定了原点、正方向、单位长度的直线,叫做数轴。
实数和数轴上的点是一一对应的。
2、相反数-----只有符号不同的两个数叫做互为相反数。
(1)几何意义:在数轴上,表示相反的两个点位于原点的两侧,且到原点的距离相等,关于原点对称;
(2)实数a的相反数为-a;
(3)a和b互为相反数则,a+b=0;
(4)相反数是它本身的数是0。
3、倒数----乘积是1的两个数互为倒数。
(1)实数a的倒数是1/a,其中a≠0;
(2)a和b互为倒数则,a__b=1;
(3)倒数是它本身的数有-1和1。
4、绝对值----一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
绝对值的性质:即,(1)、a0时,|a|=±a;(2)|a|=|b|,则a=b或a+b=0;(2)|a|=|b|,则a=b或a+b=0;(3)任意实数的绝对值具有非负性,即|a|≥0;(4)含有绝对值代数式
的化简、运算,首先考虑代数式的性质,即正负性,再根据绝对值的性质去掉绝对值
符号进行化简、运算。
5、实数的分类:有理数和无理数。
常见无理数种类:
(1)具有特殊意义的常数,例如:π、π-1、π+4、9π等;
(2)特殊结构类型,例如:0.101001000100001.(每两个1之间0的个数依次增加1)
等无限不循环小数;
(3)根号类型,例如:、等不能开的尽方的二次根式;当然具有根号,但是能开方就
是有理数;
2二次根式1、一般地,形如√a的代数式叫做二次根式,其中,a叫做被开方数。
当a≥0时,√a表示a的算术平方根;当a小于0时,√a的值为纯虚数。
2、最简二次根式:若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。
3、化二次根式为最简二次根式的方法和步骤:
(1)如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。
(2)如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。
3二次函数1、二次函数的三种表达式
二次函数的一般式为:y=ax²+bx+c(a≠0)。
二次函数的顶点式:y=a(x-h)²+k 顶点坐标为(h,k)
二次函数的交点式:y=a(x-x₁)(x-x₂) 函数与图像交于(x₁,0)和(x₂,0)
2、二次函数的性质
(1)二次函数的图像是抛物线,抛物线是轴对称图形。
对称轴为直线x=-b/2a。
(2)二次项系数a决定抛物线的开口方向和大小。
(3)一次项系数b和二次项系数a共同决定对称轴的位置。
(4)常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)。
3、二次函数的对称轴公式
二次函数图像是轴对称图形。
对称轴为直线x=-b/2a。
对称轴与二次函数图像唯一的交点为二次函数图象的顶点P。
特别地,当b=0时,二次函数图像的对称轴是y轴(即直线x=0)。
a,b同号,对称轴在y轴左侧;
a,b异号,对称轴在y轴右侧。
中考数学考试技巧归纳
1、做题先易后难
中考试卷上会有难题和简单题,遇到不会的题时,如果学生选择死磕,会对学生的考试节奏造成影响,最终因时间不足而没能做完后面有把握的题目。
此外,学生的信心也会因此受到打击,从而意志消沉,造成不必要的扣分。
因此,在遇到不会的题目时,学生最好选择跳过,等把所有有把握的题目做完后,再来解决难题。
2、不要在在意考试时间
中考对学生的意义重大,很多学生在考试期间会非常关注时间,但是经常看时间会
给自己造成心理负担,从而产生紧张焦虑的情绪,影响考场发挥。
因此,学生在中考
期间要少看时间,最多只看两次,一次是选择题做完后,这样方便对第二卷的答题顺
序进行调整;一次是结束前的15分钟,这样方便做出取舍,从而实现超水平发挥。
3、少留意监考老师
学生对老师就有一种天生的害怕情绪,尤其在考试期间,学生总是害怕监考老师会
注意到自己。
其实,监考老师是为学生服务的,是来维持考场秩序的,不会和学生过
不去。
因此,在中考期间,学生要少留意监考老师,转移视线,专心考试,不要受到
监考老师的干扰。
4、适当放弃
中考试卷中有一部分难题,这对普通学生来说具有很高的难度。
因此,当遇到一些
找不到思路的题目时,学生要懂得放弃,不要因为题目分数高而不舍得。
这时的放弃
是为了其他题目的收获,如果学生钻牛角尖,只会浪费时间和精力,而且也丢失其他
题目的分数。
5、看淡分数
中考对学生来说非常重要,但也不是必要的,很多中考生就是因为太过看重中考,
从而过分紧张,影响考场发挥。
因此,学生在思想上要看淡分数,行为上要重视分数,避免给自己施加太大的压力,从而影响发挥。
学数学有什么好方法
1、学好数学要抓住三个“基本”:基本的概念要清楚,基本的规律要熟悉,基本的方法要熟练。
2、做完题目后一定要认真总结,做到举一反三,这样,以后遇到同一类的问题是就不会花费太多的时间和精力了。
3、一定要全面了解数学概念,不能以偏概全。
4、学习概念的最终目的是能运用概念来解决具体问题,因此,要主动运用所学的数学概念来分析,解决有关的数学问题。
5、要掌握各种题型的解题方法,在练习中有意识的地去总结,慢慢地培养适合自己的分析习惯。