信号与系统 周期信号频谱特点
- 格式:ppt
- 大小:176.00 KB
- 文档页数:5
《信号与系统》知识要点第一章 信号与系统1、 周期信号的判断 (1)连续信号思路:两个周期信号()x t 和()y t 的周期分别为1T 和2T ,如果1122T N T N =为有理数(不可约),则所其和信号()()x t y t +为周期信号,且周期为1T 和2T 的最小公倍数,即2112T N T N T ==。
(2)离散信号思路:离散余弦信号0cos n ω(或0sin n ω)不一定是周期的,当 ①2πω为整数时,周期02N πω=;②122N N πω=为有理数(不可约)时,周期1N N =; ③2πω为无理数时,为非周期序列注意:和信号周期的判断同连续信号的情况。
2、能量信号与功率信号的判断 (1)定义连续信号 离散信号信号能量:2|()|k E f k ∞=-∞=∑信号功率: def2221lim ()d T T T P f t t T →∞-=⎰ /22/21lim|()|N N k N P f k N →∞=-=∑⎰∞∞-=t t f E d )(2def(2)判断方法能量信号: P=0E <∞, 功率信号: P E=<∞∞, (3)一般规律①一般周期信号为功率信号;②时限信号(仅在有限时间区间不为零的非周期信号)为能量信号;③还有一些非周期信号,也是非能量信号。
例如:ε(t )是功率信号; t ε(t )3、典型信号① 指数信号: ()at f t Ke =,a ∈R② 正弦信号: ()sin()f t K t ωθ=+tt4、信号的基本运算 1) 两信号的相加和相乘 2) 信号的时间变化 a) 反转: ()()f t f t →- b) 平移: 0()()f t f t t →± c)尺度变换: ()()f t f at →3) 信号的微分和积分注意:带跳变点的分段信号的导数,必含有冲激函数,其跳变幅度就是冲激函数的强度。
正跳变对应着正冲激;负跳变对应着负冲激。
信号与系统复习书中最重要的三大变换几乎都有。
第一章 信号与系统 1、信号的分类①连续信号和离散信号 ②周期信号和非周期信号 连续周期信号f (t )满足f (t ) = f (t + m T ), 离散周期信号f(k )满足f (k ) = f (k + m N ),m = 0,±1,±2,…两个周期信号x(t),y(t)的周期分别为T 1和T 2,若其周期之比T 1/T 2为有理数,则其和信号x(t)+y(t)仍然是周期信号,其周期为T 1和T 2的最小公倍数。
③能量信号和功率信号 ④因果信号和反因果信号2、信号的基本运算(+ - × ÷) 2.1信号的(+ - × ÷)2.2信号的时间变换运算 (反转、平移和尺度变换) 3、奇异信号3.1 单位冲激函数的性质f (t ) δ(t ) = f (0) δ(t ) , f (t ) δ(t –a) = f (a) δ(t –a)例: 3.2序列δ(k )和ε(k ) f (k )δ(k ) = f (0)δ(k ) f (k )δ(k –k 0) = f (k 0)δ(k –k 0) 4、系统的分类与性质4.1连续系统和离散系统4.2 动态系统与即时系统 4.3 线性系统与非线性系统 ①线性性质 T [a f (·)] = a T [ f (·)](齐次性) T [ f 1(·)+ f 2(·)] = T[ f 1(·)]+T[ f 2(·)] (可加性)②当动态系统满足下列三个条件时该系统为线性系统:)0(d )()(f t t t f =⎰∞∞-δ)(d )()(a f t a t t f =-⎰∞∞-δ?d )()4sin(91=-⎰-t t t δπ)0('d )()('f t t f t -=⎰∞∞-δ)0()1(d )()()()(n n n f t t f t -=⎰∞∞-δ4)2(2])2[(d d d )(')2(0022=--=--=-==∞∞-⎰t t t t tt t t δ)(1||1)()()(t a a at n n n δδ⋅=)(||1)(t a at δδ=)(||1)(00a t t a t at -=-δδ)0()()(f k k f k =∑∞-∞=δy (·) = y f (·) + y x (·) = T[{ f (·) }, {0}]+ T[ {0},{x (0)}] (可分解性) T[{a f (·) }, {0}] = a T[{ f (·) }, {0}]T[{f 1(t ) + f 2(t ) }, {0}] = T[{ f 1 (·) }, {0}] + T[{ f 2 (·) }, {0}](零状态线性)T[{0},{a x 1(0) +b x 2(0)} ]= aT[{0},{x 1(0)}] +bT[{0},{x 2(0)}](零输入线性) 4.4时不变系统与时变系统T[{0},f (t - t d )] = y f (t - t d)(时不变性质)直观判断方法:若f (·)前出现变系数,或有反转、展缩变换,则系统为时变系统。
1 双端口网络:若网络有两个端口,则称为双口网络或二端口网络2 阶跃响应:当激励为单位阶跃函数时,系统的零状态响应3 冲激响应:当激励为单位冲激函数时,系统的零状态响应4 周期信号频谱的特点:①离散性》频谱是离散的②谐波性》频谱在频率轴上位置都是基波的整数倍③收敛性》谱线高度随着谐波次数的增高总趋势是减小的5 模拟离散系统的三种基本部件:数乘器·加法器·单位延迟器6 模拟连续系统的三种基本部件:数乘器·加法器·积分器7 线性系统:一个既具有分解特性,又具有零状态线性和零输入线性的系统8 通频带:我们把谐振曲线有最大值9 离散系统稳定的充分必要条件:∑︳h(n)︳〈∞(H(z)的极点在单位圆内时该系统必是稳定的因果系统)10网络函数:在正弦稳态电路中,常用响应向量与激励向量之比定义为网络函数,以H(jw)表示11 策动点函数:激励和响应在网络的同一端口的网络函数12 传输函数(转移函数):激励和响应在不同的端口的网络函数13 因果连续系统的充分必要条件:h(t)=0 t<0 (收敛域在S右半平面的系统均为因果系统)14 连续时间稳定系统的充分必要条件:∫︳h(t)︳dt≤M M:有界正实常数即h(t)满足绝对可积,则系统是稳定的15 傅里叶变换的时域卷积定理:若f1(t)↔F1(jw),f2(t)↔F2(jw)则f1(t)*f2(t)↔F1(jw)F2(jw)16 傅里叶变换的频域卷积定理:若f1(t)↔F1(jw),f2(t)↔F2(jw)则f1(t)·f2(t)↔(1/2π)F1(jw)*F2(jw)17 稳定系统:18 系统模拟:对被模拟系统的性能在实验室条件下模拟装置模仿19 因果系统:未加激励不会产生零状态响应的系统20 稳定的连续时间系统:一个连续时间系统,如果激励f(t)是有界的,其零状态响应y f(t)也是有界的,则称该系统是稳定的连续时间系统21 H(s)(h(t))求法:由微分方程、电路、时域模拟框图,考虑零状态条件下取拉氏变换、画运算电路、作S域模拟框图,应用Y f(s)/F(s)糗大H(s)。
一、 信号及其描述1、周期信号频谱的特点:①离散性——周期信号的频谱是离散的;②谐波性——每条谱线只出现在基波频率的整数倍上,基波频率是诸分量频率的公约数;③收敛性——谐波分量的幅值按各自不同的规律收敛。
2、傅里叶变换的性质:奇偶虚实性、对称性、线性叠加性、时间尺度改变特性、时移和频移特性、卷积特性、积分和微分特性。
3、非周期信号频谱的特点:①非周期信号可分解成许多不同频率的正弦、余弦分量之和,包含了从零到无穷大的所有频率分量;②非周期信号的频谱是连续的;③非周期信号的频谱由频谱密度函数来描述,表示单位频宽上的幅值和相位;④非周期信号频域描述的数学基础是傅里叶变换。
二、测试装置的基本特性1、测量装置的静态特性是在静态测量情况下描述实际测量装置与理想时不变线性系统的接近程度。
线性度——测量装置输入、输出之间的关系与理想比例关系的偏离程度。
灵敏度——单位输入变化所引起的输出变化。
回程误差——描述测量装置同输入变化方向有关的输出特性,在整个测量范围内,最大的差值称为回程误差。
分辨力——能引起输出量发生变化的最小输入量。
零点漂移——测量装置的输出零点偏离原始零点的距离,它是可以随时间缓慢变化的量。
灵敏度漂移——由于材料性质的变化所引起的输入与输出关系的变化。
2、传递函数的特点:①()s H 与输入()t x 及系统的初始状态无关,它只表达系统的传输特性;②()s H 是对物理系统的微分描述,只反映系统传输特性而不拘泥于系统的物理结构;③对于实际的物理系统,输入()t x 和输出()t y 都具备各自的量纲;④()s H 中的分母取决于系统的结构。
3、一阶测试系统和二阶测试系统主要涉及哪些动态特性参数,动态特性参数的取值对系统性能有何影响?一般采用怎样的取值原则? 答:测试系统的动态性能指标:一阶系统的参数是时间常数τ;二阶系统的参数是固有频率n ω和阻尼比ξ。
对系统的影响:一阶系统的时间常数τ值越小,系统的工作频率范围越大,响应速度越快。
周期信号的频谱的特点对于周期信号,其频谱特点主要有以下几个方面:1.频谱呈现出离散的频率分量:周期信号的频谱是由一系列离散的频率分量组成的,这些频率分量可以看作是正弦波的谐波。
具体来说,周期信号的基波频率对应着信号的周期,而高次谐波频率对应着信号的周期的整数倍。
因此,周期信号的频谱呈现出离散的频率分量。
2.频率分量的幅值逐渐衰减:对于周期信号的频谱,随着频率的增大,各个频率分量的幅值逐渐衰减。
这是因为周期信号的频谱是由一系列频率为整数倍的正弦波叠加而成的,而高次谐波频率对应着幅度较小的频率分量。
因此,随着频率的增大,高次谐波频率分量的幅值逐渐变小,频谱呈现出幅度逐渐衰减的特点。
3.频谱具有对称性:对于实信号的周期信号,其频谱具有对称性。
具体来说,周期信号的频谱关于零频率轴对称。
这是因为周期信号的频谱是由实信号频谱叠加而成的,而实信号频谱及其傅里叶变换的共轭都是对称的,因此周期信号的频谱具有对称的特点。
4.频谱的带宽与周期信号的周期有关:对于周期信号,其频谱的带宽与信号的周期有关。
具体来说,频谱的带宽在理论上等于周期的倒数。
这是因为在频谱中,由于频率分量的间隔等于周期的倒数,频谱的带宽也等于周期的倒数。
5.频谱的相位对称性:对于周期信号,它的频谱在幅度谱的基础上还有相位谱。
频谱的相位是随着频率变化的,由于周期信号的频率分量是正弦波,而正弦波的相位是以周期为单位的,所以频谱的相位也具有周期性。
具体来说,频谱的相位存在对称性,即频率分量的相位和其对称频率分量的相位相差180度。
这是由于正弦波的周期性特点决定的。
综上所述,周期信号的频谱特点包括频谱呈现出离散的频率分量、频率分量的幅值逐渐衰减、频谱具有对称性、频谱的带宽与周期信号的周期有关,以及频谱的相位对称性等。
这些特点在信号处理和通信系统中具有重要的理论和实际意义,为信号的分析、处理和传输提供了基础。
周期信号频谱的特点在结构施工测量中,按装修工程要求将装饰施工所需要的控制点、线及时弹在墙、板上,作为装饰工程施工的控制依据。
1.地面面层测量在四周墙身与柱身上投测出100cm水平线,作为地面面层施工标高控制线。
根据每层结构施工轴线放出各分隔墙线及门窗洞口的位置线。
2.吊顶和屋面施工测量以1000m线为依据,用钢尺量至吊顶设计标高,并在四周墙上弹出水平控制线。
对于装饰物比较复杂的吊顶,应在顶板上弹出十字分格线,十字线应将顶板均匀分格,以此为依据向四周扩展等距方格网来控制装饰物的位置。
屋面测量首先要检查各方向流水实际坡度是否符合设计要求,并实测偏差,在屋面四周弹出水平控制线及各方向流水坡度控制线。
3.墙面装饰施工测量内墙面装饰控制线,竖直线的精度不应低于1/3000,水平线精度每3m两端高差小于±1mm,同一条水平线的标高允许误差为±3mm。
外墙面装饰用铅直线法在建筑物四周吊出铅直线以控制墙面竖直度、平整度及板块出墙面的位置。
4.电梯安装测量在结构施工中,从电梯井底层开始,以结构施工控制线为准,及时测量电梯井净空尺寸,并测定电梯井中心控制线。
测设轨道中心位置,并确定铅垂线,并分别丈量铅垂线间距,其相互偏差(全高)不应超过1mm。
每层门套两边弹竖直线,并保证电梯门坎与门前地面水平度一致。
5. 玻璃幕墙的安装测量结构完工后,安装玻璃幕墙时,用铅垂钢丝的测法来控制竖直龙骨的竖直度,幕墙分格轴线的测量放线应以主体结构的测量放线相配合,对其误差应在分段分块内控制、分配、消化,不使其积累。
幕墙与主体连接的预埋件,应按设计要求埋设,其测量放线偏差高差不大于±3mm,埋件轴线左右与前后偏差不大于10mm。
精度要求轴线竖向投测精度不低于1/10000。
平面放线量距精度不低于1/8000,标高传递精度主楼、裙房分别不超过±15mm、±10mm。
仪器选用该工程测量选用TOPCON电子全站仪一台,2"级经纬仪两台,DS3水准仪两台,50m 钢卷尺两把。
周期信号的频谱的特点一、 周期信号的频谱一个周期信号)(t f ,只要满足狄里赫利条件,则可分解为一系列谐波分量之和。
其各次谐波分量可以是正弦函数或余弦函数,也可以是指数函数。
不同的周期信号,其展开式组成情况也不尽相同。
在实际工作中,为了表征不同信号的谐波组成情况,时常画出周期信号各次谐波的分布图形,这种图形称为信号的频谱,它是信号频域表示的一种方式。
描述各次谐波振幅与频率关系的图形称为振幅频谱,描述各次谐波相位与频率关系的图形称为相位频谱。
根据周期信号展成傅里叶级数的不同形式又分为单边频谱和双边频谱。
1单边频谱若周期信号)(t f 的傅里叶级数展开式为式(3-15),即∑ ∞=+Ω+=10)cos()(n n n t n A A t f ϕ (3-24)则对应的振幅频谱n A 和相位频谱n ϕ称为单边频谱。
例3-3 求图3-4所示周期矩形信号)(t f 的单边频谱图。
解 由)(t f 波形可知, )(t f 为偶函数,其傅里叶系数⎰==2/0021)(4T dt t f T a⎰=Ω=2/0)4/sin(2cos )(4T n n n tdt n t f T a ππ0=n b故∑∑∞=∞=Ω+=Ω+=110cos )4/sin(241cos 2)(n n n tn n n t n a a t f ππ因此410=A , ππn n A n)4/sin(2=即45.01=A , 32.02≈A , 15.03≈A , 04=A , 09.05≈A , 106.06≈A ┅单边振幅频谱如图3-5所示。
tf(t)图 3 - 4ττττ4 2/ 0 2/ 4--1图 3 - 50.250.450.320.150.090.106ΩΩΩΩΩΩΩ7 6 5 4 3 2 0A n2双边频谱若周期信号)(t f 的傅里叶级数展开式为式(3-17),即25)-(3 )(∑∞-∞=Ω=n tjn neF t f则n F 与Ωn 所描述的振幅频谱以及n F 的相位n n F θ=arctan 与Ωn 所描述的相位频谱称为双边频谱。
一文看懂周期信号的频谱特点周期信号概念是周期信号瞬时幅值随时间重复变化的信号。
常见的周期信号有:正弦信号、脉冲信号以及它们的整流、微分、积分等。
这类可称为简单信号。
它们的特点是在一个周期内的极值点不会超过两个且周期性特征明显。
对于这类已明确具有周期特性的信号,周期与否的判别相对简单,周期测量的方法也很成熟完善,如:过零检测法,脉冲整形法等。
x(t)=x(t+kT),k=1,2.。
式中t表示时间,T表示周期。
频谱的概念频谱是频率谱密度的简称,是频率的分布曲线。
复杂振荡分解为振幅不同和频率不同的谐振荡,这些谐振荡的幅值按频率排列的图形叫做频谱。
频谱广泛应用于声学、光学和无线电技术等方面。
频谱将对信号的研究从时域引入到频域,从而带来更直观的认识。
把复杂的机械振动分解成的频谱称为机械振动谱,把声振动分解成的频谱称为声谱,把光振动分解成的频谱称为光谱,把电磁振动分解成的频谱称为电磁波谱,一般常把光谱包括在电磁波谱的范围之内。
分析各种振动的频谱就能了解该复杂振动的许多基本性质,因此频谱分析已经成为分析各种复杂振动的一项基本方法。
周期信号频谱的特点(1)离散性:频谱谱线是离散的。
(2)收敛性:谐波幅值总的趋势随谐波次数的增加而降低。
(3)谐波性:谱线只出现在基频整数倍的频率处。
周期信号的有效频谱宽度在周期信号的频谱分析中,周期矩形脉冲信号的频谱具有典型的意义,得到广泛的应用。
下面以图3-8所示的周期矩形脉冲信号为例,进一步研究其频谱宽度与脉冲宽度之间的图3-8关系。
图3-8所示信号)(tf的脉冲宽度为,脉冲幅度为E,重复周期为T,重复角频率为若将)(tf展开为式(3-17)傅里叶级数,则由式(3-18)可得。
1-1 周期信号频谱3特点离散性,谐波性,收敛性1-2 信号的分哪几类以及特点是什么?⑴、 按信号随时间的变化规律分为确定性信号和分确定性信号,确定信号分为周期信号(包括谐波信号和一般周期信号)和非周期信号(准周期信号和以便非周期信号);非确定性信号包括平稳随机信号(包括各态历经信号和非各态历经信号)和非平稳随机信号。
⑵、 按信号幅值随时间变化的连续性分类,信号包括连续信号和离散信号,其中连续信号包括模拟信号和一般模拟信号,离散信号包括一般离散信号和数字信号。
(3)按信号的能量特征分类,信号包括能量有限信号和功率有限信号。
1-2 什么是单位脉冲函数)(t δ?它有什么特性?如何求其频谱?⑴单位脉冲函数的定义在ε时间内矩形脉冲()εδt (或三角形脉冲及其他形状脉冲)的面积为1,当0ε→时,()εδt 的极限()0lim εεδt →,称为δ函数。
⑵()δt 函数的性质①积分筛选特性。
②冲击函数是偶函数,即()()δt δt =-。
③乘积(抽样)特性:④卷积特性:⑶单位脉冲信号的傅立叶变换等于1,其频谱如下图所示,这一结果表明,在时域持续时间无限短,幅度为无限大的单位冲击信号,在频域却分解为无限宽度频率范围内幅度均匀的指数分量。
2-1.线性系统主要性质及为什么理想测量系统是线性系统?(1)线性系统的主要性质:叠加性,比例特性微分特性,微分特性,积分特性,频率保持特性(2)这是因为目前处理线性系统及其问题的数学理论较为完善,而对于动态测试中的非线性校正还比较困难。
虽然实际的测试系统不是一种完全的线性系统,但在一定的工作频段上和一定的误差允许范围内均可视为线性系统,因此研究线性系统具有普遍性。
2-2.测量系统的静态特性及动态特性答: 测量系统静态特性的主要参数有灵敏度、线性度、回程误差、量程、精确度、分辨力、重复性、漂移、稳定性等。
测量系统的动态特性指输入量随着时间变化时,其输出随着输入而变化的关系。