人教版高中数学必修三 1.3算法案例
- 格式:doc
- 大小:80.50 KB
- 文档页数:3
必修3第一章1.3算法案例:案例3进位制[教学目标]:(1)了解各种进位制与十进制之间转换的规律,会利用各种进位制与十进制之间的联系进行各种进位制之间的转换。
(2)学习各种进位制转换成十进制的计算方法,研究十进制转换为各种进位制的除k 去余法,并理解其中的数学规律。
[教学重点]各进位制表示数的方法及各进位制之间的转换[教学难点]除k取余法的理解[情感态度价值观] 学生通过合作完成任务,领悟十进制,二进制的特点,了解计算机与二进制的联系,进一步认识到计算机与数学的联系,培养他们的合作精神和严谨的态度。
[教学方法] 讲解法、尝试法、归纳法、讨论法、[教学用具]多媒体电脑[学法] 学习各种进位制特点的同时探讨进位制表示数与十进制表示数的区别与联系,熟悉各种进位制表示数的方法,从而理解十进制转换为各种进位制的除k取余法。
[教学过程]一、创设情景,揭示课题辗转相除法和更相减损术,是求两个正整数的最大公约数的算法,秦九韶算法是求多项式的值的算法,将这些算法转化为程序,就可以由计算机来完成相关运算。
人们为了计数和运算方便,约定了各种进位制,本节课我们来共同学习《进位制》你都了解那些进位制?比如说?在日常生活中,我们最熟悉、最常用的是十进位制,据说这与古人曾以手指计数有关;由于计算机的计算与记忆元件特点,计算机上通用的是二进位制;一周七天是七进位;一年十二个月〔生肖、一打〕是十二进制;旧式的称是十六进制;〔老称一斤为16两,故而有了半斤八两之说〕、24进制〔节气〕一小时六十分、角度的单位是六十进位制。
二进制是有德国数学家莱布尼兹发明的。
第一台计算机ENIAC〔埃尼阿克〕用的就是十进制。
计算机之父冯·诺伊曼研究后,提出改进意见,用二进制替代十进制。
主要原因①二进制只有0和1两个数字,要得到两种不同稳定状态的电子器件很容易,而且制造简单,可靠性高;②各种计数法中,二进制运算规那么简单。
如:十进 制乘法叫九九表,二进制只有4句。
高中数学必修③课本练习,习题参考答案新心希望教育:RenYongSheng 第一章算法初步1.1算法与程序框图1.1.1算法的概念(p5)1. 解;第一步:输入任意正实数r,第二步:计算第三步:输出圆的面积S2. 解;第一步:给定一个大于l的正整数;第二步:令;第三步:用除,得到余数;第四步:判断“”是否成立,若成立,则i是n的因数;否则,i不是n的因数;第五步:使的值增加l,仍用表示,即令;第六步,判断“”是否成立.若是,则结束算法;否则,返回第三步1.1.2程序框图与算法的基本逻辑(P19)1.解;算法步骤:第一步,给定精确地d,令i=1第二步,取出的到小数点后第i位的不足近似值,记为a;取出的到小数点后第i位的过剩近似值,记为b,第三步,计算第四步,若m<d,则执行第五步;否则,将i的值增加1,返回第二步.第五步,输出程序框图如下图所示:1.1算法与程序框图(P20)A 组解;题目:在国内寄平信(外埠),每封信的质量x(克)不超过60克时的邮费(单位:分)标准为,试写出计算邮费的算法并画出程序框图。
算法如下:第一步,输入质量数x。
第二步,判断是否成立,若是,则输出y=120,否则执行第三步。
第三步,判断是否成立,若是,则输出y=240,否则,输出y=360,算法结束。
程序框图如下图所示:(注释:条件结构)2.解:算法如下:第一步,i=1,S=0.第二步,判断是否成立,若成立,则执行第三步,否则,执行第四步。
第三步,,i=i+1,返回第二步。
第四步,输出S.程序框图如下图所示:(注释:循环结构)3. 解:算法如下:第一步,输入人数x,设收取的卫生费为y元。
第二步,判断x>3是否成立,若不成立,y=5,输出y;否则,输出y.程序框图如下图所示:(注释:条件结构)BB 组1. 解:分析:我们设计对于一般的二元一次方程组(其中)的通用算法:第一步,,得(即) (3)第二步,解(3),得 (4)第三步,将(4)代入(1),得,因此,只要输入相应的未知数的系数和常数项,就能计算出方程组的解,即可以输出x、y的值,用顺序结构即可。
进位制学习目标1.了解各种进位制与十进制之间转换的规律,会利用各种进位制与十进制之间的联系进行各种进位制之间的转换。
2.学习各种进位制转换成十进制的计算方法,研究十进制转换为各种进位制的除k去余法,并理解其中的数学规律。
学习重难点重点:各进位制表示数的方法及各进位制之间的转换难点:除k去余法的理解以及各进位制之间转换的程序框图的设计学法与学习用具学法:在学习各种进位制特点的同时探讨进位制表示数与十进制表示数的区别与联系,熟悉各种进位制表示数的方法,从而理解十进制转换为各种进位制的除k去余法。
学习用具:电脑,计算器,图形计算器学习设想(一)创设情景,揭示课题我们常见的数字都是十进制的,但是并不是生活中的每一种数字都是十进制的.比如时间和角度的单位用六十进位制,电子计算机用的是二进制.那么什么是进位制?不同的进位制之间又又什么联系呢?(二)研探新知进位制是一种记数方式,用有限的数字在不同的位置表示不同的数值。
可使用数字符号的个数称为基数,基数为n,即可称n进位制,简称n进制。
现在最常用的是十进制,通常使用10个阿拉伯数字0-9进行记数。
对于任何一个数,我们可以用不同的进位制来表示。
比如:十进数57,可以用二进制表示为111001,也可以用八进制表示为71、用十六进制表示为39,它们所代表的数值都是一样的。
表示各种进位制数一般在数字右下脚加注来表示,如111001(2)表示二进制数,34(5)表示5进制数.电子计算机一般都使用二进制,下面我们来进行二进制与十进制之间的转化例1 把二进制数110011(2)化为十进制数.解:110011=1*25+1*24+0*23+1*24+0*22+1*21+1*20=32+16+2+1=51例2 把89化为二进制数.解:根据二进制数满二进一的原则,可以用2连续去除89或所得商,然后去余数. 具体的计算方法如下:89=2*44+144=2*22+022=2*11+011=2*5+15=2*2+1所以:89=2*(2*(2*(2*(2*2+1)+1)+0)+0)+1=1*26+0*25+1*24+1*23+0*22+0*21+1*20=1011001(2)这种算法叫做除2取余法,还可以用下面的除法算式表示:把上式中的各步所得的余数从下到上排列即可得到89=1011001(2) 89 44 22 11 5 21222222 2 0 余数 1 0 0 1 1 01。
一、选择题
1.关于进位制说法错误的是()
A.进位制是人们为了计数和运算方便而约定的记数系统
B.二进制就是满二进一,十进制就是满十进一
C.满几进一,就是几进制,几进制的基数就是几
D.为了区分不同的进位制,必须在数的右下角标注基数
解析:一般情况下,不同的进位制须在数的右下角标注基数,但十进制可以不用标注,
所以不是必须在数的右下角标注基数,所以D错误.
答案:D
2.下列四个数中,数值最小的是()
A.25(10)B.111(10)
C.10 110(2)D.10 111(2)
解析:C中10 110(2)=1×2?+1×2?+2=22,
D中,10 111(2)=23.
答案:C
3.用更相减损术求1 515和600的最大公约数时,需要做减法次数是()
A.15 B.14
C.13 D.12
解析:1515-600=915,915-600=315,600-315=285,315-285=30,285-30=255,255
-30=225,225-30=195,195-30=165,165-30=135,135-30=105,105-30=75,75-
30=45,45-30=15,30-15=15.
∴1 515与600的最大公约数是15.则共做14次减法.
答案:B
4.计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制数的对应关系如下表:
十六
0123456789 A B C D E F 进制
十进
0123456789101112131415 制
例如,用十六进制表示:E+D=1B,则A×B等于()
A.6E B.72
C.5F D.B0
解析:A×B用十进制表示10×11=110,而110=6×16+14,所以用16进制表示6E. 答案:A
二、填空题
5.103(5)化为十进制数为________.
解析:103(5)=1×52+0×51+3=28.
答案:28
6.用更相减损术可求得78与36的最大公约数是________.
解析:78-36=42,42-36=6,
36-6=30,30-6=24,24-6=18,
18-6=12,12-6=6.
答案:6
7.已知a=333,b=24,则使得a=bq+r(q,r均为自然数,且0≤r<b)成立的q和r 的值分别为________.
解析:用333除以24,商即为q,余数即为r.
333÷24=13…21.
答案:1321
8.已知k进制数132与十进制数30相等,则k的值为________.
解析:由题意得1×k2+3×k+2=30.
即k2+3k-28=0.解之得
k=4或k=-7(舍去).
答案:4
三、解答题
9.用秦九韶算法求多项式f(x)=1+x+0.5x2+0.166 67x3+0.041 67x4+
0.008 33x5,当x=-0.2时的值.
解:根据秦九韶算法,把多项式改写成如下形式:
f(x)=((((0.008 33x+0.041 67)x+0.166 67)x+0.5)x+1)x+1.
按照从内到外的顺序依次计算一次多项式当x=-0.2时的值:
v0=0.008 33;
v1=0.008 33×(-0.2)+0.041 67=0.040 004;
v2=0.040 004×(-0.2)+0.166 67=0.158 669 2;
v3=0.158 669 2×(-0.2)+0.5=0.468 266 16;
v4=0.468 266 16×(-0.2)+1=0.906 346 768;
v5=0.906 346 768×(-0.2)+1=0.818 730 646.
∴当x=-0.2时,多项式的值为0.818 730 646.
10.古时候,当边境有敌人来犯时,守边的官兵通过在烽火台上举火向国内报告,如图,烽火台上点火,表示数字1,不点火表示数字0,约定二进制数对应的十进制的单位是1 000,请你计算一下,这组烽火台表示约有多少敌人入侵?
解:由图可知从左到右的五个烽火台,表示二进制数的自左到右五个数位,依题意知这组烽火台表示的二进制数是11 011,改写为十进制为:
11 011(2)=1×24+1×23+0×22+1×21+1×20
=16+8+2+1=27(10).
又27×1 000=27 000,
所以这组烽火台表示边境约有27 000个敌人来犯.。