2019年高中数学 第三章 空间向量与立体几何 课时作业(十六)空间向量及其加减运算 新人教B版选修
- 格式:doc
- 大小:547.50 KB
- 文档页数:6
空间向量与立体几何一.空间向量及其运算1.空间向量及有关概念(1)共线向量定理:如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量。
a 平行于b 记作a ∥b。
推论:如果l 为经过已知点A 且平行于已知非零向量a的直线,那么对任一点O ,点P 在直线l 上的充要条件是存在实数t ,满足等式 A O P O =a t+①其中向量a叫做直线l 的方向向量。
在l 上取a AB =,则①式可化为.)1(OB t OA t OP +-=②当21=t 时,点P 是线段AB 的中点,则 ).(21OB OA OP += ③①或②叫做空间直线的向量参数表示式,③是线段AB 的中点公式。
(2)向量与平面平行:如果表示向量a 的有向线段所在直线与平面α平行或a在α平面内,我们就说向量a 平行于平面α,记作a ∥α。
注意:向量a∥α与直线a ∥α的联系与区别。
共面向量:我们把平行于同一平面的向量叫做共面向量。
共面向量定理:如果两个向量a 、b 不共线,则向量p与向量a 、b 共面的充要条件是存在实数对x 、y ,使.b y a x p+=①推论:空间一点P 位于平面MAB 内的充要条件是存在有序实数对x 、y ,使,MB y MA x MP +=④或对空间任一定点O ,有.MB y MA x OM OP ++=⑤在平面MAB 内,点P 对应的实数对(x, y )是唯一的。
①式叫做平面MAB 的向量表示式。
又∵.,OM OA MA -=.,OM OB MB -=代入⑤,整理得.)1(OB y OA x OM y x OP ++--= ⑥由于对于空间任意一点P ,只要满足等式④、⑤、⑥之一(它们只是形式不同的同一等式),点P 就在平面MAB 内;对于平面MAB 内的任意一点P ,都满足等式④、⑤、⑥,所以等式④、⑤、⑥都是由不共线的两个向量MA 、MB (或不共线三点M 、A 、B )确定的空间平面的向量参数方程,也是M 、A 、B 、P 四点共面的充要条件。
3.1.5 空间向量的数量积1.理解空间向量的夹角的概念,理解空间向量的数量积的概念、性质和运算律.(重点) 2.掌握空间向量的数量积及应用.(重点、难点) 3.理解向量夹角与直线所成角的区别.(易错点)[基础·初探]教材整理1 空间向量的夹角阅读教材P 91~P 92上半部分,完成下列问题. a ,b 是空间两个非零向量,过空间任意一点O ,作OA→=a ,OB→=b ,则∠AOB 叫做向量a 与向量b 的夹角,记作〈a ,b 〉,a ,b的范围是[0,π],如果〈a ,b 〉=π2,则称a 与b 互相垂直,记作a ⊥b .如图3-1-25,在正方体ABCD -A 1B 1C 1D 1中,求向量BC1→与AC →夹角的大小.图3-1-25【解】 ∵AD1→=BC1→,∴∠CAD 1的大小就等于〈BC1→,AC →〉. ∵△ACD 1为正三角形,∴∠CAD 1=π3,∴〈BC1→,AC →〉=π3. ∴向量BC1→与AC →夹角的大小为π3. 教材整理2 空间向量的数量积阅读教材P 92例1以上的部分,完成下列问题. 1.数量积的定义设a ,b 是空间两个非零向量,我们把数量|a ||b |·cos 〈a ,b 〉叫做向量a ,b 的数量积,记作a ·b ,即a ·b =|a ||b |cos 〈a ,b 〉.规定:零向量与任一向量的数量积为0. 2.数量积的性质 (1)cosa ,b=a·b|a||b|(a ,b 是两个非零向量).(2)a ⊥b ⇔a·b =0(a ,b 是两个非零向量). (3)|a |2=a·a =a 2. 3.数量积的运算律 (1)a·b =b·a ;(2)(λa )·b =λ(a·b )(λ∈R ); (3)a ·(b +c )=a·b +a·c.1.判断(正确的打“√”,错误的打“×”) (1)若a·b =0,则a =0或b =0.( ) (2)在△ABC 中,〈AB →,BC →〉=∠B .( ) (3)两个向量的数量积是数量,而不是向量.( )(4)若a ,b 均为非零向量,则a·b =|a||b |是a 与b 共线的充要条件.( ) 【答案】 (1)× (2)× (3)√ (4)×2.已知|a |=2,|b |=22,a·b =-22,则a 与b 的夹角为________.【导学号:09390075】【解析】 cos 〈a ,b 〉=a·b |a||b|=-222×22=-22,又∵〈a ,b 〉∈[0,π],∴〈a ,b 〉=3π4.【答案】 3π4教材整理3 数量积的坐标表示阅读教材P 93~P 94例3以上的部分,完成下列问题. 1.若a =(x 1,y 1,z 1),b =(x 2,y 2,z 2),则 (1)a ·b =x 1x 2+y 1y 2+z 1z 2.(2)a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2+z 1z 2=0(a ≠0,b ≠0). (3)|a |=a·a =x21+y21+z21. (4)cos 〈a ,b 〉=x1x2+y1y2+z1z2x21+y21+z21·x22+y22+z22(a ≠0,b ≠0).2.空间两点间距离公式设A (x 1,y 1,z 1),B (x 2,y 2,z 2),则AB =错误!.1.若a =(-1,0,2),b =(x ,y,1),且a ⊥b ,则x =______. 【解析】 ∵a ⊥b ,∴a·b =-x +2=0,解得x =2. 【答案】 22.与向量a =(1,2,2)方向相同的单位向量是________.【解析】 |a |=12+22+22=3,故与a 方向相同的单位向量是a |a|=13(1,2,2)=⎝ ⎛⎭⎪⎫13,23,23.【答案】 ⎝ ⎛⎭⎪⎫13,23,23[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问1: 解惑: 疑问2: 解惑: 疑问3: 解惑:[小组合作型]已知长方体ABCD -A 1B 1C 1D 1中,AB =AA 1=2,AD =4,E 为侧面AA 1B 1B 的中心,F 为A 1D 1的中点.求下列向量的数量积.(1)BC →·ED1→; (2)BF →·AB1→.【精彩点拨】 法一(基向量法):BC →与ED1→,BF →与AB1→的夹角不易求,可考虑用向量AB →,AD →,AA1→表示向量BC →,ED1→,BF →,AB1→,再求结论即可.法二(坐标法):建系→求相关点坐标→向量坐标→数量积. 【自主解答】法一(基向量法):如图所示,设AB →=a ,AD →=b ,AA1→=c ,则|a |=|c |=2,|b |=4,a ·b =b ·c =c ·a =0.(1)BC →·ED1→=BC →·(EA1→+A1D1→)=b ·错误!=|b |2=42=16.(2)BF →·AB1→=(BA1→+A1F →)·(AB →+AA1→)=⎝ ⎛⎭⎪⎫c -a +12b ·(a +c )=|c |2-|a |2=22-22=0.法二(坐标法):以A 为原点建立空间直角坐标系,如图所示,则B (2,0,0),C (2,4,0),E (1,0,1),D 1(0,4,2),F (0,2,2),A (0,0,0),B 1(2,0,2),∴BC →=(0,4,0),ED1→=(-1,4,1),BF →=(-2,2,2),AB1→=(2,0,2), (1)BC →·ED1→=0×(-1)+4×4+0×1=16. (2)BF →·AB1→=-2×2+2×0+2×2=0.解决此类问题的常用方法1.基向量法:首先选取基向量,然后用基向量表示相关的向量,最后利用数量积的定义计算.注意:基向量的选取要合理,一般选模和夹角都确定的向量.2.坐标法:对于建系比较方便的题目,采用此法比较简单,只需建系后找出相关点的坐标,进而得向量的坐标,然后利用数量积的坐标公式计算即可.[再练一题]1.在上述例1中,求EF →·FC1→.【解】 法一:EF →·FC1→=错误!·错误!=错误!(-a +b +c )·错误! =-12|a |2+14|b |2=2.法二:以A 为原点建立空间直角坐标系,则E (1,0,1),F (0,2,2),C 1(2,4,2),∴EF →=(-1,2,1),FC1→=(2,2,0),∴EF →·FC1→=-1×2+2×2+1×0=2.如图3-1-26所示,在平行六面体ABCD -A ′B ′C ′D ′中,AB =4,AD =3,AA ′=5,∠BAD =90°,∠BAA ′=∠DAA ′=60°.(1)求AC ′的长;(2)求AC′→与AC →的夹角的余弦值.图3-1-26【精彩点拨】 求线段长,要利用向量的方法求解,关键是找到表示AC ′的基向量,只要模与夹角均可知,则问题可求解,求夹角问题则是向量数量积的逆用.【自主解答】 (1)∵AC′→=AB →+AD →+AA′→, ∴|AC′→|2=(AB →+AD →+AA′→)2 =|AB →|2+|AD →|2+|AA′→|2+2(AB →·AD →+AB →·AA′→+AD →·AA′→) =42+32+52+2(0+10+7.5)=85. ∴|AC′→|=85.(2)法一:设AC′→与AC →的夹角为θ,∵ABCD 是矩形,∴|AC →|=32+42=5. 由余弦定理可得cos θ=AC′2+AC2-CC′22AC′·AC =85+25-252·85·5=8510. 法二:设AB →=a ,AD →=b ,AA′→=c , 依题意得AC′→·AC →=(a +b +c )·(a +b ) =a 2+2a ·b +b 2+a ·c +b ·c=16+0+9+4×5×cos 60°+3×5×cos 60° =16+9+10+152=852,∴cos θ=AC′→·AC →|AC′→|·|AC →|=85285×5=8510.1.求两点间的距离或某线段的长度,就是把此线段用向量表示,然后用|a |2=a ·a ,即|a |=a·a 通过向量运算求|a |.2.对于空间向量a ,b ,有cos 〈a ,b 〉=a·b|a||b|.利用这一结论,可以较方便地求解异面直线所成角的问题,由于向量的夹角的取值范围为[0,π],而异面直线所成的角的取值范围为⎝ ⎛⎦⎥⎤0,π2,故〈a ,b 〉∈⎝ ⎛⎦⎥⎤0,π2时,它们相等;而当〈a ,b 〉∈⎝⎛⎭⎪⎫π2,π时,它们互补.[再练一题]2.如图3-1-27,正四面体ABCD 中,M ,N 分别为棱BC ,AB 的中点,设AB→=a ,AC→=b ,AD →=c .(1)用a ,b ,c 分别表示向量DM →,CN →; (2)求异面直线DM 与CN 所成角的余弦值.图3-1-27【解】 (1)DM →=12(DB →+DC →)=12[(AB →-AD →)+(AC →-AD →)] =12[(a -c )+(b -c )]=12(a +b -2c ), CN →=12(CB →+CA →)=12[(AB →-AC →)-AC →] =12[(a -b )-b ]=12(a -2b ).(2)设棱长为1,即|a |=|b |=|c |=1且〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=π3,则|DM →|=|CN →|=32. 又DM →·CN →=14(a +b -2c )·(a -2b ) =14(a 2+a ·b -2a ·c -2a ·b -2b 2+4b ·c ) =-18,∴cos 〈DM →,CN →〉=DM →·CN →|DM →||CN →|=-1832×32=-16.∴异面直线DM 与CN 所成角的余弦值为16.已知(1)若a ∥b ,分别求λ与m 的值;(2)若|a |=5,且与c =(2,-2λ,-λ)垂直,求a .【精彩点拨】 利用向量平行、垂直、向量的模列方程组求解. 【自主解答】 (1)由a ∥b ,得 (λ+1,1,2λ)=k (6,2m -1,2), ∴错误!解得错误! ∴实数λ=15,m =3.(2)∵|a |=5,且a ⊥c , ∴错误!化简,得⎩⎨⎧5λ2+2λ=3,2-2λ2=0,解得λ=-1.因此,a =(0,1,-2).向量平行与垂直问题主要有两种题型1.平行与垂直的判断2.利用平行与垂直求参数或其他问题,即平行与垂直的应用.[再练一题]3.如图3-1-28所示,在直三棱柱ABC -A 1B 1C 1中,CA =CB =1,∠BCA =90°,棱AA 1=2,M 是A 1B 1的中点.求证:A 1B ⊥C 1M .图3-1-28【证明】 如图所示,以CA →,CB →,CC1→为正交基底,建立空间直角坐标系C -xyz .依题意得B (0,1,0),A 1(1,0,2),错误!,2),B 1(0,1,2),则M 错误!,错误!,2,于是错误!=(-1,1,-2),C1M →=⎝ ⎛⎭⎪⎫12,12,0,∴A1B →·C1M →=-12+12+0=0,∴A1B →⊥C1M →,故A 1B ⊥C 1M .[探究共研型]探究1 【提示】 对于三个不为0的实数a ,b ,c ,若ab =ac ,则b =c .对于三个非零向量a ,b ,c ,若a ·b =a ·c ,不能得出b =c ,即向量不能约分.如图,在三棱锥S -ABC 中,SC ⊥平面ABC ,则SC ⊥AC ,SC ⊥BC .设CS →=a ,CA →=b ,CB →=c ,则a ·b =a ·c =0,但b ≠c .探究2 数量积运算是否有除法?【提示】 数量积的运算不满足除法,即对于向量a ,b ,若a ·b =k ,不能得到a =k b ⎝ ⎛⎭⎪⎫或b =k a ,例如当非零向量a ,b 垂直时,a ·b =0,但a =0b 显然是没有意义的.探究3 数量积运算满足结合律吗?【提示】 由定义得(a ·b )c =(|a ||b |cos 〈a ,b 〉)c ,即(a ·b )c =λ1c ;a (b ·c )=a (|b ||c |cos 〈b ,c 〉),即a (b ·c )=λ2a ,因此,(a ·b )c 表示一个与c 共线的向量,而a (b ·c )表示一个与a 共线的向量,而a 与c 不一定共线,所以(a ·b )c =a (b ·c )不一定成立.如图3-1-29,已知正四面体OABC 的棱长为1.求: (1)OA →·OB →;(2)(OA →+OB →)·(CA →+CB →); (3)|OA →+OB →+OC →|.图3-1-29【精彩点拨】 在正四面体OABC 中,OA →,OB →,OC →的模和夹角都已知,因此可以先把相关向量用OA →,OB →,OC →线性表示,再结合空间向量数量积的运算律与运算性质求解即可.【自主解答】 在正四面体OABC 中,|OA →|=|OB →|=|OC →|=1, 〈OA →,OB →〉=〈OA →,OC →〉=〈OB →,OC →〉=60°.(1)OA →·OB →=|OA →||OB →|·cos ∠AOB =1×1×cos 60°=12. (2)(OA →+OB →)·(CA →+CB →)=(OA →+OB →)·(OA →-OC →+OB →-OC →) =(OA →+OB →)·(OA →+OB →-2OC →)=OA2→+2OA →·OB →-2OA →·OC →+OB →2-2OB →·OC →=12+2×12-2×1×1×cos 60°+12-2×1×1×cos 60° =1+1-1+1-1=1. (3)|OA →+OB →+OC →|=错误! =错误!=错误!. [再练一题]4.已知a +3b 与7a -5b 垂直,且a -4b 与7a -2b 垂直,则〈a ,b 〉=________.【导学号:09390076】【解析】 由条件知,(a +3b )·(7a -5b )=7|a |2+16a·b -15|b |2=0, 及(a -4b )·(7a -2b )=7|a |2+8|b |2-30a·b =0. 两式相减,得46a·b =23|b |2,∴a·b =12|b |2.代入上面两个式子中的任意一个,即可得到|a |=|b |. ∴cos 〈a ,b 〉=a·b |a||b|=12|b|2|b|2=12.∵〈a ,b 〉∈[0°,180°],∴〈a ,b 〉=60°. 【答案】 60°[构建·体系]1.已知向量a =(4,-2,-4),b =(6,-3,2),则(a +b )·(a -b )的值为________.【解析】 ∵a +b =(10,-5,-2),a -b =(-2,1,-6),∴(a +b )·(a -b )=-20-5+12=-13.【答案】 -132.已知向量a =(2,-3,0),b =(k,0,3).若a ,b 成120°的角,则k =________.【解析】 cos 〈a ,b 〉=a·b |a|·|b|=2k 139+k2=-12,得k =-39. 【答案】 -393.如图3-1-30,已知正三棱柱ABC -A 1B 1C 1的各条棱长都相等,M 是侧棱CC 1的中点,则异面直线AB 1和BM 所成的角的大小是________.图3-1-30【解析】 AB1→=AB →+BB1→,BM →=BC →+CM →,设棱长为1.又∵AB1→·BM →=(AB →+BB1→)(BC →+CM →)=AB →·BC →+BB1→·BC →+AB →·CM →+BB1→·CM →=-12+0+0+12=0,∴cos 〈AB1→,BM →〉=AB1→·BM →|AB1→|·|BM →|=0,∴AB1→⊥BM →,∴直线AB 1与BM 所成的角为90°.【答案】 90°4.已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →·BD →=________.【解析】 ∵AE →=AD →+DE →=AD →+12AB →,BD →=AD →-AB →,∴AE →·BD →=⎝ ⎛⎭⎪⎫AD →+12AB →·(AD →-AB →)=AD →2-AD →·AB →+12AB →·AD →-12AB →2=4-0+0-2=2.【答案】 25.如图3-1-31所示,在空间四边形OABC 中,OA =8,AB =6,AC =4,BC =5,∠OAC =45°,∠OAB =60°,求OA 与BC 所成角的余弦值.图3-1-31【解】 由题意知BC →=AC →-AB →,∴OA →·BC →=OA →·AC →-OA →·AB →=|OA →||AC →|cos 〈OA →,AC →〉-|OA →||AB →|cos 〈OA →,AB →〉=8×4×cos 135°-8×6×cos 120°=24-162,∴cos 〈OA →,BC →〉=OA →·BC →|OA →||BC →|=24-1628×5=3-225,∴OA 与BC 所成角的余弦值为3-225.我还有这些不足:(1)(2)我的课下提升方案:(1)(2)。
高中数学《空间向量与立体几何》练习题(含答案解析)一、单选题1.在空间直角坐标系Oxyz 中,与点()1,2,1-关于平面xOz 对称的点为( )A .()1,2,1--B .()1,2,1-C .()1,2,1---D .()1,2,1--2.在空间直角坐标系内,平面α经过三点(1,0,2),(0,1,0),(2,1,1)A B C -,向量(1,,)n λμ=是平面α的一个法向量,则λμ+=( )A .7-B .5-C .5D .73.已知点()3,1,0A -,若向量()2,5,3AB =-,则点B 的坐标是( ).A .()1,6,3-B .()5,4,3-C .()1,6,3--D .()2,5,3-4.如图,O A B '''△是水平放置的OAB 的直观图,6A O ''=,2''=B O ,则OAB 的面积是( )A .6B .12C .D .5.平面α的一个法向量是1(2n =,1-,1)3,平面β的一个法向量是(3m =-,6,2)-,则平面α与平面β的关系是( )A .平行B .重合C .平行或重合D .垂直6.已知某圆柱的内切球半径为92,则该圆柱的侧面积为( ) A .492π B .49π C .812π D .81π7.O 、A 、B 、C 为空间四点,且向量OA 、OB 、OC 不能构成空间的一个基底,则下列说法正确的是( ) A .OA 、OB 、OC 共线B .OA 、OB 共线C .OB 、OC 共线D .O 、A 、B 、C 四点共面8.在正方体1111ABCD A B C D -中,E 为线段11A B 的中点,则异面直线1D E 与1BC 所成角的余弦值为( )A B C D9.已知△ABC O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )AB .32C .1D 10.在正方体1111ABCD A B C D -中,P ,Q 分别为AB ,CD 的中点,则( )A .1AB ⊥平面11A BCB .异面直线1AB 与11AC 所成的角为30° C .平面11ABD ∥平面1BC Q D .平面1B CD ⊥平面1B DP二、填空题11.已知角α和角β的两边分别平行且一组边方向相同,另一组边的方向相反,若α=45°,则β=________. 12.若直线l 的方向向量(),1,2m x =-,平面α的法向量()2,2,4n =--,且直线l ⊥平面α,则实数x 的值是______.13.词语“堑堵”、“阳马”、“鳖臑”等出现自中国数学名著《九章算术・商功》,是古代人对一些特殊锥体的称呼.在《九章算术・商功》中,把四个面都是直角三角形的四面体称为“鳖臑”.现有如图所示的“鳖臑”四面体P ABC ,其中PA ⊥平面ABC ,2PA AC ==,BC =则四面体P ABC 的外接球的表面积为______.14.设空间向量,,i j k 是一组单位正交基底,若空间向量a 满足对任意的,,x y a xi y j --的最小值是2,则3a k +的最小值是_________.三、解答题15.如图,在三棱柱111ABC A B C 中,点D 是AB 的中点.(1)求证:1AC △平面1CDB .(2)若1AA ⊥平面ABC ,AC BC =,求证:CD ⊥平面11ABB A .16.如图,空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.求证:(1)EH △平面BCD ;(2)BD △平面EFGH .17.如图,在四棱锥P ABCD -中,PD ⊥平面ABCD ,底面ABCD 是正方形,AC 与BD 交于点O ,E 为PB 的中点.(1)求证:EO平面PDC ;(2)求证:平面PAC ⊥平面PBD .18.如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.参考答案与解析1.A【分析】根据空间直角坐标系的对称点坐标特点直接求解即可.【详解】解:因为点()1,2,1-,则其关于平面xOz 对称的点为()1,2,1--.故选:A.2.D【解析】求出(1,1,2)AB =--,(2,0,1)BC =-,利用与(1,,)n λμ=数量积为0,求解即可.【详解】(1,1,2)AB =--,(2,0,1)BC =-120n AB λμ⋅=-+-=20n BC μ⋅=-+=可得2μ=,5λ=,7λμ+=故选:D3.B【分析】利用空间向量的坐标运算求得B 的坐标.【详解】设O 为空间坐标原点,()()()3,1,02,5,35,4,3OB OA AB =+=-+-=-.故选:B4.B【分析】由直观图和原图的之间的关系,和直观图画法规则,还原OAB 是一个直角三角形,其中直角边6,4OA OB ==,直接求解其面积即可.【详解】解:由直观图画法规则,可得OAB 是一个直角三角形,其中直角边6,4OA OB ==, △11641222OAB S OA OB =⋅=⨯⨯=. 故选:B .5.C【分析】由题设知6m n =-,根据空间向量共线定理,即可判断平面α与平面β的位置关系. 【详解】平面α的一个法向量是1(2n =,1-,1)3,平面β的一个法向量是(3m =-,6,2)-, ∴6m n =-,∴平面α与平面β的关系是平行或重合.故选:C .6.D 【分析】由题意可得该圆柱底面圆的半径为92,圆柱的高为9,从而可求出其侧面积 【详解】由题意得,该圆柱底面圆的半径为92,圆柱的高为9, 所以该圆柱的侧面积为929812ππ⨯⨯=. 故选:D7.D【解析】根据向量OA 、OB 、OC 不能构成空间的一个基底知向量共面,即可得出结论.【详解】因为O 、A 、B 、C 为空间四点,且向量OA 、OB 、OC 不能构成空间的一个基底,所以OA 、OB 、OC 共面,所以O 、A 、B 、C 四点共面,故选:D8.B【分析】连接1AD ,AE ,得到11//AD BC ,把异面直线1D E 与1BC 所成角转化为直线1D E 与1AD 所成角,取1AD 的中点F ,在直角1D EF 中,即可求解.【详解】在正方体1111ABCD A B C D -中,连接1AD ,AE ,可得11//AD BC ,所以异面直线1D E 与1BC 所成角即为直线1D E 与1AD 所成角,即1AD E ∠为异面直线1D E 与1BC 所成角,不妨设12AA =,则1AD =1D E AE =取1AD 的中点F ,因为1D E AE =,所以1EF AD ⊥,在直角1D EF中,可得111cos D F AD E D E ∠==. 故选:B.9.C【分析】根据球O 的表面积和ABC 的面积可求得球O 的半径R 和ABC 外接圆半径r ,由球的性质可知所求距离d =【详解】设球O 的半径为R ,则2416R ππ=,解得:2R =.设ABC 外接圆半径为r ,边长为a ,ABC212a ∴=,解得:3a =,2233r ∴==∴球心O 到平面ABC 的距离1d =.故选:C.【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.10.D【分析】A 项反证法可得;B 项由平移法计算异面直线所成角;C 项由面面平行的判断和性质可得结果;D 项建立空间直角坐标系可得结果.【详解】对于选项A ,假设1AB ⊥面11A BC ,则111AB AC ⊥,这与已知1AB 与11A C 不垂直相矛盾,所以假设不成立.故选项A 错误; 对于选项B ,连接1DC ,1DA ,因为11AB DC ∥,所以11DC A ∠为异面直线1AB 与11A C 所成的角或补角,又因为△11AC D 为等边三角形,所以1160DC A ∠=︒,故选项B 错误;对于选项C ,因为11B D BD ∥,11AD BC ∥,由面面平行的判定定理可得平面11AB D ∥平面1BDC ,而平面1BQC 与平面1BDC 相交,所以平面11AB D 与平面1BC Q 也相交,故选项C 错误;对于选项D ,以D 为坐标原点,DA ,DC ,1DD 所在的直线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,设正方体的棱长为1,则()0,0,0D ,()11,1,1B ,()0,1,0C ,11,,02P ⎛⎫ ⎪⎝⎭,可得()11,1,1DB =,()0,1,0DC =,11,,02DP ⎛⎫= ⎪⎝⎭,设平面1B CD 的法向量为()1,,n x y z =, 则11100n DB x y z n DC y ⎧⋅=++=⎪⎨⋅==⎪⎩,可取1x =,则0y =,1z =-,即()11,0,1n =-, 设平面1B DP 的法向量为()2,,b c n a =,则2120102n DB a b c n DP a b ⎧⋅=++=⎪⎨⋅=+=⎪⎩, 可取1a =,则2b =-,1c =,可得平面1B DP 的一个法向量为()21,2,1n =-,由121010n n ⋅=+-=,所以12n n ⊥,即平面1B CD ⊥平面1B DP ,故选项D 正确. 故选:D.11.135°【分析】首先根据题意将图画出,然后根据α=45°,AB △CD ,可得180BCD α︒∠=-,进而得出结论.【详解】解:如图,由题意知α=45°,AB △CD ,180135BCD α︒︒∴∠=-=,即135β︒=.故答案为:135°.【点睛】本题考查了平行线的性质,结合图会使问题变得简单,属于基础题.12.-1【分析】利用法向量的定义和向量共线的定理即可.【详解】直线l 的方向向量(),1,2m x =-,平面α的法向量()2,2,4n =--,直线l ⊥平面α, 必有//m n ,即向量m 与向量n 共线,m n λ∴= ,△11222x -==--,解得=1x -; 故答案为:-1.13.16π 【分析】确定外接球球心求得球半径后可得表面积.【详解】由于PA ⊥平面ABC ,因此PA 与底面上的直线,,AC AB BC 都垂直,从而AC 与AB 不可能垂直,否则PBC 是锐角三角形,由于<AC BC ,因此有AC BC ⊥, 而PA 与AC 是平面PAC 内两相交直线,则BC ⊥平面PAC ,PC ⊂平面PAC ,所以BC PC ⊥, 所以PB 的中点O 到,,,P A B C 四个点的距离相等,即为四面体P ABC 的外接球球心.2222222222216PB PA AB PA AC BC =+=++=++=,4PB =, 所以所求表面积为224()42162PB S πππ=⨯=⨯=. 故答案为:16π.14.1【分析】以,i j 方向为,x y 轴,垂直于,i j 方向为z 轴建立空间直角坐标系,根据条件求得a 坐标,由3a k +的表达式即可求得最小值.【详解】以,,i j k 方向为,,x y z 轴建立空间直角坐标系,则()1,0,0i =,()0,1,0j =,()0,0,1k = 设(),,a r s t = 则(a xi y j r x --=-当,r x s y ==时a xi y j --的最小值是2,2t ∴=±取(),,2a x y = 则()3,,5a k x y += 23a k x ∴+=+又因为,x y 是任意值,所以3a k +的最小值是5.取(),,2a x y =- 则()3,,1a k x y += 23a k x ∴+=+又因为,x y 是任意值,所以3a k +的最小值是1.故答案为:1.15.(1)证明见解析;(2)证明见解析.【分析】(1)连接1BC ,交1B C 于点E ,连接ED ,用中位线证明1ED AC ∥即可;(2)证明CD △AB ,CD △1AA 即可.【详解】(1)连接1BC ,交1B C 于点E ,连接.ED△111ABC A B C 是三棱柱,△四边形11BCC B 为平行四边形,△E 是1BC 的中点.△点D 是AB 的中点,△ED 是1ABC 的中位线,△1ED AC ∥,又ED ⊂平面1CDB ,1AC ⊄平面1CDB ,△1AC △平面1CDB .(2)△1AA ⊥平面ABC ,AB ⊂平面ABC ,△1AA AB ⊥,△AC BC =,AD BD =,△CD AB ⊥,△1AA AB A =,1,AA AB ⊂平面11ABB A ,△CD ⊥平面11ABB A .16.(1)见解析(2)见解析【分析】(1)推导出EH △BD ,由此能证明EH △平面BCD ;(2)由BD △EH ,由此能证明BD △平面EFGH .【详解】(1)△EH 为△ABD 的中位线,△EH △BD .△EH △平面BCD ,BD △平面BCD ,△EH △平面BCD ;(2)△FG 为△CBD 的中位线,△FG △BD ,△FG △EH ,△E 、F 、G 、H 四点共面,△BD △EH ,BD △平面EFGH ,EH △平面EFGH ,△BD △平面EFGH .【点睛】本题考查线面平行的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查化归与转化思想,是中档题.17.(1)证明见解析(2)证明见解析【详解】(1)证明:△四边形ABCD 为正方形,△O 为BD 的中点,△E 为PB 的中点,△OE PD ∥,又△OE ⊄平面,PDC PD ⊂平面PDC ,△OE 平面PDC ;(2)证明:△四边形ABCD 为正方形,△AC BD ⊥,△PD ⊥平面ABCD ,且AC ⊂平面ABCD ,所以PD AC ⊥,又△,PD BD ⊂平面PBD ,且PD BD D ⋂=,△AC ⊥平面PBD ,又△AC ⊂平面PAC ,△平面PAC ⊥平面PDB .18.(1)证明见解析; 【分析】(1)由题意首先证得线面垂直,然后利用线面垂直的定义证明线线垂直即可;(2)方法二:利用几何关系找到二面角的平面角,然后结合相关的几何特征计算三棱锥的体积即可.【详解】(1)因为AB AD =,O 是BD 中点,所以OA BD ⊥,因为OA ⊂平面ABD ,平面ABD ⊥平面BCD ,且平面ABD ⋂平面BCD BD =,所以OA ⊥平面BCD .因为CD ⊂平面BCD ,所以OA CD ⊥.(2)[方法一]:通性通法—坐标法如图所示,以O 为坐标原点,OA 为z 轴,OD 为y 轴,垂直OD 且过O 的直线为x 轴,建立空间直角坐标系O xyz -,则1,0),(0,1,0),(0,1,0)2C D B -,设12(0,0,),(0,,)33A m E m ,所以4233(0,,),(,,0)3322EB m BC =--=, 设(),,n x y z =为平面EBC 的法向量,则由00EB n EC n ⎧⋅=⎨⋅=⎩可求得平面EBC 的一个法向量为2(3,1,)n m =--. 又平面BCD 的一个法向量为()0,0,OA m =,所以cos ,n OA ==1m =. 又点C 到平面ABD 112132A BCD C ABD V V --==⨯⨯⨯=, 所以三棱锥A BCD - [方法二]【最优解】:作出二面角的平面角如图所示,作EG BD ⊥,垂足为点G .作GF BC ⊥,垂足为点F ,连结EF ,则OA EG ∥.因为OA ⊥平面BCD ,所以EG ⊥平面BCD ,EFG ∠为二面角E BC D --的平面角.因为45EFG ∠=︒,所以EG FG =.由已知得1OB OD ==,故1OB OC ==.又30OBC OCB ∠=∠=︒,所以BC =因为24222,,,,133333GD GB FG CD EG OA ======,111122(11)13332A BCD BCD BOC V S O S OA A -==⨯⨯=⨯⨯⨯⨯⨯=. [方法三]:三面角公式考虑三面角B EDC -,记EBD ∠为α,EBC ∠为β,30DBC ∠=︒,记二面角E BC D --为θ.据题意,得45θ=︒.对β使用三面角的余弦公式,可得cos cos cos30βα=⋅︒,化简可得cos βα=.△使用三面角的正弦公式,可得sin sin sin αβθ=,化简可得sin βα=.△ 将△△两式平方后相加,可得223cos 2sin 14αα+=, 由此得221sin cos 4αα=,从而可得1tan 2α=±.如图可知π(0,)2α∈,即有1tan 2α=, 根据三角形相似知,点G 为OD 的三等分点,即可得43BG =,结合α的正切值,可得2,13EG OA ==从而可得三棱锥A BCD - 【整体点评】(2)方法一:建立空间直角坐标系是解析几何中常用的方法,是此类题的通性通法,其好处在于将几何问题代数化,适合于复杂图形的处理;方法二:找到二面角的平面角是立体几何的基本功,在找出二面角的同时可以对几何体的几何特征有更加深刻的认识,该法为本题的最优解.方法三:三面角公式是一个优美的公式,在很多题目的解析中灵活使用三面角公式可以使得问题更加简单、直观、迅速.。
2019年高考数学一轮复习 7.7 空间向量在立体几何中的应用课时作业理(含解析)新人教A 版一、选择题1.如图所示,在三棱柱ABC -A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E 、F 分别是棱AB 、BB 1的中点,则直线EF 和BC 1所成的角是( )A .45°B .60°C .90°D .120°解析:以B 点为坐标原点,以BC 、BA 、BB 1分别为x 、y 、z 轴建立空间直角坐标系.设AB =BC =AA 1=2,则B (0,0,0),C 1(2,0,2),E (0,1,0),F (0,0,1), ∴EF →=(0,-1,1),BC 1→=(2,0,2) ∴cos 〈EF →,BC 1→〉=EF →·BC 1→|EF →||BC 1→|=22·8=12.∴EF 与BC 1所成角为60°. 答案:B2.如图,平面ABCD ⊥平面ABEF ,四边形ABCD 是正方形,四边形ABEF 是矩形,且AF =12AD =a ,G 是EF 的中点,则GB 与平面AGC 所成角的正弦值为( )A.66B.33C.63D.23解析:如图,以A 为原点建立空间直角坐标系,则A (0,0,0),B (0,2a,0),C (0,2a,2a ),G (a ,a,0),F (a,0,0),AG →=(a ,a,0),AC →=(0,2a,2a ),BG →=(a ,-a,0),BC →=(0,0,2a ),设平面AGC 的法向量为n 1=(x 1,y 1,1),由⎩⎪⎨⎪⎧AG →·n 1=0,AC →·n 1=0⇒⎩⎪⎨⎪⎧ax 1+ay 1=0,2ay 1+2a =0 ⇒⎩⎪⎨⎪⎧x 1=1,y 1=-1⇒n 1=(1,-1,1).sin θ=BG →·n 1|BG →||n 1|=2a 2a ×3=63.答案:C3.在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,M 为AB 的中点,则点C 到平面A 1DM 的距离为( )A.63aB.66a C.22a D.12a 解析:以A 1为原点建立如图所示的坐标系,则A 1(0,0,0),M (a2,0,a ),D (0,a ,a ),C (a ,a ,a )设面A 1DM 的法向量为n =(x ,y ,z )则⎩⎪⎨⎪⎧A 1M →·n =0A 1D →·n =0∴⎩⎪⎨⎪⎧a 2x +az =0,ay +az =0令y =1,∴z =-1,x =2,∴n=(2,1,-1),点C到面A1DM的距离d =⎪⎪⎪⎪⎪⎪⎪⎪n ·CD →|n |=2a 6=63a . 答案:A4.如图,正方体ABCD -A 1B 1C 1D 1中,E ,F 分别在A 1D ,AC 上,且A 1E =23A 1D ,AF=13AC ,则( )A .EF 至多与A 1D ,AC 之一垂直B .EF ⊥A 1D ,EF ⊥AC C .EF 与BD 1相交 D .EF 与BD 1异面解析:以D 点为坐标原点,以DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建系,设正方体棱长为1,则A 1(1,0,1),D (0,0,0),A (1,0,0),C (0,1,0),E (13,0,13),F (23,13,0),B (1,1,0),D 1(0,0,1),A 1D →=(-1,0,-1),AC →=(-1,1,0), EF →=(13,13,-13),BD 1→=(-1,-1,1),EF →=-13BD 1→,A 1D →·EF →=AC →·EF →=0,从而EF ∥BD 1,EF ⊥A 1D ,EF ⊥AC . 答案:B 二、填空题5.已知向量a =(-1,2,3),b =(1,1,1),则向量a 在向量b 方向上的投影为________. 解析:1|b |b ·a =13(1,1,1)·(-1,2,3)=433,则a 在向量b 上的投影为433.答案:4336.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角的大小为________.解析:cos 〈m ,n 〉=m ·n |m ||n |=12=22,∴〈m ,n 〉=45°.∴二面角为45°或135°. 答案:45°或135°7.正四棱锥S -ABCD 中,O 为顶点在底面上的射影,P 为侧棱SD 的中点,且SO =OD ,则直线BC 与平面P AC 所成的角是________.解析:如图所示,以O 为原点建立空间直角坐标系O -xyz . 设OD =SO =OA =OB =OC =a ,则A (a,0,0),B (0,a,0),C (-a,0,0),P ⎝⎛⎭⎫0,-a 2,a2. 则CA →=(2a,0,0),AP →=(-a ,-a 2,a2),CB →=(a ,a,0).设平面P AC 的法向量为n ,可求得n =(0,1,1),则cos 〈CB →,n 〉=CB →·n |CB →||n |=a 2a 2·2=12.∴〈CB →,n 〉=60°,∴直线BC 与平面P AC 所成的角为90°-60°=30°. 答案:30° 三、解答题8.(xx·安徽池州一中高三月考)如图,ABCD 是边长为3的正方形,DE ⊥面ABCD ,AF ∥DE ,DE =3AF ,BE 与平面ABCD 所成的角为60°.(1)求二面角F-BE-D的余弦值;(2)设点M是线段BD上一动点,试确定M的位置,使得AM∥面BEF,并证明你的结论.解:(1)∵DE⊥平面ABCD,∴∠EBD就是BE与平面ABCD所成的角,即∠EBD=60°.∴DEBD= 3.由AD=3,BD=32,得DE=36,AF= 6.如图,分别以DA,DC,DE为x轴,y轴,z轴建立空间直角坐标系D-xyz,则A (3,0,0),F (3,0,6),E (0,0,36),B (3,3,0),C (0,3,0), ∴BF →=(0,-3,6),EF →=(3,0,-26).设平面BEF 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·BF →=0,n ·EF →=0.即⎩⎨⎧-3y +6z =0,3x -26z =0.令z =6,则n =(4,2,6). ∵AC ⊥平面BDE ,∴CA →=(3,-3,0)为平面BDE 的一个法向量, ∴cos 〈n ,CA →〉=n ·CA →|n ||CA →|=626×32=1313.故二面角F -BE -D 的余弦值为1313. (2)依题意,设M (t ,t,0)(t >0),则AM →=(t -3,t,0), ∵AM ∥平面BEF ,∴AM →·n =0, 即4(t -3)+2t =0,解得t =2.∴点M 的坐标为(2,2,0),此时DM →=23DB →,∴点M 是线段BD 靠近B 点的三等分点.9.(xx·新课标全国卷Ⅱ)如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点,AA 1=AC =CB =22AB .(1)证明:BC 1∥平面A 1CD ; (2)求二面角D -A 1C -E 的正弦值.解:(1)证明:连接AC 1交A 1C 于点F ,则F 为AC 1中点. 又D 是AB 中点,连接DF ,则BC 1∥DF .因为DF ⊂平面A 1CD ,BC 1⊄平面A 1CD ,所以BC 1∥平面A 1CD .(2)由AC =CB =22AB 得,AC ⊥BC . 以C 为坐标原点,CA →的方向为x 轴正方向,建立如图所示的空间直角坐标系C -xyz .设CA =2,则D (1,1,0),E (0,2,1),A 1(2,0,2),CD →=(1,1,0),CE →=(0,2,1),CA 1→=(2,0,2).设n =(x 1,y 1,z 1)是平面A 1CD 的法向量,则⎩⎪⎨⎪⎧n ·CD →=0,n ·CA 1→=0,即⎩⎪⎨⎪⎧x 1+y 1=0,2x 1+2z 1=0. 可取n =(1,-1,-1).同理,设m 是平面A 1CE 的法向量,则⎩⎪⎨⎪⎧m ·CE →=0,m ·CA 1→=0.可取m =(2,1,-2).从而cos 〈n ,m 〉=n ·m |n ||m |=33,故sin 〈n ,m 〉=63.即二面角D -A 1C -E 的正弦值为63. 10.(xx·陕西卷)如图,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形,O 为底面中心,A1O⊥平面ABCD,AB=AA1= 2.(1)证明:A 1C ⊥平面BB 1D 1D ;(2)求平面OCB 1与平面BB 1D 1D 的夹角θ的大小.解:(1)证明:由题设易知OA ,OB ,OA 1两两垂直,以O 为原点建立空间直角坐标系,如图.∵AB =AA 1=2, ∴OA =OB =OA 1=1,∴A (1,0,0),B (0,1,0),C (-1,0,0),D (0,-1,0),A 1(0,0,1). 由A 1B 1→=AB →,易得B 1(-1,1,1).∵A 1C →=(-1,0,-1),BD →=(0,-2,0),BB 1→=(-1,0,1), ∴A 1C →·BD →=0,A 1C →·BB 1→=0, ∴A 1C ⊥BD ,A 1C ⊥BB 1, ∴A 1C ⊥平面BB 1D 1D .(2)设平面OCB 1的法向量n =(x ,y ,z ). ∵OC →=(-1,0,0),OB 1→=(-1,1,1),∴⎩⎪⎨⎪⎧n ·OC →=-x =0,n ·OB 1→=-x +y +z =0,∴⎩⎪⎨⎪⎧x =0,y =-z , 取n =(0,1,-1),由(1)知,A 1C →=(-1,0,-1)是平面BB 1D 1D 的法向量, ∴cos θ=|cos 〈n ,A 1C →〉|=12×2=12. 又0≤θ≤π2,∴θ=π3.11.(xx·河北沧州质量监测)如图,已知四棱柱ABCD -A 1B 1C 1D 1中,A 1D ⊥底面ABCD ,且面ABCD 是边长为1的正方形,侧棱AA 1=2.(1)求证:C 1D ∥平面ABB 1A 1;(2)求直线BD 1与平面A 1C 1D 所成角的正弦值; (3)求二面角D -A 1C 1-A 的余弦值.解:(1)证明:四棱柱ABCD -A 1B 1C 1D 1中,BB 1∥CC 1, 又CC 1⊄面ABB 1A 1,所以CC 1∥平面ABB 1A 1, 又因为ABCD 是正方形,所以CD ∥AB ,又CD ⊄面ABB 1A 1,AB ⊂面ABB 1A 1,所以CD ∥平面ABB 1A 1. 又因为CC 1∩CD =C ,所以平面CDD 1C 1∥平面ABB 1A 1, 又因为C 1D ⊂平面CDD 1C 1,所以C 1D ∥平面ABB 1A 1.(2)ABCD 是正方形,AD ⊥CD ,因为A 1D ⊥平面ABCD ,所以A 1D ⊥AD ,A 1D ⊥CD ,如图,以D 为坐标原点建立空间直角坐标系D -xyz , 在Rt △ADA 1中,由已知可得A 1D = 3.所以D (0,0,0),A 1(0,0,3),A (1,0,0),B 1(0,1,3),C 1(-1,1,3),D 1(-1,0,3),B (1,1,0),BD 1→=(-2,-1,3),B 1D 1→=(-1,-1,0),因为A 1D ⊥平面ABCD ,所以A 1D ⊥平面A 1B 1C 1D 1,A 1D ⊥B 1D 1. 又B 1D 1⊥A 1C 1,所以B 1D 1⊥平面A 1C 1D , 所以平面A 1C 1D 的一个法向量为n =(1,1,0). 设BD 1→与n 所成的角为β, 则cos β=n ·BD 1→|n ||BD 1→|=-32 8=-34,所以直线BD 1与平面A 1C 1D 所成角的正弦值为34.(3)平面A 1C 1A 的法向量为m =(a ,b ,c )则m ·A 1C 1→=0,m ·A 1A →=0,所以-a +b =0,a -3c =0. 令c =3,可得m =(3,3,3). 则cos 〈m·n 〉=m·n |m ||n |=6221=427.所以二面角D -A 1C 1-A 的余弦值为427. 12.(xx·成都市第三次诊断)如图,四边形BCDE 是直角梯形,CD ∥BE ,CD ⊥BC ,CD =12BE =2,平面BCDE ⊥平面ABC ;又已知△ABC 为等腰直角三角形,AB =AC =4,M ,F 分别为BC ,AE 的中点.(1)求直线CD 与平面DFM 所成角的正弦值;(2)能否在线段EM 上找到一点G ,使得FG ⊥平面BCDE ?若能,请指出点G 的位置,并加以证明;若不能,请说明理由;(3)求三棱锥F -DME 的体积.解:由题意,CD ⊥BC .四边形BCDE 是直角梯形,EB ⊥BC . 又平面BCDE ⊥平面ABC ,∴EB ⊥平面ABC .于是以B 为坐标原点建立如图所示的空间直角坐标系B -xyz .则B (0,0,0),C (4,4,0),A (0,4,0),D (4,4,2),E (0,0,4),F (0,2,2),M (2,2,0). (1)CD →=(0,0,2).设m =(x ,y ,z )为平面DFM 的法向量. 由m ·DM →=0,m ·MF →=0,得⎩⎪⎨⎪⎧2x +2y +2z =0-2x +2z =0,即m =(x ,-2x ,x ). 令x =1,得m =(1,-2,1). 于是sin θ=|m ·CD →||m |·|CD →|=66.(2)证明:设存在点G 满足题设,且EG →=λEM →(0≤λ≤1). 则G (2λ,2λ,4-4λ),FG →=(2λ,2λ-2,2-4λ). 由FG →·EM →=16λ-8=0,得λ=12.经检验FG →·ED →=0.故当G 为EM 的中点时,FG ⊥平面BCDE .(3)∵BE ∥CD ,CD ⊥BC ,且四边形BCDE 是直角梯形, ∴S △BME =12BE ·BM =12×4×22=42,S △DCM =12S △BME =2 2.1又梯形BCDE的面积S梯形BCDE=2×(4+2)×42=122,∴S△DME=S梯形BCDE-S△DCM-S△BEM=6 2.由(2),知FG为三棱锥F-DME的高,且|FG|= 2.∴V F-DME=13×62×2=4.[热点预测]13.(xx·保定市高三第一次模拟)四棱锥S-ABCD中,四边形ABCD为矩形,M为AB 的中点,且△SAB为等腰直角三角形,SA=SB=2,SC⊥BD,DA⊥平面SAB.(1)求证:平面SBD⊥平面SMC;(2)设四棱锥S-ABCD外接球的球心为H,求棱锥H-MSC的高;(3)求平面SAD与平面SMC所成的二面角的正弦值.解:(1)∵SA=SB,M为AB中点,∴SM⊥AB.又∵DA⊥平面SAB,∴DA⊥SM,所以SM⊥平面ABCD.又∵DB⊂平面ABCD,∴SM⊥DB.又∵SC⊥BD,∴DB⊥平面SMC,∴平面SBD⊥平面SMC.(2)由(1)知DB ⊥平面SMC , ∴DB ⊥MC ,所以△ABD ∽△BCM ,故AB BC =DA MB ⇒22BC =BC2⇒BC =2设AC 与BD 交于N 点,因为AS ⊥BS ,DA ⊥BS ,所以SB ⊥平面SAD . 所以SB ⊥SD ,显然NA =NB =NC =ND =NS ,所以H 与N 重合,即为球心, 设MC 与DB 交于Q 点,由于DB ⊥平面SMC ,故HQ 即为所求.因为MC =6, ∴QB =BC ·MB MC =226=233.∵BD =23,∴HB =3,故HQ =3-233=33.即棱锥H -MSC 的高为33.可编辑修改精选文档(3)以点M 为原点,建立坐标系如图.则M (0,0,0),S (2,0,0),C (0,2,2),A (0,-2,0),D (0,-2,2)∴MS →=(2,0,0),MC →=(0,2,2),AD →=(0,0,2),AS →=(2,2,0)设平面SMC 的法向量为n =(x ,y ,z ),平面ASD 的法向量为m =(a ,b ,c )∴⎩⎪⎨⎪⎧ MS →·n =0MC →·n =0⇒⎩⎨⎧ x =02y +2z =0,∴不妨取n =(0,2,-1) ∴⎩⎪⎨⎪⎧ AD →·m =0AS →·m =0⇒⎩⎨⎧c =02a +2b =0,∴不妨取m =(1,-1,0) ∴cos 〈m ,n 〉=m ·n |m ||n |=-23·2=-33. 所以,平面SAD 与平面SMC 所成的二面角的正弦值为63. .。
2019年高中数学 第三章 空间向量与立体几何 课时作业(十六)空间向量
及其加减运算 新人教B 版选修2-1
1.在平行六面体ABCD -A 1B 1C 1D 1中,顶点连结的向量中,与向量AD →相等的向量共有( )
A .1个
B .2个
C .3个
D .4个
解析:与向量AD →相等的向量有BC →,A 1D 1→,B 1C 1→,共3个. 答案:C
2.空间四边形ABCD 中,M ,G 分别是BC ,CD 的中点,则MG →-AB →+AD →=( )
A .2D
B → B .3MG →
C .3GM →
D .2MG →
解析:MG →-AB →+AD →=MG →+BD →=MG →+2MG →=3MG →
. 答案:B
3.设有四边形ABCD ,O 为空间任意一点,且AO →+OB →=DO →+OC →
,则四边形ABCD 是( ) A .平行四边形 B .空间四边形 C .等腰梯形 D .矩形
解析:∵AO →+OB →=DO →+OC →,∴AB →=DC →
. ∴AB →∥DC →且|AB →|=|DC →|. ∴四边形ABCD 为平行四边形. 答案:A
4.在正方体ABCD -A 1B 1C 1D 1中,下列各式的运算结果为向量AC 1→
的共有( ) ①(AB →+BC →)+CC 1→;②(AA 1→+A 1D 1→)+D 1C 1→;③(AB →+BB 1→)+B 1C 1→;④(AA 1→+A 1B 1→)+B 1C 1→. A .1个 B .2个 C .3个 D .4个
解析:根据空间向量的加法法则及正方体的性质,逐一判断可知①②③④都是符合题意的.
答案:D
5.空间四边形ABCD 中,若E ,F ,G ,H 分别为AB ,BC ,CD ,DA 边上的中点,则下列各式中成立的是( )
A.EB →+BF →+EH →+GH →=0
B.EB →+FC →+EH →+GE →=0
C.EF →+FG →+EH →+GH →=0
D.EF →-FB →+CG →+GH →=0
解析:由于E ,F ,G ,H 分别是AB ,BC ,CD ,DA 边上的中点,所以四边形EFGH 为平行四边形,其中EH →=FG →,且FC →=BF →
,而E ,B ,F ,G 四点构成一个封闭图形,首尾相接的向量的和为零向量,即有EB →+FC →+EH →+GE →
=0.
答案:B
6.已知正方体ABCD -A 1B 1C 1D 1的中心为O ,则在下列各结论中正确的结论共有( ) ①OA →+OD →与OB 1→+OC 1→
是一对相反向量; ②OB →-OC →与OA 1→-OD 1→
是一对相反向量;
③OA →+OB →+OC →+OD →与OA 1→+OB 1→+OC 1→+OD 1→
是一对相反向量; ④OA 1→-OA →与OC →-OC 1→
是一对相反向量. A .1个 B .2个 C .3个 D .4个
解析:利用图形及向量的运算可知②是相等向量,①③④是相反向量. 答案:C
7.如图所示,在三棱柱ABC -A ′B ′C ′中,AC →与A ′C ′→是__________向量,AB →与B ′A ′→
是__________向量(用“相等”“相反”填空).
答案:相等 相反
8.在直三棱柱ABC -A 1B 1C 1中,若CA →=a ,CB →=b ,CC 1→=c ,则A 1B →
=________.
解析:如图,A 1B →=B 1B →-B 1A 1→=B 1B →-BA →=-CC 1→-(CA →-CB →
) =-c -(a -b )=-c -a +b . 答案:-c -a +b
9.下列说法中,正确的个数为________个.
①若两个空间向量相等,则它们的起点相同,终点也相同; ②若向量AB →,CD →满足|AB →|>|CD →|,且AB →与CD →同向,则AB →>CD →
; ③若两个非零向量AB →与CD →满足AB →+CD →=0,则AB →与CD →
为相反向量.
解析:①错误.两个空间向量相等,其模相等,且方向相同,与起点和终点的位置无关; ②错误.向量的模可以比较大小,但向量不能比较大小; ③正确.AB →+CD →=0⇒AB →=-CD →
且AB →,CD →为非零向量,所以AB →与CD →
为相反向量. 答案:1
10.已知在正方体ABCD -A 1B 1C 1D 1中,化简下列向量表达式,并在图中标出化简结果的向量.
(1)AB →+BC →-C 1C →; (2)AB →-DA →-A 1A →.
解:(1)AB →+BC →-C 1C →=AB →+BC →+CC 1→=AC →+CC 1→=AC 1→
(如图).
(2)AB →-DA →-A 1A →=AA 1→+(AB →+AD →)=AA 1→+(A 1B 1→+A 1D 1→)=AA 1→+A 1C 1→=AC 1→
(如图).
B 组 能力提升
11.在正方体ABCD -A 1B 1C 1D 1中,下列各式中运算结果为BD 1→
的是( ) ①(A 1D 1→-A 1A →)-AB → ②(BC →+BB 1→)-D 1C 1→。