数电:电子时钟的设计
- 格式:doc
- 大小:406.00 KB
- 文档页数:13
数字电路电子时钟课程设计整个数字钟由时间计数电路、晶体振荡电路、校正电路、整点报时电路组成。
其中以校正电路代替时间计数电路中的时、分、秒之间的进位,当校时电路处于正常输入信号时,时间计数电路正常计时,但当分校正时,其不会产生向时进位,而分与时的校位是分开的,而校正电路也是一个独立的电路。
电路的信号输入由晶振电路产生,并输入各电路方案论证:方案一数字电子钟由信号发生器、“时、分、秒”计数器、译码器及显示器、校时电路、整点报时电路等组成。
秒信号产生器是整个系统的时基信号,它直接决定计时系统的精度,一般用555构成的振荡器加分频器来实现。
优点:数字钟是一种用数字电路技术实现时、分、秒计时的装置,与机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更长的使用寿命,因此得到了广泛的使用。
方案二秒、分计数器为60进制计数器,小时计数器为24进制计数器。
实现这两种模数的计数器采用中规模集成计数器74LS90构成。
优点:简单易懂,比较好调试。
1 设计原理数字电子钟由信号发生器、“时、分、秒”计数器、译码器及显示器、校时电路、整点报时电路等组成。
秒信号产生器是整个系统的时基信号,它直接决定计时系统的精度,一般用555构成的振荡器加分频器来实现。
将标准秒脉冲信号送入“秒计数器”,该计数器采用60进制计数器,每累计60秒发出一个“分脉冲”信号,该信号将作为“分计数器”的时钟脉冲。
“分计数器”也采用60进制计数器,每累计60分,发出一个“时脉冲”信号,该信号将被送到“时计数器”。
“时计数器”采用24进制计数器,可以实现一天24h的累计。
译码显示电路将“时、分、秒”计数器的输出状态经七段显示译码器译码,通过六位LED显示器显示出来。
整点报时电路是根据计时系统的输出状态产生一个脉冲信号,然后去触发音频发生器实现报时。
校时电路是来对“时、分、秒”显示数字进行校对调整。
其数字电子钟系统框图如下:图 1 数字电子钟系统框图4 详细设计及实验步骤4.1秒脉冲信号发生器秒脉冲信号发生器是数字电子钟的核心部分,它的精度和稳定度决定了数字钟的质量。
一、实训目的本次数电实训旨在通过实际操作,加深对数字电子技术理论知识的理解,掌握数字电路的设计与制作方法,提高动手能力和故障排除能力。
通过设计并制作一个具有时、分、秒显示功能的电子时钟,熟悉数字电路中的计数器、译码器、显示器等基本模块,并学会运用这些模块完成一个完整的电子系统设计。
二、实训内容1. 电子时钟设计(1)设计要求设计一个具有时、分、秒显示功能的电子时钟,要求:1)采用CMOS集成电路设计,保证电路的稳定性;2)时钟显示采用7段数码管,可同时显示时、分、秒;3)时钟源采用石英晶体振荡器,确保时钟的准确性;4)具有时钟校准功能,可调整时、分、秒的显示值;5)具有时钟复位功能,可恢复时钟到初始状态。
(2)设计原理电子时钟主要由以下模块组成:1)时钟源:采用石英晶体振荡器产生标准时钟信号;2)分频器:将标准时钟信号分频,得到1Hz的秒脉冲信号;3)计数器:对秒脉冲信号进行计数,得到秒、分、时的计数值;4)译码器:将计数值转换为对应的7段数码管显示编码;5)显示器:采用7段数码管显示时、分、秒的计数值;6)校时电路:实现时钟校准功能;7)复位电路:实现时钟复位功能。
(3)电路设计1)时钟源:选用NE555定时器构成石英晶体振荡器,产生标准时钟信号;2)分频器:选用CD4060计数器进行分频,得到1Hz的秒脉冲信号;3)计数器:选用CD4518BCD计数器,分别实现秒、分、时的计数;4)译码器:选用CD4511BCD至7段数码管译码器,将计数值转换为7段数码管显示编码;5)显示器:采用7段数码管,分别显示时、分、秒的计数值;6)校时电路:采用按钮开关实现时钟校准功能;7)复位电路:采用按钮开关实现时钟复位功能。
2. 电子时钟制作(1)元器件准备根据电路设计,准备以下元器件:1)NE555定时器1个;2)CD4060计数器1个;3)CD4518BCD计数器3个;4)CD4511BCD至7段数码管译码器3个;5)7段数码管3个;6)石英晶体振荡器1个;7)电阻、电容、二极管、导线等。
[数电课程设计数字电子时钟的实现] 电子时钟课程设计课程设计报告设计题目:数字电子时钟的设计与实现班级:学号:姓名:指导教师:设计时间:摘要钟表的数字化给人们生产生活带来了极大的方便,大大的扩展了原先钟表的报时。
诸如,定时报警、按时自动打铃、时间程序自动控制等,这些,都是以钟表数字化为基础的。
功能数字钟是一种用数字电路实现时、分、秒、计时的装置,与机械时钟相比具有更高的准确性和直观性,且无机械装置,具有更长的使用寿命,因此得到了广泛的使用。
从原理上讲,数字钟是一种典型的数字电路,其中包括了组合逻辑电路和时序电路。
因此,此次设计与制作数字钟就是为了了解数字钟的原理,从而学会制作数字钟,而且通过数字钟的制作进一步的了解各种在制作中用到的中小规模集成电路的作用及使用方法。
通过此次课程设计可以进一步学习与各种组合逻辑电路与时序电路的原理与使用方法。
通过仿真过程也进一步学会了Multisim7的使用方法与注意事项。
本次所要设计的数字电子表可以满足使用者的一些特殊要求,输出方式灵活,如可以随意设置时、分、秒的输出,定点报时。
由于集成电路技术的发展,,使数字电子钟具有体积小、耗电省、计时准确、性能稳定、维护方便等优点。
关键词:数字钟,组合逻辑电路,时序电路,集成电路目录摘要 (1)第1章概述············································3第2章课程设计任务及要求·······························42.1设计任务············································42.2设计要求············································4第3章系统设计··········································63.1方案论证············································63.2系统设计············································63.2.1结构框图及说明·································63.2.2系统原理图及工作原理···························73.3单元电路设计········································83.3.1单元电路工作原理·······························83.3.2元件参数选择···································14第4章软件仿真·········································154.1仿真电路图··········································154.2仿真过程············································164.3仿真结果············································16第5章安装调试··········································175.1安装调试过程········································175.2故障分析············································17第6章结论···············································18第7章使用仪器设备清单··································19参考文献·················································19收获、体会和建议·········································20第1章概述数字集成电路的出现和飞速发展,以及石英晶体振荡器的广泛应用,使得数字钟的精度稳定度远远超过了老式的机械表,用数字电路实现对“时”、“分”、“秒”数字显示的数字钟在数字显示方面,目前已有集成的计数、译码电路,它可以直接驱动数码显示器件,也可以直接采用才COMS--LED光电组合器件,构成模块式石英晶体数字钟。
(完整)数电课程设计数字电子钟的设计与制作编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)数电课程设计数字电子钟的设计与制作)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)数电课程设计数字电子钟的设计与制作的全部内容。
一、设计目的数字电子技术是工科专业的一门专业基础课,该课程理论与实践联系密切,系统性强,课程设计是本课程教学中必不可少的环节,通过设计可以使学生初步掌握基本的数字电路设计方法和技能,进一步加深对数字电子技术课程的理解,掌握数字电子系统的组成和设计方法以及系统的调试方法,熟悉常用数字芯片的功能及使用方法,为后续课程的学习奠定坚实基础。
二、设计任务1、用给定的数字集成电路设计制作一个数字电子钟。
2、基本功能:具有时、分、秒计时功能,用六位数码管和LED显示“XX:XX:XX"(最大显示23:59:59),要求计时准确,能够调整时间。
除电源外其它部分均需自行设计制作。
3、扩展功能:有整点报时功能;时分秒之间的间隔符“:”按秒跳动。
三、设计要求基本要求:1、根据给定的器件设计电路,画出电路原理图,仿真实现所设计功能.2、制作实际电路并测试,用自己设计的秒脉冲源作计时脉冲,+5V电源由实验室提供。
要求制作工艺良好,电路能正常稳定工作。
3、写出设计总结报告,除报告封面和电路图可以打印外,其它内容均必须手写(复印、打印的一律不及格)。
扩展要求:完成扩展功能四、所需元器件及材料IC:CD4518三块、CD4040、CD4060、CD4081各一块、CD4543六块,DIP16IC插座12个;其他器件:共阴数码管(CL5011AH)6个,红色LED4个,石英晶振32768HZ一个,电阻220Ω44个,220K、10M各1个,51P瓷片电容2个,轻触开关4个,8针接插件3个,4针接插件1个,9cm*15cm万能板两块、红、黑色导线各1卷,黄、蓝色导线各2卷、焊锡2卷。
数字电路课程设计电子数字钟+闹铃数字电路课程设计院系:专业:电子信息工程姓名:学号:完成日期:2021 数字钟的设计一、系统功能概述、系统实现的功能:1、具有“时”、“分”、“秒”的十进制数字显示。
2、具有手动校时、校分、校秒的功能。
3、有定时和闹钟功能,能够在设定的时间发出闹铃声。
4、能进行整点报时。
从59分50秒起,每隔2秒发一次低音“嘟”的信号,连续5次,最后一次为高音“嘀”的信号。
、各项设计指标:1、显示部分采用的6个LED显示器,从高位至低位分别显示时、分、秒。
2、有一个设置调闹钟定时时间、正常时间的按钮,选择调的对象。
3、有三个按钮分别调时、分、秒的时间。
4、有一个按钮用作开启/关闭闹铃。
5、另外需要两个时钟信号来给系统提供脉冲信号,使时钟和闹钟正常工作,分别为1Hz、1kHz的脉冲。
二、系统组成以及系统各部分的设计 1、系统结构描述 //要求:系统结构描述,各个模块的功能描述;系统的顶层文件:1、顶层文件图:2、各模块的解释:、7个输入量clk_1khz、clk_1hz、key_slt、key_alarm、sec_set、min_set、hour_set:其中clk_1khz为闹铃模块提供时钟,处理后能产生“嘟”、“嘀”和变化的闹铃声音;clk_1hz为计时模块提供时钟信号,每秒计数一次;key_slt选择设置对象:定时或正常时间;key_alarm能够开启和关闭闹铃;sec_set、min_set、hour_set用于设置时间或定时,与key_slt 相关联。
各按键输出为脉冲信号。
、CNT60_A_SEC模块:这个模块式将clk_1hz这个时钟信号进行60进制计数,并产生一个分钟的触发信号。
该模块能将当前计数值实时按BCD码的格式输出。
将该输出接到两位LED数码后能时时显示秒的状态。
通过alarm_clk可以选择设置对象为时间还是定时值。
在设置时间模式上,key上的一个输入脉冲可以将clk的输入信号加一。
数电课程设计电子钟一、课程目标知识目标:1. 让学生掌握数字电路基础知识,理解电子钟的工作原理。
2. 使学生了解并掌握电子钟各组成部分的功能及相互关系。
3. 培养学生运用数字电路知识分析、设计简单电子系统的能力。
技能目标:1. 培养学生运用所学知识,设计并搭建电子钟的能力。
2. 培养学生运用电子仪器、设备进行测试、调试和故障排查的能力。
3. 培养学生团队协作、沟通表达及解决问题的能力。
情感态度价值观目标:1. 培养学生对电子技术产生兴趣,激发学生学习积极性。
2. 培养学生严谨的科学态度和良好的实验习惯。
3. 培养学生具备创新意识和实践能力,增强学生对我国电子科技发展的自豪感。
课程性质分析:本课程属于电子技术课程,通过设计电子钟,使学生将所学数字电路知识应用于实际项目中,提高学生的实践能力。
学生特点分析:学生具备一定的数字电路基础知识,具有较强的动手能力和探究欲望,对实际应用场景感兴趣。
教学要求:结合学生特点,注重理论与实践相结合,培养学生的动手能力、创新能力和团队协作能力。
通过课程目标分解,实现对学生知识、技能和情感态度价值观的全面提升。
二、教学内容1. 数字电路基础知识回顾:逻辑门、组合逻辑电路、时序逻辑电路等。
2. 电子钟工作原理:振荡器、分频器、计数器、显示电路等。
3. 电子钟各组成部分功能及相互关系:晶振、分频器、秒、分、时计数器、显示驱动等。
4. 电子钟设计流程:需求分析、电路设计、仿真测试、硬件搭建、调试优化等。
5. 教学大纲:(1)第一周:回顾数字电路基础知识,介绍电子钟工作原理及各部分功能。
(2)第二周:分析电子钟各组成部分的相互关系,讲解设计流程。
(3)第三周:分组讨论,确定设计方案,进行电路设计和仿真测试。
(4)第四周:硬件搭建,进行调试和优化,确保电子钟正常工作。
6. 教材章节及内容:(1)第四章:数字电路基础,涉及逻辑门、组合逻辑电路等。
(2)第五章:时序逻辑电路,涉及计数器、寄存器等。
多功能数字钟的电路设计报告一、设计题目:多功能数字钟的电路设计二、设计任务和要求:1)时钟显示功能,能够以十进制显示“时”、“分”、“秒”。
2)具有校准时、分的功能。
3)整点自动报时,在整点时,便自动发出鸣叫声,时长1s。
三、原理电路设计:一个具有计时、校时、报时、显示等基本功能的数字钟主要由振荡器、分频器、计数器、译码器、显示器、校时电路、报时电路等七部分组成。
振荡器产生的信号经过分频器得到秒脉冲,秒脉冲送入计数器计数,计数结果通过“时”、“分”、“秒”译码器译码,并通过显示器显示时间。
数字钟的整机逻辑框图如下:方案比较与选择:(1)振荡器方案二:由集成电路定时器555与RC组成的多谐振荡器作为时间标准信号源。
555与RC组成的多谐振荡器图方案二:采用石英晶体振荡器经过分频得到这一时间脉冲信号。
石英晶体振荡器图方案三:由集成逻辑门与RC组成的时钟源振荡器。
门电路与RC组成的多谐振荡器图方案分析:用555组成的脉冲产生电路: R1=15*103Ω,R2=68*103Ω,C=10μF ,则555所产生的脉冲的为:f=1.43/[(R1+2*R2)*103*10*106=0.947Hz,而设计要求为1Hz,因此其误差为5.3%,在精度要求不是很高的时候可以使用。
石英晶体振荡电路:采用的32768晶体振荡电路,其频率为32.768kHz,然后再经过15分频电路可得到标准的1Hz的脉冲输出.R的阻值,对于TTL门电路通常在0.7~2KΩ之间;对于CMOS门则常在10~100MΩ之间。
由门电路组成的多谐振荡器的振荡周期不仅与时间常数RC有关,而且还取决于门电路的阈值电压VTH,由于VTH容易受到温度、电源电压及干扰的影响,因此频率稳定性较差,只能用于对频率稳定性要求不高的场合。
综上分析,选择方案二,石英晶体振荡电路能够作为最稳定的信号源。
(2)分频器时间标准信号的频率很高,要得到秒脉冲,需要分频电路。
在本设计中选择32.768kHz的石英晶振。
一、设计要求设计一个电子时钟,并使它具有自动运行的功能。
要求:1、用数码管显示:小时、分、秒。
24小时制或12小时制均可。
2、应用所学知识,产生1s的时钟信号,然后经过进位计数器,最后经过数码管示。
3、对使用何种电子元件及数量无要求。
二、设计思路电子时钟主要为秒信号发生器,计数部分和显示部分组成,用石英晶体震荡构成秒信号发生器,将信号输入计数部分,然后显示。
1、时钟信号:用555计时器和74LS161计数器实现1Hz的方波信号2、进位计数:用74LS90实现60,60,24进制,即实现时钟的计时3、显示设置:用数码管接74LS90实现时间的显示三、电子元件1、七段显示器6个2、计数器(74LS161)4个3、计数器(74LS90)6个4、与非门(74LS00)2个5、反相器(74LS04)2个5、石英晶体1个6、电阻、电容、导线等四、流程设计1、信号发生部分石英晶体振荡器的特点是振荡频率准确、电路结构简单、频率易调整、它是电子时钟的核心,用它产生标准频率信号,在由分频器分成秒时间脉冲。
下图为用反向器与石英晶体构成的振荡电路:(反向器与石英晶体构成的振荡电路)石英晶体振荡器选用32768Hz的石英晶体,发生的信号不符合要求,但通过分频,课产生1Hz的秒信号。
因为32768÷16÷16÷16÷8=1,所以用3个16分频和1个8分频就可以使信号达到要求。
用4个16进制计数器74LS161组成分频电路,与晶振部分共同组成信号发生部分。
如下图:(1Hz信号发生器)2、计数部分和显示部分整个计数器电路由秒计数器、分计数器、时计数器串接而成。
计数器之间采用并行接法,将进位输出信号接到置数端实现清零功能。
秒计数器和分计数器各自由一个十进制计数器和一个六进制计数器组成,形成两个六十进制计数器。
时计数器为两个十进制计数器接成的二十四计数器。
(本部分全部用74LS90计数器实现)秒计数器的设计:秒位60进制计数及显示电路四输入的数码管(显示作用)60秒后给分位的时钟信号信号发生器产生的1Hz信号分计数器的设计:分位60进制计数及显示电路四输入的数码管(显示作用)60分后给小时位的时钟信号从秒计数器来的时钟信号小时位采用24小时计时制设计过程:采用芯片为74LS90的2-10进制计数器,数量为两片。
数字电路课程设计报告课程名称数字电路技术基础设计题目数字电子钟的设计所学专业名称电子信息工程班级2008级电信(2)班学号2008210139学生姓名司浩指导教师吕承启2010年6月20 日数字电子技术课程设计报告一、设计目的数字钟是一种用数字电路技术实现时、分、秒计时的装置,与机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更更长的使用寿命,因此得到了广泛的使用。
数字钟从原理上讲是一种典型的数字电路,其中包括了组合逻辑电路和时序电路。
因此,我们此次设计与制做数字钟就是为了了解数字钟的原理,从而学会制作数字钟.而且通过数字钟的制作进一步的了解各种在制作中用到的中小规模集成电路的作用及实用方法.且由于数字钟包括组合逻辑电路和时叙电路.通过它可以进一步学习与掌握各种组合逻辑电路与时序电路的原理与使用方法.二、设计要求(1)设计指标①时间以12小时为一个周期;②显示时、分、秒;③具有校时功能,可以分别对时及分进行单独校时,使其校正到标准时间;④计时过程具有报时功能,当时间到达整点前10秒进行蜂鸣报时;⑤为了保证计时的稳定及准确须由晶体振荡器提供表针时间基准信号。
(2)设计要求①画出电路原理图(或仿真电路图);②元器件及参数选择;(3)制作要求:自行装配和调试,并能发现问题和解决问题。
(4)编写设计报告写出设计与制作的全过程,附上有关资料和图纸,有心得体会。
三、原理框图1.数字钟的构成数字钟实际上是一个对标准频率(1HZ)进行计数的计数电路。
由于计数的起始时间不可能与标准时间(如北京时间)一致,故需要在电路上加一个校时电路,同时标准的1HZ时间信号必须做到准确稳定。
通常使用石英晶体振荡器电路构成数字钟。
(a)数字钟组成框图2.晶体振荡器电路晶体振荡器电路给数字钟提供一个频率稳定准确的32768Hz的方波信号,可保证数字钟的走时准确及稳定。
不管是指针式的电子钟还是数字显示的电子钟都使用了晶体振荡器电路。
数电电子钟课程设计一、课程目标知识目标:1. 学生能理解数字电路基础知识,掌握电子时钟的工作原理;2. 学生能运用所学知识,分析并设计简单的数电电子时钟;3. 学生了解数电电子时钟各组成部分的功能及相互关系。
技能目标:1. 学生能够运用Multisim等软件进行电路仿真,完成电子时钟的设计与测试;2. 学生能够通过小组合作,解决在电子时钟设计过程中遇到的问题;3. 学生能够运用数电知识,进行电路调试,提高实际操作能力。
情感态度价值观目标:1. 学生通过课程学习,培养对数字电路和电子技术的兴趣,激发创新意识;2. 学生在小组合作中,学会沟通与协作,培养团队精神;3. 学生在课程实践中,树立工程意识,提高分析和解决问题的能力。
课程性质:本课程为实践性较强的课程,结合理论知识和实际操作,培养学生的动手能力和创新能力。
学生特点:学生为高中年级学生,具备一定的数电基础,对电子技术有一定了解,具有较强的求知欲和动手能力。
教学要求:教师应注重理论与实践相结合,关注学生的个体差异,提高学生的实践操作能力和创新能力。
在教学过程中,将课程目标分解为具体的学习成果,以便进行有效的教学设计和评估。
二、教学内容本课程教学内容主要包括以下三个方面:1. 数字电路基础知识回顾:- 简单逻辑门电路的功能与原理;- 时序逻辑电路的基本概念和原理;- 数字电路的常用器件及其功能。
2. 电子时钟工作原理及设计:- 电子时钟的基本组成,包括秒脉冲发生器、分频器、计数器、译码器等;- 介绍电子时钟的工作原理,分析各组成部分的功能及相互关系;- 通过实例分析,学习电子时钟的设计方法和步骤。
3. 实践操作与仿真:- 使用Multisim软件进行电子时钟电路的搭建、仿真和调试;- 学生分组进行实际操作,完成电子时钟的设计与测试;- 教师指导学生解决在设计和测试过程中遇到的问题。
教学大纲安排:1. 数字电路基础知识回顾(1课时);2. 电子时钟工作原理及设计(2课时);3. 实践操作与仿真(3课时)。
电子时钟的设计
一、课程设计题目与要求
根据数字电子技术所学理论和知识,进行数字式电子时钟的设计,具体要求如下:
1、基本功能
■设计一个分秒计数器,并具有译码显示功能:其中时为24进制,分秒为60进制;
■小时、分钟及秒可手动校准;
■具有清理功能。
2、扩展功能
■实现整点报时功能,要求报时声响四低一高,报时声响持续一秒,间隔一秒,最后一响结束位整点。
3、按要求完成设计报告要求。
二、设计目的
通过完成设计,巩固所学知识,锻炼分析、解决问题能力,知识综合应用能力,也培养知识应用于工程的意识。
三、电路设计及其工作原理
本电路共有五大模块,分别是:秒脉冲发生器,秒六十进制计数电路、分六十进制计数点、时二十四进制计数电路、手动校准电路、整点报时电路。
现把电路图化整为零,分割成小块,逐步分析:
(一)、秒脉冲发生器
秒脉冲发生器是电子时钟的基本单元,由它产生时钟的基准信号,根据设计题目要求,此电子时钟显示时间最小单元为一秒,可见,基准信号频率应为1HZ。
参考课本可知,由555定时器做成的多谢振荡器能产生稳定的脉冲信号,故有如下设计:秒脉冲发生器逻辑电路图:
其中555时基电路的内部等效电路可简化为如图(如下)所示的等效功能电路,显然,555电路内含两个比较器C1和C2、一个触发器、一个驱动器和一个放电晶体管。
两个比较器分别被电阻R1、R2和R3构成的分压器设定的⅔V cc和⅓V cc。
参考电压所限定。
为进一步理解其电路功能,并灵活应用555集成块,下面简要说明其作用机理。
从图中可见,三个5kΩ电阻组成的分压器,使内部的两个比较器构成一个电平触发器,上触发电平为⅔V cc,下触发电平为⅓V cc。
在5脚控制端外接一个参考电源Vco,可以改变上、下触发电平值。
比较器Cl的输出同或非门l的输入端相接,比较器C2的输出端接到或非门2的输入端。
由于由两个或非门组成的RS触发器必须用负极极性信号触发,因此,加到比较器Cl同相端6脚的触发信号,只有当电位高于反相端5脚的电位时,RS触发器才翻转;而加到比较器C2反相端2脚的触发信号,只有当电位低于C2同相端的电位⅓V cc 时,RS触发器才翻转。
通过上面对等效功能电路和CA555时基电路的内部等效电路的分析,可得出555各功能端的真值表。
555定时器内部电路图:
555电路引脚功能:
其工作原理如下:
①接通电源后,Vcc经R1、R2给电容C充电。
由于电容
上电压不能
跃变,电源刚接通时,电容C上的电压小于1/3Vcc,TRI(2端)和THR(6端)电平小于1/3Vcc,555定时器内部比较器C1输出高电平,C2输出低电平,即RD=1,SD=0,基本触发器置1,输出端输出端OUT(3端)为高电平,同时内部晶体管TD截止,此时电容继续充电。
②当电容C电压达到1/3Vcc时,C1, C2均输出高电平,RS 触发器保持原状态,输出端OUT(3端)为高电平电容C继续充电。
③当电容C上电压达到2/3Vcc时,C1输出低电平,C2输
出高电平,触发器置零,此时555定时器内部晶体管TD导通,输出端输出端OUT(3端)为低电平,DIS(7端)接地,电容C通
过R2、晶体管放电,其放电时间T1=0.7*R2C。
④当电容放电直至其电压Vc降低到1/3Vcc时,由于TRI(2
端)和THR(6端)电平略小于1/3Vcc,导致C1输出高电平,C2
输出低电平,RD=1,SD=0,基本触发器置1,输出端Q为高电
平,同时内部晶体管TD截止,此时电容又重复充电。
⑤如此反复,电容C反复充放电,于是在OUT(3端)输出
一个脉冲波。
由电容C的充电时间T2=0.7*(R1+R2)C与放电时
间T1=0.7*R2C可以计算出该脉冲的周期T=0.7*(2*R1+R2)C。
下面是便是Vc和输出端OUT(3端)电平的波形:
把元件参数带入周期公式,可求出该输出脉冲的周期恰好是一秒。
(二)、秒计时六十进制电路
该电路模块使用了两块74160集成芯片,用于显示秒的高
位和低位,下面是芯片74160的功能表:
该模块逻辑电路图如下:
电路分析如下:
①低位芯片
由于清零功能端CLR’、预置端LOAD、使能端ENP、ENT端接
高电平,所以该低位芯片计数,一个上升沿到来计数就加一,
当计数达到九时,进位端RCO为一,但这时高位片不能马上
计数,需待下一个上升沿才能进位,所以运用到了图中偏右
的D触发器。
其作用是让RCO端输出的信号延迟一秒钟,即
让低位片从九跳变为零时的一瞬间让高位片进一位。
②高位芯片
当低位发出的进位脉冲到来时,高位片计数,图中偏右的的
与非门输入端为高位片的QC与QA,其作用是使高位片输出为
0101(即5)时,使预置端为0,此时,由于同步置数的原因,
状态5能保持一个进位脉冲,当显示为59时,过一秒,进位
脉冲到来时,QD、QC、QB、QA就同步置数为0。
③秒进分脉冲
图中偏左的与门作用是当显示为59时,使偏左的D触发器输
入为一,同时,该触发器使输出延迟一秒,即在显示从59跳
变为00时进位脉冲才能输入到分六十进制计时模块。
(三)、分计时六十进制电路
该电路原理与秒计时六十进制电路原理一致,不再赘述。
(四)、小时二十四进制计数电路
该电路使用的也是两块74160芯片,分别用于显示小时的高位和地位,由于该电路有至24时异步清零的功能,所以其
原理与秒、分计时器略有不同,该模块逻辑电路图如下:
①计数
当小时进位脉冲到来时,低位片开始计数,在低位显示为1到8时由于和高位片使能端ENP、ENT链接的低位RCO端为0,所以此时不允许高位片计数,当低位显示为9时,RCO输出为1,此时,高位片开始允许计数,但要等到下一个脉冲,于是在低位片从9跳变为0时,高位片也计数一次,但又马上停止计数。
②清零
当逻辑变为24的一瞬间时,高位片的QB为1,低位片QC
为1,经过逻辑与非后,输入到高位和地位的异步清零端CLR’,
由于异步清零非常迅速,所以状态24是非常短暂的,也即状
态24与状态00完全重合,故实现了24进制。
(五)、手动校准电路
该模块很简单,由几个简单的逻辑门和数个开关机及电源构成,其逻辑电路图如下:
图中偏下的开关闭合用于产生手动校准脉冲信号,偏上的开关用于选择计时脉冲或手动校准脉冲,该电路图的逻辑表达式为
CP=M*CP1+M`*CP2,当其闭合时,计时脉冲被屏蔽,输出为校准脉冲信号,当其断开时,校准脉冲信号被屏蔽,输出为计时脉冲。
该课程设计中使用了三个这样的电路,分别用于校准时分秒。
以下便是调校出来的时间:
(六)、整点报时电路
该电路设计简单,只用到了一个D触发器,一个与门,一个或门和一个灯泡。
当时进位脉冲到来时或门输出为上升沿,D触发器D输入端为高电平,于是触发器状态置为1,灯泡亮,时进位脉冲结束后,D输入端为0,但由于暂时没有上升沿到来,触发器保持原状态,灯泡持续明亮。
当秒位跳变为03时,由于QA、QB都为1,于是在与门输出端产生一个脉冲,也就是D触发器迎来第二个上升沿,但此时由于没有时进位脉冲,触发器D输入端电平为低,所以此时触发器置零,灯泡灭,可见,灯泡正好在整点事亮了2秒钟。
综上可见,该课程设计完成了时分秒显示、手动校准的基本功能
和整点报时的拓展功能。
需要指出的是,手动校准便有数据清零的功能。
四、元件明细表
五、设计总结
在电路设计中,我遇到了很多问题,总是有那样这样的问题,不过老师给予我们很多的指导和启迪,比如说我在设计秒显示六十进制模块时,低位的秒跳到9就进1了,这是因为高位的脉冲直接取自低位的RCO进位端,当低位为9时,高位片就受到一个上升沿,就计数了。
但如果把低位片的进位条件改成0000的话,虽然解决的到9就进位的问题,但随之带来的问题是,电路一开始运行,变显示的是10。
所以这样是行不通的。
后来听到老师说延时这个词,我想到触发器有这个功能,于是试着用不同的触发器来延迟进位信号1秒钟,果然,通过不断尝试我用
D触发器实现了这个功能。
后来在设计小时24进制电路的时候,也遇到了不能正常清零的功能,我开始使用的是74160计数器同步置数的这个功能,但当跑到23时,虽然低位能清零,但高位还是2,开始始终想不通,为什么电路会在20到23直接循环,后来我参考同学的电路后,才发现,原来虽然同步置数LOAD端在低位清零时时0,但由于高位此时并没有上升沿到来,所以高位是置0不了的!
这样的问题很多,后来通过不断的尝试和努力,终于实现了这个完整的电路。
通过这次课程设计,我懂得了,电路设计是要不断试验的,错误和问题是无可避免的,但通过不断尝试,这些问题是可以一一化解的!其实,你在设计电路的同时也在摸索试验与学习,虽然途中有些问题真的让人匪夷所思,让人头疼,但当你克服这些种种问题,把完整的正确的电路图“拿在手里”时,你还是会很欣慰的!这就是你的成果!
六、设计总图。