英文文献 科技类 原文及译文33
- 格式:doc
- 大小:53.00 KB
- 文档页数:5
机器人走进千家万户(1)比尔﹒盖茨设想一下:在一个新的产业诞生之际, 你目睹见证了这一切!这个产业是在前所未有的新技术基础上发展起来的, 其中包括一些实力雄厚企业销售的高度专业化商务设备, 还有越来越多的新兴公司生产的新奇玩具、为玩具藏家青睐的机巧装置以及其他一些奇特有趣的特殊产品。
但同时, 这还是一个缺乏行业标准和平台的产业,且尚不成规模。
项目复杂, 进步缓慢, 实际应用更是少之有少。
事实上, 尽管对这个产业的未来充满热情和希望,但是没有人能明确地说出什么时间-- 或究竟是否有可能--它能取得关键性的规模发展。
但是,若真能实现发展, 那么,它很可能改变整个世界。
当然, 上述描述可算是上世纪70 年代中期计算机产业的写照, 也就在那时, 保罗·艾伦和我成立了微软公司。
当时,部分大企业、政府部门和其他一些机构都在使用笨重昂贵的主计算机进行后台运算。
知名大学和大型工业实验室的研究人员正试图建造出最基本的构件, 以使信息化时代的到来成为可能。
当时因特尔公司刚刚推出他们的8080 微处理器,安他利公司正在销售一款流行电子游戏Pong 。
而在一些自发组成的计算机俱乐部里,热忠于此的人们急切地努力探索这种新技术带来的好处究竟是什么。
但当时我脑海中所萦绕的则是更具前瞻性的问题:机器人产业即将作为一项新兴的产业而崛起,其当时的发展同30 年前计算机的发展如出一辙。
想想看, 目前汽车组装线上使用的制造型机器人已替代了昔日的主计算机。
这个产业其他的典型产品包括可进行外科手术的机器手, 在伊拉克和阿富汗用于路边及地面排雷的侦察机器人, 以及可以进行地板吸尘的家用机器人。
电子产品公司还推出了可模仿人类、狗、恐龙等的机器人玩具, 而玩具收藏者们正迫不及待地想要猎取一套乐高公司生产的最新机器人系列玩具。
与此同时, 世界尖端科技人员正试图解决机器人技术中最棘手的难题, 诸如视觉识别、远程操控、以及学习型机器等问题, 而且他们正在不断获得成功。
科技文献中英文摘要范文English:Nowadays, with the rapid advancement of technology, there has been increasing interest in applying artificial intelligence (AI) to various fields such as healthcare, finance, transportation, and more. AI has the potential to revolutionize these industries by improving efficiency, accuracy, and decision-making processes. In healthcare, AI tools can assist doctors in diagnosing diseases, predicting patient outcomes, and even personalizing treatment plans. In finance, AI algorithms can analyze market trends, predict stock prices, and detect fraudulent activities. In transportation, AI can optimize routes, reduce traffic congestion, and improve safety measures. Despite the great benefits AI can bring, there are also ethical and privacy concerns that need to be addressed. It is essential for policymakers, researchers, and industry professionals to work together to ensure responsible and ethical AI development.中文翻译:如今,随着科技的快速发展,人们越来越热衷于将人工智能(AI)应用于医疗保健、金融、交通等各个领域。
Multi-texture-model for Water Extraction Based on Remote Sensing ImageHua WANG, Li PAN, Hong ZHENGSchool of Remote Sensing and Information & Engineering, Wuhan University 129 Luoyu Road,Wuhan 430079,P.R.ChinaSchool of Electronic Information, Wuhan University 129 Luoyu Road, Wuhan 430079,P.R.ChinaAbstract:In this paper, a multi-texture-model for water extraction based on remote sensing imagery is proposed. The model is applied to extract inland water (including wide river, lake and reservoir)from high-resolution panchromatic images. Firstly directional variance is used to find river regions, and then grain table is adopted to avoid noise including objects that have similar directional variance characteristic as water surfaces. The experiment result shows that the proposed method provides an effective way for water extraction.1. IntroductionThe recognition of water from remote sensing image has drawn considerable attention in recent yeas. A large number of publications about water extraction appeared and various approaches for water extraction have been proposed. Zhou developed a descriptive model for automatic extraction of water based on spectral characteristics[1]. Barton applied channel 4 for NOAA/AVHRR to extract water[2]. Du proposed a approach for water extraction from SPOT-5 based on decision tree algorithm[3]. Li recognized and monitored clear water from MODIS[4]. Wu extracted water from Quick Bird image and used active contour model to obtain accurate position of river bank[5]; In order to extract water from high-spatial remote sensing images, He used wavelet technique to expend the information and cleaned main noise of the images, and then presented multi-window linearity reserve technique to conserve linear water[6].Recently, most research work on water extraction was forced on automatic recognition of water from remote sensing images based on spectral characteristics. However, there are some disadvantages of these methods: (1) The resolution of image used for water extraction is low. The minimum size of recognizable object is depended on the spatial resolution of sensor. Therefore it is difficult to obtain accurate position of water boundary. (2) Due to the characteristic of water itself and the sensor applied, in certain channels the spectral features of different objects are equilibrated. The equilibration leads to the phenomena of “different objects same image” or“different images same object”, which results in noise objects included in extraction result.In this paper, a multi-texture-model for water extraction based on remote sensing is proposed. The model is applied to extract inland water (including wide river, lake and reservoir) fromhigh-resolution panchromatic image. Firstly directional variance is applied to find river regions, and then grain table is adopted to avoid noise including objects that have similar directional variance characteristic as water surfaces. The experiment result shows that the proposed method provides an effective way for water extraction.This paper is organized as follows. In Section 2, the directional variance model adopted is introduced. Then, fusion of proposed grain table model with directional variance model is discussed in Section 3.The experimental results of the proposed multi-texture-model and comparative studies with single models are given in Section 4. We conclude this paper in Section 5.2. Directional Variance ModelThe aim of our research is to extract water larger than 100m2from panchromatic images. As shown in Figure 2(a), the research objects can be divided into three classes: wide river, lake and reservoir, which all represent as region in high-resolution imageries. The objects of background can be divided into two classes: building and cropland, which also represent as region.In panchromatic imagery, wide river has a similar gray level to building and cropland, though the mean grayof lake and reservoir is much lower than the background objects. Conventional methods for water extraction based on spectral characteristics are not effective in the situation. In the meantime, water body defines homogeneous areas whereas building and cropland correspond to heterogeneous regions. Therefore, we take into account the homogeneity of the image to separate wide river, lake and reservoir from background instead. To characterize the difference of homogeneity between water body and the other types of areas, we use a textual operator: the directional variance.2.1. The Directional Variance OperatorThe operator is derived from those defined by Guerin & Maitre and Airault & Jamet[10]. As shown in Figure1, the directional variance consists in computing, for each pixel M of the image, the variance of the gray levels of the image on several direction of a circle whose center is M and radius is R. Then, the direction with the highest variance value is kept. Its direction defines the direction for which image is the most heterogeneous, locally. Its variance value is the directional variance value of the pixel M.2.2. Extraction of water based on directional varianceAccording to the definition of the operator, the minimum acreage of recognizable water body is depended on the length of radius R. We have chosen a length of 10 pixels for 1m resolution. The directional variances of the five typical training samples (wide river, lake, reservoir, building and cropland) have been computed and the statistical comparison is summarized in Table1. The overall average of water directional variance is lower than the objects of background.Nevertheless, the directional variance of cropland is similar to wide river with overlapping potion over 90%.Inhigh-resolution panchromatic imagery, details inside wide river, such as boat, wave, etc, are represented clearly which result in the heterogeneous of water. In the meantime, the textures of parts of building (for example, roof ) and cropland are rather fine. In a small window, these potions define homogeneous areas with similar directional variance as wide river. The result is improved if we chosen a length of 100 pixels. The statistical comparison is shown in Table2. If the length of radius is large enough, directional variance of building is higher than other objects obviously with no overlapping portion; the difference between cropland and wide river is increased while the overlapping potion is decreased. However, increasing the radius leads to two problems which are outlined as follow:1) The size of recognizable water body increases;therefore water which has small acreage (for example narrow river) can not be detected.2) The position of water bank is not accurate although the spatial resolution of imagery is rather high.Hence, in this paper, a multi-texture-model is presented and two texture models are fused to extract water from panchromatic images. Firstly, we chose a radius of 10 pixels to extract water based on directional variance; and then, grain table is adopted to avoid noise including parts of building and cropland that have similar directional variance characteristic as water surface.3. Multi-texture-modelIn high-resolution imagery, cropland and building represents structural characteristic. According to this characteristic, grain analysis is adopted for further research on the original extraction based on directional variance. The grain table histogram is able to represent structural characteristic of the research object, which can be applied to recognize many kinds of different objects [12].3.1. Extraction of water fused by grain tableThe grain table histograms of the five typical training samples (wide river, lake, reservoir, building and cropland) are computed and correlation coefficients between them are summarized in Table3. Correlation coefficients between water classes are over 85%, however, correlation coefficients between water classes and background classes are lower than 65%.Hence, we compare the correlation coefficients of regions in extraction image base on directional variance with three water samples and two background samples respectively. If the region has a higher correlation coefficient with background classes, it will be marked background and wiped off[13].4.Experimental ResultsWe run the algorithm on several high-resolution panchromatic images. In Figure2.(a), we have been considering an aerial photograph(6126×4800) of a region in Wuhan, China, the resolution of which is 1m,including building, cropland, wide river( Changjiang river), lake, reservoir and cropland. The results of extraction based on directional variance with radius of 10 pixels is displayed in Figure2.(b), and clearly, water has been detected completely, whereas parts of building and cropland are included as noise objects in the result. Water extraction using directional variance with radius of 100 pixels is displayed in Figure2.(c)with correctness over 95%, however, small lakes are missed and the position of bank is not as accurate as Figure2.(b). Finally, in Figure2.(d), the result of Figure2.(b) is fused by grain table analysis, so that the correctness and completeness of extraction are both over 90%.5. ConclusionsBased on textural analysis of water in high-resolution panchromatic imagery, a multi-texture-model is presented for water extraction.The experimental results proved that the approach is efficient for inland water (including wide river, lake and reservoir) extraction. As the complexity and diversity of water, the rate of recognition of our algorithm fluctuates. Furthermore, the method is supervised which needs a lot of human interference to obtain training samples. Therefore, there are problems to be solved in future:1) Our further work should be extensible to multispectral remote sensing images.2) To decrease human interference, old vector will be applied to obtain training samples instead. 6. AcknowledgmentsThe work was supported by the National Key Technology R&D Program of China under grant No.2006BAB10B01.根据遥感图象的多纹理模型相关的水抽取Hua WANG, Li PAN, Hong ZHENGSchool of Remote Sensing and Information & Engineering, Wuhan University 129 Luoyu Road,Wuhan 430079,P.R.ChinaSchool of Electronic Information, Wuhan University 129 Luoyu Road, Wuhan 430079,P.R.China文摘:在本文中,提议了一个多纹理模型为根据遥感成像的水提取。
Sensing Human Activity:GPS Tracking感应人类活动:GPS跟踪Stefan van der Spek1,*,Jeroen van Schaick1,Peter de Bois1,2and Remco de Haan1Abstract:The enhancement of GPS technology enables the use of GPS devices not only as navigation and orientation tools,but also as instruments used to capture travelled routes:assensors that measure activity on a city scale or the regional scale.TU Delft developed aprocess and database architecture for collecting data on pedestrian movement in threeEuropean city centres,Norwich,Rouen and Koblenz,and in another experiment forcollecting activity data of13families in Almere(The Netherlands)for one week.Thequestion posed in this paper is:what is the value of GPS as‘sensor technology’measuringactivities of people?The conclusion is that GPS offers a widely useable instrument tocollect invaluable spatial-temporal data on different scales and in different settings addingnew layers of knowledge to urban studies,but the use of GPS-technology and deploymentof GPS-devices still offers significant challenges for future research.摘要:增强GPS技术支持使用GPS设备不仅作为导航和定位工具,但也为仪器用来捕捉旅行路线:作为传感器,测量活动在一个城市或区域范围内规模。
目录1译文 (1)2原文 (7)1参考文献译文绿色创想建筑商计划提供了节能解决方案与行业认可的新住房平均相比,绿色畅想建筑商计划旨在降低家用能源和水的想好,减少排放。
该项目创新性地结合了建筑科学和高品质的产品,在帮助建筑商和开发商建造舒适型住房的同时,降低房屋对环境的影响。
随着生活费用的不断上涨,悦来愈多的人开始考虑将环保技术纳入新住房当中。
与行业认可的新住房陪你冠军水瓶相比,依照GE绿色创想建筑商计划所建造的房屋每年客减少20%的能耗与室内用水量,并且使生活用气排放量减少20%。
对于一套面积为2500平方英尺的住房而言,该计划每年可使购房者减少600至1500美元的电费和水费。
自该计划于2007年5月启动以来,整个美国与加拿大的建筑商与开发商纷纷申请建造绿色创想式房屋,其中包括德州西斯顿峡谷们的社区开发商。
按照绿色畅想计划正在开发的首个峡谷么社区被称为Discovery Companies,预计将于2008年夏季开盘。
加拿大的Fi的零售税环保想象住房计划推出在2007年9月,GE加拿大与波尔多发展组织签订计划,决定在位于加拿大阿尔伯他省卡尔加里西部的社区Rocky View实施加拿大首个绿色创想建筑商计划。
这块地区60多年来,一直有当地的一个牧民家庭所有,长期以来除了放养家畜之外始终难以用于其他用途。
迫于地区发展的强大压力,这个家庭决定对这块土地进行开发。
当这家人了解到如何最邮箱的进行地产开发之后,开始认真考虑如何处理这篇土地。
其中,家庭价值、对环境的保护意识以及社区精神都称为了需要考虑的关键问题。
实施证明,将GE的绿色创想建筑商计划与波尔多发展组织的环境可持续发展战略相结合是非常成功的。
规划中的面积为1750英亩的混用型绿色创想建筑商和谐开发项目见那个进行客持续开发,其中包括关于有效实用土地的创新性环保计划。
竣工使,此开放项目将建筑起3500所住房和衣架保健中心、一个27洞国际高尔夫球场、一所学校和一篇商业用地。
目录1介绍 (1)在这一章对NS2的引入提供。
尤其是,关于NS2的安装信息是在第2章。
第3章介绍了NS2的目录和公约。
第4章介绍了在NS2仿真的主要步骤。
一个简单的仿真例子在第5章。
最后,在第.8章作总结。
2安装 (1)该组件的想法是明智的做法,以获取上述件和安装他们的个人。
此选项保存downloadingtime和大量内存空间。
但是,它可能是麻烦的初学者,因此只对有经验的用户推荐。
(2)安装一套ns2的all-in-one在unix-based系统 (2)安装一套ns2的all-in-one在Windows系统 (3)3目录和公约 (4)目录 (4)4运行ns2模拟 (6)ns2程序调用 (6)ns2模拟的主要步骤 (6)5一个仿真例子 (8)6总结 (12)1 Introduction (13)2 Installation (15)Installing an All-In-One NS2 Suite on Unix-Based Systems (15)Installing an All-In-One NS2 Suite on Windows-Based Systems (16)3 Directories and Convention (17)Directories and Convention (17)Convention (17)4 Running NS2 Simulation (20)NS2 Program Invocation (20)Main NS2 Simulation Steps (20)5 A Simulation Example (22)6 Summary (27)1介绍网络模拟器(一般叫作NS2)的版本,是证明了有用在学习通讯网络的动态本质的一个事件驱动的模仿工具。
模仿架线并且无线网络作用和协议(即寻址算法,TCP,UDP)使用NS2,可以完成。
一般来说,NS2提供用户以指定这样网络协议和模仿他们对应的行为方式。
AMBULANT:A Fast,Multi-Platform Open Source SML Player Dick C.A. Bulterman, Jack Jansen, Kleanthis Kleanthous, Kees Blom and Daniel Benden CWI: Centrum voor Wiskunde en InformaticaKruislaan 4131098 SJ Amsterdam, The Netherlands +31 20 592 43 00 Dick.Bulterman@cwi.nl ABSTRACTThis paper provides an overview of the Ambulant Open SMIL player. Unlike other SMIL implementations, the Ambulant Player is a reconfigureable SMIL engine that can be customized for use as an experimental media player core.The Ambulant Player is a reference SMIL engine that can be integrated in a wide variety of media player projects. This paper starts with an overview of our motivations for creating a new SMIL engine then discusses the architecture of the Ambulant Core (including the scalability and custom integration features of the player).We close with a discussion of our implementation experiences with Ambulant instances for Windows,Mac and Linux versions for desktop and PDA devices.Categories and Subject Descriptors H.5.1 Multimedia Information Systems [Evaluation]H.5.4 Hypertext/Hypermedia [Navigation]. General TermsExperimentation, Performance, V erification KeywordsSMIL, Player, Open-Source, Demos1.MOTIV ATIONThe Ambulant Open SMIL Player is an open-source, full featured SMIL 2.0 player. It is intended to be used within the researcher community (in and outside our institute) in projects that need source code access to a production-quality SMIL player environment. It may also be used as a stand-alone SMIL player for applications that do not need proprietary mediaformats.The player supports a range of SMIL 2.0 profiles ( including desktop and mobile configurations) and is available in distributions for Linux, Macintosh, and Windows systems ranging from desktop devices to PDA and handheld computers. While several SMIL player implementationsexist,including the RealPlayer [4], InternetExplorer [5], PocketSMIL [7],GRiNS [6],X-SMILES [8] and various proprietary implementations for mobile devices, we developed Ambulant for three reasons:Permission to make digital or hard copiesof all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, or republish,to post on servers or to redistribute tolists,requires prior specific permissionand/or a fee.'MM' 04, October 10-16, 2004, New Y ork, New Y ork, USA.Copyright 2004 ACM 1-58113-893-8/04/0010...$5.00.•N one of the existi ng SMIL players provides a complete and correct SMIL 2.0 implementation. The Ambulant player implements all of SMIL, based on the SMIL 2.0 Language profile plus extensions to support advanced animation and the needs of the mobile variant used by the 3GPP/PSS-6 SMIL specification [9]. •A ll commercial SMIL players are geared to the presentation of proprietary media. The Ambulant player uses open-source media codecs and open-source network transfer protocols, so that the player can be easily customized foruse in a wide range of researchprojects.• Our goal is to build a platform that will encourage the development of comparable multimedia research output.By providing what we expect will be a standard baseline player, other researchers and developmentorganizations can concentrate on integratingextensions to the basic player (either in terms of new media codecs or new network control algorithms). These extensions can then be shared by others.In contrast to the Helix client architecture [10], which also moved to a GPL core in mid-2004, the Ambulant player supports a wider range of SMIL target application architectures,it provides a more complete and correct implementation of the SMIL language,it provides much better performance on low-resource devices and it provides a more extensible media player architecture. It also provides an implementation that includes all of the media codecs as part of the open client infrastructure.The Ambulant target community is not viewers of media content, but developers of multimedia infrastructures, protocols and networks. Our goal has been to augument the existing partial SMIL implementations produced by many groups with a complete implementation that supports even the exotic features of the SMIL language. The following sections provide an introduction to the architecture of the player and describe the state of the various Ambulant implementations. We then discuss how the Ambulant Core can be re-purposed in other projects. We start with a discussion of Ambulant 's functional support for SMIL.2.FUNCTIONAL SUPPORT FOR SMIL 2.0The SMIL 2.0 recommendation [1] defines 10 functional groups that are used to structure the standard '5s0+ modules. These modules define the approximately 30 XML elements and 150 attributes that make up the SMIL 2.0 language. In addition to defining modules, the SMIL 2.0 specification also defines a number of SMIL profiles: collection of elements, attributes and attribute values that are targeted to meet the needs of a particular implementation community. Common profiles include the full SMIL 2.0 Language, SMIL Basic, 3GPP SMIL,XHTML+SMIL and SMIL 1.0 profiles.A review of these profiles is beyond the scope of this paper(see [2]), but a key concern of Ambulant ' sdevelopment has been to provide a player core that can be used to support a wide range of SMIL target profiles with custom player components.This has resulted in an architecture that allows nearly all aspects of the player to be plug-replaceable via open interfaces. In this way, tailored layout, scheduling, media processing and interaction modules can be configured to meet the needs of individual profile requirements. The Ambulant player is the only player that supports this architecture.The Ambulant player provides a direct implementation of the SMIL 2.0 Language profile, plus extensions that provide enhanced support for animation and timing control. Compared with other commercial and non-commercial players, the Ambulant player implements not only a core scheduling engine, it also provides complete support for SMIL layout,interaction, content control and networking facilities.Ambulant provides the most complete implementation of the SMIL language available to date.3.AMBULANT ARCHITECTUREThis section provides an overview of the architecture of the Ambulant core. While this discussion is high-level, it will provide sufficient detail to demonstrate the applicability of Ambulant to a wide range of projects. The sections below consider thehigh-level interface structure, the common services layer and the player com mon core architecture.3.1The High-Level Interface StructureFigure 1 shows the highest level player abstract ion. The player core support top-level con trol exter nal entry points (in clud ing play/stop/pause) and in turn man ages a collection of external factories that provide in terfaces to data sources (both for sta ndard and pseudo-media), GUI and window system interfaces and in terfaces to ren derers. Unlike other players that treat SMIL as a datatype [4],[10], the Ambula nt en gi ne has acen tral role in in teractio n with the input/output/scree n/devices in terfaces.This architecture allows the types of entry points (and the moment of evaluation) to be customized and separated from the various data-sources and renderers. This is important forintegration with environments that may use non-SMIL layout or special device in terface process ing.Figuit 1 k Ambulaittliigk-ljtwLstruchm.3.2The Common Services LayerFigure 2 shows a set of com mon services that are supplied for the player to operate. These in clude operati ng systems in terfaces, draw ing systems in terfaces and support for baseli ne XML fun ctio ns.All of these services are provided by Ambulant; they may also be integrated into other player-related projects or they may be replaced by new service components that are optimized for particular devices or algorithms. Hsurt 2. Amldant Common [Services Liwr/3.3The Player Common CoreFigure 3 shows a slightly abstracted view ofthe Ambula nt com mon core architecture. The view is essentially that of a single instanceof the Ambula nt player. Although only oneclass object is shown for eachservice,multiple interchangeable implementations have been developed for all objects (except the DOM tree) during theplayer 'development. As an example,multiple schedulers have bee n developed to match the fun cti onalcapabilities of various SMIL profiles.Arrows in the figure denote that one abstract class depends on the services offered by the other abstract class. Stacked boxes denote that a si ngle in sta nce of the player will con tain in sta nces of multiple con crete classes impleme nting that abstract class: one for audio, one for images, etc. All of the stacked-box abstract classes come with a factory function to create the in sta nces of the required con crete class.The bulk of the player implementation is architected to be platform in depe ndent. As we will discuss, this platform in depe ndent component has already been reused for five separate player impleme ntati ons. The platform dependent portions of the player include support for actual ren deri ng, UI in teract ion and datasource processing and control. When the player is active, there is asingle instanee of the scheduler and layout manager, both of which depend on the DOM tree object. Multiple instances of data source and playable objects are created. These in teract with multiple abstract rendering surfaces. The playable abstract class is the scheduler in terface (play, stop) for a media no de, while the renderer abstract class is the drawing in terface (redraw). Note that not all playables are ren derers (audio, SMIL ani mati on). The architecture has bee n desig ned to have all comp onents be replaceable, both in terms of an alter native impleme ntati on of a give n set of functionality and in terms of a complete re-purposing of the player components. In this way, the Ambulant core can be migrated to being a special purpose SMIL engine or a non-SMIL engine (such as support for MPEG-4 or other sta ndards).The abstract in terfaces provided by the player do not require a “ SMIL on Top” model of docume nt process ing. The abstract in terface can be used with other high-level control 4.1 Implementation PlatformsSMIL profiles have been defined for a widerange of platforms and devices, ranging fromdesktop implementations to mobile devices. Inorder to support our research on distributedmodels (such as in an XHTML+SMIL implementation), or to control non-SMILlower-level rendering (such as timed text).Note that in order to improve readability of theillustrati on, all auxiliary classes (threadi ng, geometry and color han dli ng, etc.) and several classes that were not important for general un dersta nding (player driver engine, transitions, etc.) have been left out of the diagram.4. IMPLEMENTATION EXPERIENCESThis sectio nwill briefly review ourimpleme ntatio n experie nces with theAmbula nt player. We discuss the implementation platforms used during SMIL ' s development and describe a set of test documents that were created to test the fun cti on ality of the Ambula nt player core. We con clude with a discussi on on the performa nee of the Ambula nt player.SMIL document extensions and to provide a player that was useful for other research efforts, we decided to provide a wide range of SMIL implementations for the Ambulant project. The Ambulant core is available as a single C++ source distribution that provides support for the following platforms:•Linux: our source distributi on in elude makefiles that are used with the RH-8 distribution of Linux. We provide support for media using the FF-MPEG suite [11]. The player interface is built using the Qt toolkit [12]. •Macintosh:Ambulant supports Mac OS X 10.3. Media rendering support is available via the internal Quicktime API and via FF-MPEG . The player user interface uses standard Mac conventions and support (Coca). •Windows: Ambulant provides conventional Win32 support for current generation Windows platforms. It has been most extensivelytested with XP (Home,Professional and TabletPC) and Windows-2000. Media rendering include third-party and local support for imaging and continuous media. Networking and user interface support are provided using platform-embeddedlibraries.•PocketPC: Ambulant supports PocketPC-2000,PocketPC-2002andWindows Mobile 2003 systems. The PocketPC implementations provide support for basic imaging, audio and text facilities.•Linux PDA support:Ambulant provides support for the Zaurus Linux-PDA. Media support is provided via the FF-MPEG library and UI support is provide via Qt. Media support includes audio, images and simple text.In each of these implementations, our initial focus has been on providing support for SMIL scheduling and control functions.We have not optimized media renderer support in the Ambulant 1.0 releases, but expect to provide enhanced support in future versions. 4.2 Demos and Test SuitesIn order to validate the Ambulant player implementation beyond that available with the standard SMIL test suite [3], several demo and test documents have been distributed with the player core. The principal demos include: •Welcome: A short presentation that exercises basic timing,media rendering, transformations and animation.•NYC: a short slideshow in desktop and mobile configurations that exercises scheduling, transformation and media rendering.•News: a complex interactive news document that tests linking, event-based activation, advanced layout, timing and media integration. Like NYC, this demo support differentiated mobile and desktop configurations.•Links: a suite of linking and interaction test cases.•Flashlight: an interactive user'sguide that tests presentation customization using custom test attributes and linking/interaction support. These and other demos are distributed as part of the Ambulant player web site [13].4.3Performance EvaluationThe goal of the Ambulant implementation was to provide a complete and fast SMIL player. We used a C++ implementation core instead of Java or Python because our experience had shownthat on small devices (which we feel hold significant interest for future research), the efficiency of the implementation still plays a dominant role. Our goal was to be able to read, parse, model and schedule a 300-node news presentation in less than two seconds on desktop and mobile platforms. This goal was achieved for all of the target platforms used in the player project. By comparison, the same presentation on the Oratrix GRiNS PocketPC player took 28 seconds to read, parse and schedule. (The Real PocketPC SMIL player and the PocketSMIL players were not able to parseand schedule the document at all because of their limited SMIL language support.)In terms of SMIL language performance, our goal was to provide a complete implementation of the SMIL 2.0 Language profile[14]. Where other players have implemented subsets of this profile,Ambulant has managed to implement the entire SMIL 2.0 feature set with two exceptions: first, we currently do not support the prefetch elements of the content control modules; second, we provide only single top-level window support in the platform-dependent player interfaces. Prefetch was not supported because of the close association of an implementation with a given streaming architecture. The use of multiple top-level windows, while supported in our other SMIL implementation, was not included in version 1.0 of Ambulant because of pending working on multi-screen mobile devices. Both of these feature are expected to be supported in the next release of Ambulant.5.CURRENT STATUS AND AVAILABILITYT his paper describes version 1.0 of the Ambulant player, which was released on July 12, 2004. (This version is also known as the Ambulant/O release of the player.) Feature releases and platform tuning are expected to occur in the summer of 2004. The current release of Ambulant is always available via our SourceForge links [13], along with pointers to the most recent demonstrators and test suites.The W3C started its SMIL 2.1 standardization in May, 2004.At the same time, the W3C' s timed text working group is completing itsfirst public working draft. We will support both of these activities in upcoming Ambulant releases.6.CONCLUSIONSWhile SMIL support is becoming ubiquitous (in no small part due to its acceptance within the mobile community), the availability of open-source SMIL players has been limited. This has meant that any group wishing to investigate multimedia extensions or high-/low-level user or rendering support has had to make a considerable investment in developing a core SMIL engine.We expect that by providing a high-performance, high-quality and complete SMIL implementation in an open environment, both our own research and the research agendas of others can be served. By providing a flexible player framework, extensions from new user interfaces to new rendering engines or content control infrastructures can be easily supported.7.ACKNOWLEDGEMENTS This work was supported by the Stichting NLnet in Amsterdam.8.REFERENCES[1]W3C,SMIL Specification,/AudioVideo.[2]Bulterman,D.C.A and Rutledge, L.,SMIL 2.0:Interactive Multimedia for Weband Mobile Devices, Springer, 2004.[3]W3C,SMIL2.0 Standard Testsuite,/2001/SMIL20/testsuite/[4]RealNetworks,The RealPlayer 10,/[5]Microsoft,HTML+Time in InternetExplorer 6,/workshop/author/behaviors/time.asp[6]Oratrix, The GRiNS 2.0 SMIL Player./[7]INRIA,The PocketSMIL 2.0 Player,wam.inrialpes.fr/software/pocketsmil/. [8],X-SMILES: An Open XML-Browser for ExoticApplications./[9]3GPP Consortium,The Third-GenerationPartnership Project(3GPP)SMIL PSS-6Profile./ftp/Specs/archive/26_series/26.246/ 26246-003.zip[10]Helix Community,The Helix Player./.[11]FFMPEG ,FF-MPEG:A Complete Solution forRecording,Converting and Streaming Audioand Video./[12]Trolltech,Qtopia:The QT Palmtop/[13]Ambulant Project,The Ambulant 1.0 Open Source SMIL 2.0Player, /.[14]Bulterman,D.C.A.,A Linking andInteraction Evaluation Test Set for SMIL,Proc. ACM Hypertext 2004, SantaCruz,August, 2004.。
科技英语阅读与翻译全文Humanitarian Aid in SpaceSpace exploration technology will benefit developing countries in a variety of ways. Whether it's information about climate change or communication technologies that give remote areas access to the world outside, space science can come to the aid of vulnerable people in many countries.For the past two decades, Japan Aerospace Exploration Agency (JAXA) has been sending humanitarian aid dispatched from its space platform. This ambitious project has proved successful, and it’s been praised for its achievements in various aspects.The two strategic areas set forth for JAXA’s humanitarian aid effort are science and education. JAXA’s donations of books and puzzle sets are enabling elementary and junior high school kids in India to study science and math. There are plans to utilize remote sensing data to map out natural resources in Nepalese countryside and expand education related to environmental issues in Vietnam. In addition the agency is sending educational videos to the island nation of Palau tobetter understand their own local wildlife.JAXA is considered to be a pioneer in this area since the launch of their humanitarian aid initiative in 1997. The organization strives to make use of space applications for social welfare and reduce disparities in the world through a number of practical endeavors. The effort currently has a global reach, with projects taking place in seven continent, from Latin America to Africa.JAXA’s humanitarian aid programs will continue to grow with better technology and increased resources. The ongoing work reinforces the concept that space science and technology have the potential to contribute to enhancing the lives of people on Earth.人道主义援助在太空太空探索技术将在各个方面受益于发展中国家。
经济学人科技类文章中英双语(5篇范例)第一篇:经济学人科技类文章中英双语The Brain Activity Map绘制大脑活动地图Hard cell 棘手的细胞An ambitious project to map the brain is in the works.Possibly too ambitious 一个绘制大脑活动地图的宏伟计划正在准备当中,或许有些太宏伟了 NEWS of what protagonists hope will be America’s next big science project continues to dribble out.有关其发起人心中下一个科学大工程的新闻报道层出不穷。
A leak to the New York Times, published on February 17th, let the cat out of the bag, with a report that Barack Obama’s administration is thinking of sponsoring what will be known as the Brain Activity Map.2月17日,《纽约时报》刊登的一位线人报告终于泄露了秘密,报告称奥巴马政府正在考虑赞助将被称为“大脑活动地图”的计划。
And on March 7th several of those protagonists published a manifesto for the project in Science.3月7日,部分发起人在《科学》杂志上发表声明证实了这一计划。
The purpose of BAM is to change the scale at which the brain is understood.“大脑活动地图”计划的目标是改变人们在认知大脑时采用的度量方法。
科技英语课文段落翻译1、p16第1段第四行P r o g r a m s u s u a l l y r e s i d e……,a n d s p e e d.Programs usually reside within the computer and are retrieved and processed by the computer’s electronic, and the program results are stored or routed to output devices ,such as video display monitors or printers. Computers are used to perform a wide variety of activities with reliability ,accuracy, and speed.程序通常贮存在计算机中,计算机的电子器件会对其进行检索和处理,程序结果会被存起来或传给输出装置,如视频显示器或打印机。
人们运用计算机进行各种各样的活动,它可靠,准确而且快捷。
2、p17第5段L a p t o p c o m p u t e r s a n d P C s....t o d i s p l a y i n f o r m a t i o n(倒数第三行)Laptop computers and PCs are typically used in businesses and at home to communicate on computer networks, for word processing ,to track finances ,and to play games. They have large amounts of internal memory to store hundreds of programs and documents. They are equipped with a keyboard; a mouse, trackball, or other pointing device; and a video display monitor or liquid crystal display(LCD)to display information.典型情况下,商务上和家庭中使用膝上电脑和个人电脑在计算机网络上进行通信,进行文字处理,跟踪金融行市以及玩游戏。
Human Geomatics in Urban Design—Two Case Studies在城市设计中的人类地理信息学——两个案例研究Małgorzata Hanzl1,*,Karol Dzik2,Paulina Kowalczyk2,Krystian Kwieciński2,Ewa Stankiewicz2and AgataŁ.Wierzbicka2Abstract:The mapping of different aspects of urban phenomena and their relation to thephysical cityscape has been greatly extended by the use of geomatics.The tradition to basereasoning on‗understanding the world‘dates from the time of Aristotle.The extensionplan for Barcelona(Eixample),developed by Cerdà,which opened the era of modern urbanplanning,was preceded by analyses of rich data,describing both detailed demographicissues and physical structures.The contemporary,postmodernist city planning continuesthis tradition,although a shift towards analyses of more human-related issues can beobserved,covering,inter alia,citizens‘perception,cultural differences and patterns ofhuman activities with regard to distinct social groups.The change towards a morehuman-related perspective and the inclusion of urban morphology analyses are directconsequences of this trend.The required data may be gathered within a crowd-sourcingparticipation process.According to communicative planning theory,communication withthe wider public is indispensable in order to achieve the best results,and can be realizedwith the use of sophisticated IT tools.Evidence-based reasoning may be supported byimages of significant aesthetic values,which inspire immediate reactions.Keywords:GIS;crowd-sourcing;mash-up;education;urban planning;urban analyses摘要:不同方面的城市现象及其与物理城市景观的关系映射经由地理信息学的使用已经大大扩展了。
中国热门科技词汇科学发展观concept of scientific development全民科学文化素质scientific and cultural qualities of the entire people发展科技scientific and technological advancement科教兴国revitalize China through science and education农业技术agricultural technology[扩展]白色农业white agriculture (microbiological agriculture and biological cell agriculture)超级杂交水稻super-hybrid rice技术下乡spreading the application of science and technology in rural areas节水农业water-saving agriculture立体农业3-D agriculture农产品加工及转化the processing and commercialization of agro-products农业科技agro-science农作物良种seeds of high-quality crop农作物新品种选育the selection and breeding of new crops生态农业environmental-friendly agriculture无土栽培soil -less cultivationBP机,传呼beeper, pager背投屏幕rear projection screen不明飞行物unidentified flying object (UFO)operating system 操作系统产品科技含量technological element of a product创新innovation电话会议teleconference电话留言机answering machine对讲机talkie and walkie多媒体multimedia二期the second phase防抱死系统ABS (anti-lock braking system)孵化器incubator高产优质high yield and high quality高技术产业化apply high technology to production高科技板块high-tech sector高科技园high-tech park个人数字助理PDA (personal digital assistant)工业园区industrial park国家质量技术监督局the State Bureau of Quality and Technical Supervision 国家重点实验室national key laboratories火炬计划Torch Program (a plan to develop new and high technology)计算机中央处理器central processing unit(CPU)技术产权technology property right技术交底confide a technological secret to someone.technology-intensive product 技术密集产品交叉学科interdisciplinary branch of science科技成果转化为生产力transfer of scientific and technological achievements into productive forces科技含量technology content科技基础设施science and technology infrastructure科技是第一生产力Science and technology constitute a primary productive force科技体制改革reform of the science and technology management system科技与经济脱节science and technology are out of line from the economy科教兴国rejuvenate the country through science and education可持续发展战略strategy of sustainable development纳米nanometer三峡水利枢纽工程the key water control project at the Three Gorges on the Yangtze River物种起源origin of species新兴学科new branch of science研究成果research results在孵企业incubated enterprises自动取款机automatic teller machine (ATM)自然科学与社会科学的交叉融合integration of natural and social sciencesIT 信息技术[扩展]信息港info port信息高地information highland信息高速公路information superhighway信息革命information revolution信息含量information content信息化informationization信息技术处理ITA - Information Technology Agreement信息检索information retri办公自动化OA (Office Automation)笔记本电脑laptop / notebook / portable computer电脑病毒computer virus电脑犯罪computer crime电子管理e-management电子货币e-currency电子商务e-business; e-commerce电子商务认证e-business certification电子邮件E-mail非对称数字用户环路ADSL (Asymmetrical Digital Subscriber Loop)高速宽带互联网high-speed broadband networks公告板BBS (bulletin board system)光盘杂志CD-ROM magazine广域网WAN (wide area net word)汉字处理软件Chinese character processing softwarehacker 黑客计算机2000年问题Y2K problem计算机辅助教育CAI -computer assisted instruction计算机辅助设计CAD-computer assisted design计算机合成制造CAM-computer assisted manufacturing计算机中央处理器CPU - central processing unit超文本传送协议hypertext transfer protocol (HTTP)界面interface金融电子化computerized financial services局域网LAN - local area network互联网服务提供商ISP (Internet Service Provider)全球移动通信系统(全球通)global system for mobile communications (GSM)刻录机CD burner宽带接入broadband access宽带网broadband networks内联网、局域网(计算机)Intranet垃圾邮件junk mail千年问题、千年虫millennium bug; Y2K bug人工智能AI - artificial intelligence人机交互human - computer interaction人机交互human-computer interaction虚拟人visual humanvirtual net 虚拟网虚拟网virtual net虚拟现实virtual reality虚拟银行virtual bank因特网服务提供商ISP- internet service provider万维网World Wide Web(WWW)应用软件internet applications域名domain在线on line掌上电脑palm computer政府上网工程Government Online Project只读存储器read-only-memory (ROM)智能感知技术perceptive technology智能终端intelligent terminal中文信息处理系统Chinese information processing system 数码科技digital technology高保真Hi-Fi (High Fidelity)高清晰度电视high definition TV (HDTV)光谷optical valley光通讯optical communication蓝光光盘Blue -ray Disc数码港cyber portdigital globe 数字地球数字蜂窝移动通信digital cellular mobile telecommunications三维电影three-dimensional movie三维动画three-dimensional animation[详析] “蓝光光盘”利用蓝色的激光束来刻录数据。
附件四英文文献原文Artificial Intelligence"Artificial intelligence" is a word was originally Dartmouth in 1956 to put forward. From then on, researchers have developed many theories and principles, the concept of artificial intelligence is also expands. Artificial intelligence is a challenging job of science, the person must know computer knowledge, psychology and philosophy. Artificial intelligence is included a wide range of science, it is composed of different fields, such as machine learning, computer vision, etc, on the whole, the research on artificial intelligence is one of the main goals of the machine can do some usually need to perform complex human intelligence. But in different times and different people in the "complex" understanding is different. Such as heavy science and engineering calculation was supposed to be the brain to undertake, now computer can not only complete this calculation, and faster than the human brain can more accurately, and thus the people no longer put this calculation is regarded as "the need to perform complex human intelligence, complex tasks" work is defined as the development of The Times and the progress of technology, artificial intelligence is the science of specific target and nature as The Times change and development. On the one hand it continues to gain new progress on the one hand, and turning to more meaningful, the more difficult the target. Current can be used to study the main material of artificial intelligence and artificial intelligence technology to realize the machine is a computer, the development history of artificial intelligence is computer science and technology and the development together. Besides the computer science and artificial intelligence also involves information, cybernetics, automation, bionics, biology, psychology, logic, linguistics, medicine and philosophy and multi-discipline. Artificial intelligence research include: knowledge representation, automatic reasoning and search method, machine learning and knowledge acquisition and processing of knowledge system, natural language processing, computer vision, intelligent robot, automatic program design, etc.Practical application of machine vision: fingerprint identification, face recognition, retina identification, iris identification, palm, expert system, intelligent identification, search, theorem proving game, automatic programming, and aerospace applications.Artificial intelligence is a subject categories, belong to the door edge discipline of natural science and social science.Involving scientific philosophy and cognitive science, mathematics, neurophysiological, psychology, computer science, information theory, cybernetics, not qualitative theory, bionics.The research category of natural language processing, knowledge representation, intelligent search, reasoning, planning, machine learning, knowledge acquisition, combined scheduling problem, perception, pattern recognition, logic design program, soft calculation, inaccurate and uncertainty, the management of artificial life, neural network, and complex system, human thinking mode of genetic algorithm.Applications of intelligent control, robotics, language and image understanding, genetic programming robot factory.Safety problemsArtificial intelligence is currently in the study, but some scholars think that letting computers have IQ is very dangerous, it may be against humanity. The hidden danger in many movie happened.The definition of artificial intelligenceDefinition of artificial intelligence can be divided into two parts, namely "artificial" or "intelligent". "Artificial" better understanding, also is controversial. Sometimes we will consider what people can make, or people have high degree of intelligence to create artificial intelligence, etc. But generally speaking, "artificial system" is usually significance of artificial system.What is the "smart", with many problems. This involves other such as consciousness, ego, thinking (including the unconscious thoughts etc. People only know of intelligence is one intelligent, this is the universal view of our own. But we are very limited understanding of the intelligence of the intelligent people constitute elements are necessary to find, so it is difficult to define what is "artificial" manufacturing "intelligent". So the artificial intelligence research often involved in the study of intelligent itself. Other about animal or other artificial intelligence system is widely considered to be related to the study of artificial intelligence.Artificial intelligence is currently in the computer field, the more extensive attention. And in the robot, economic and political decisions, control system, simulation system application. In other areas, it also played an indispensable role.The famous American Stanford university professor nelson artificial intelligence research center of artificial intelligence under such a definition: "artificial intelligence about the knowledge of the subject is and how to represent knowledge -- how to gain knowledge and use of scientific knowledge. But another American MIT professor Winston thought: "artificial intelligence is how to make the computer to do what only can do intelligent work." These comments reflect the artificial intelligence discipline basic ideas and basic content. Namely artificial intelligence is the study of human intelligence activities, has certain law, research of artificial intelligence system, how to make the computer to complete before the intelligence needs to do work, also is to study how the application of computer hardware and software to simulate human some intelligent behavior of the basic theory, methods and techniques.Artificial intelligence is a branch of computer science, since the 1970s, known as one of the three technologies (space technology, energy technology, artificial intelligence). Also considered the 21st century (genetic engineering, nano science, artificial intelligence) is one of the three technologies. It is nearly three years it has been developed rapidly, and in many fields are widely applied, and have made great achievements, artificial intelligence has gradually become an independent branch, both in theory and practice are already becomes a system. Its research results are gradually integrated into people's lives, and create more happiness for mankind.Artificial intelligence is that the computer simulation research of some thinking process and intelligent behavior (such as study, reasoning, thinking, planning, etc.), including computer to realize intelligent principle, make similar to that of human intelligence, computer can achieve higher level of computer application. Artificial intelligence will involve the computer science, philosophy and linguistics, psychology, etc. That was almost natural science and social science disciplines, the scope of all already far beyond the scope of computer science and artificial intelligence and thinking science is the relationship between theory and practice, artificial intelligence is in the mode of thinking science technology application level, is one of its application. From theview of thinking, artificial intelligence is not limited to logical thinking, want to consider the thinking in image, the inspiration of thought of artificial intelligence can promote the development of the breakthrough, mathematics are often thought of as a variety of basic science, mathematics and language, thought into fields, artificial intelligence subject also must not use mathematical tool, mathematical logic, the fuzzy mathematics in standard etc, mathematics into the scope of artificial intelligence discipline, they will promote each other and develop faster.A brief history of artificial intelligenceArtificial intelligence can be traced back to ancient Egypt's legend, but with 1941, since the development of computer technology has finally can create machine intelligence, "artificial intelligence" is a word in 1956 was first proposed, Dartmouth learned since then, researchers have developed many theories and principles, the concept of artificial intelligence, it expands and not in the long history of the development of artificial intelligence, the slower than expected, but has been in advance, from 40 years ago, now appears to have many AI programs, and they also affected the development of other technologies. The emergence of AI programs, creating immeasurable wealth for the community, promoting the development of human civilization.The computer era1941 an invention that information storage and handling all aspects of the revolution happened. This also appeared in the U.S. and Germany's invention is the first electronic computer. Take a few big pack of air conditioning room, the programmer's nightmare: just run a program for thousands of lines to set the 1949. After improvement can be stored procedure computer programs that make it easier to input, and the development of the theory of computer science, and ultimately computer ai. This in electronic computer processing methods of data, for the invention of artificial intelligence could provide a kind of media.The beginning of AIAlthough the computer AI provides necessary for technical basis, but until the early 1950s, people noticed between machine and human intelligence. Norbert Wiener is the study of the theory of American feedback. Most familiar feedback control example is the thermostat. It will be collected room temperature and hope, and reaction temperature compared to open or close small heater, thus controlling environmentaltemperature. The importance of the study lies in the feedback loop Wiener: all theoretically the intelligence activities are a result of feedback mechanism and feedback mechanism is. Can use machine. The findings of the simulation of early development of AI.1955, Simon and end Newell called "a logical experts" program. This program is considered by many to be the first AI programs. It will each problem is expressed as a tree, then choose the model may be correct conclusion that a problem to solve. "logic" to the public and the AI expert research field effect makes it AI developing an important milestone in 1956, is considered to be the father of artificial intelligence of John McCarthy organized a society, will be a lot of interest machine intelligence experts and scholars together for a month. He asked them to Vermont Dartmouth in "artificial intelligence research in summer." since then, this area was named "artificial intelligence" although Dartmouth learn not very successful, but it was the founder of the centralized and AI AI research for later laid a foundation.After the meeting of Dartmouth, AI research started seven years. Although the rapid development of field haven't define some of the ideas, meeting has been reconsidered and Carnegie Mellon university. And MIT began to build AI research center is confronted with new challenges. Research needs to establish the: more effective to solve the problem of the system, such as "logic" in reducing search; expert There is the establishment of the system can be self learning.In 1957, "a new program general problem-solving machine" first version was tested. This program is by the same logic "experts" group development. The GPS expanded Wiener feedback principle, can solve many common problem. Two years later, IBM has established a grind investigate group Herbert AI. Gelerneter spent three years to make a geometric theorem of solutions of the program. This achievement was a sensation.When more and more programs, McCarthy busy emerge in the history of an AI. 1958 McCarthy announced his new fruit: LISP until today still LISP language. In. "" mean" LISP list processing ", it quickly adopted for most AI developers.In 1963 MIT from the United States government got a pen is 22millions dollars funding for research funding. The machine auxiliary recognition from the defense advanced research program, have guaranteed in the technological progress on this plan ahead of the Soviet union. Attracted worldwide computer scientists, accelerate the pace of development of AIresearch.Large programAfter years of program. It appeared a famous called "SHRDLU." SHRDLU "is" the tiny part of the world "project, including the world (for example, only limited quantity of geometrical form of research and programming). In the MIT leadership of Minsky Marvin by researchers found, facing the object, the small computer programs can solve the problem space and logic. Other as in the late 1960's STUDENT", "can solve algebraic problems," SIR "can understand the simple English sentence. These procedures for handling the language understanding and logic.In the 1970s another expert system. An expert system is a intelligent computer program system, and its internal contains a lot of certain areas of experience and knowledge with expert level, can use the human experts' knowledge and methods to solve the problems to deal with this problem domain. That is, the expert system is a specialized knowledge and experience of the program system. Progress is the expert system could predict under certain conditions, the probability of a solution for the computer already has. Great capacity, expert systems possible from the data of expert system. It is widely used in the market. Ten years, expert system used in stock, advance help doctors diagnose diseases, and determine the position of mineral instructions miners. All of this because of expert system of law and information storage capacity and become possible.In the 1970s, a new method was used for many developing, famous as AI Minsky tectonic theory put forward David Marr. Another new theory of machine vision square, for example, how a pair of image by shadow, shape, color, texture and basic information border. Through the analysis of these images distinguish letter, can infer what might be the image in the same period. PROLOGE result is another language, in 1972. In the 1980s, the more rapid progress during the AI, and more to go into business. 1986, the AI related software and hardware sales $4.25 billion dollars. Expert system for its utility, especially by demand. Like digital electric company with such company XCON expert system for the VAX mainframe programming. Dupont, general motors and Boeing has lots of dependence of expert system for computer expert. Some production expert system of manufacture software auxiliary, such as Teknowledge and Intellicorp established. In order to find and correct the mistakes, existing expert system and some other experts system was designed,such as teach userslearn TVC expert system of the operating system.From the lab to daily lifePeople began to feel the computer technique and artificial intelligence. No influence of computer technology belong to a group of researchers in the lab. Personal computers and computer technology to numerous technical magazine now before a people. Like the United States artificial intelligence association foundation. Because of the need to develop, AI had a private company researchers into the boom. More than 150 a DEC (it employs more than 700 employees engaged in AI research) that have spent 10 billion dollars in internal AI team.Some other AI areas in the 1980s to enter the market. One is the machine vision Marr and achievements of Minsky. Now use the camera and production, quality control computer. Although still very humble, these systems have been able to distinguish the objects and through the different shape. Until 1985 America has more than 100 companies producing machine vision systems, sales were us $8 million.But the 1980s to AI and industrial all is not a good year for years. 1986-87 AI system requirements, the loss of industry nearly five hundred million dollars. Teknowledge like Intellicorp and two loss of more than $6 million, about one-third of the profits of the huge losses forced many research funding cuts the guide led. Another disappointing is the defense advanced research programme support of so-called "intelligent" this project truck purpose is to develop a can finish the task in many battlefield robot. Since the defects and successful hopeless, Pentagon stopped project funding.Despite these setbacks, AI is still in development of new technology slowly. In Japan were developed in the United States, such as the fuzzy logic, it can never determine the conditions of decision making, And neural network, regarded as the possible approaches to realizing artificial intelligence. Anyhow, the eighties was introduced into the market, the AI and shows the practical value. Sure, it will be the key to the 21st century. "artificial intelligence technology acceptance inspection in desert storm" action of military intelligence test equipment through war. Artificial intelligence technology is used to display the missile system and warning and other advanced weapons. AI technology has also entered family. Intelligent computer increase attracting public interest. The emergence of network game, enriching people's life.Some of the main Macintosh and IBM for application softwaresuch as voice and character recognition has can buy, Using fuzzy logic, AI technology to simplify the camera equipment. The artificial intelligence technology related to promote greater demand for new progress appear constantly. In a word ,Artificial intelligence has and will continue to inevitably changed our life.附件三英文文献译文人工智能“人工智能”一词最初是在1956 年Dartmouth在学会上提出来的。
流动的:一个快速的,多平台的开放源码的同步化多媒体整合语言唱机Dick C.A. Bulterman, Jack Jansen, Kleanthis Kleanthous, Kees Blom and Daniel Benden CWI: Centrum voor Wiskunde en InformaticaKruislaan 4131098 SJ Amsterdam, The Netherlands+31 20 592 43 00Dick.Bulterman@cwi.nl摘要:本文概述了一个出现在早期的流动性的同步化多媒体唱机。
不同于其它同步化的实现,早期的播放器是一个可重组的同步化引擎,可以定制作为一个实验媒体播放器的核心。
同步化唱机是一个引用了同步化多媒体引擎并可以集成在一个广泛的媒体播放器的项目。
本文是以我们要创造一个新的同步化引擎为动机的综述开始的。
然后论述的是早期媒体播放器的核心架构(包括可扩展性,播放器自定义的集成装置)。
我们以一个关于我们在windows,Mac,Linux版本应用于台式机以及PDA设备上实施流动性例子的体验的讨论结束。
类别和主题描述符:H.5.2 多媒体的信息系统。
H.5.4 超级文本/超级媒体。
一般词汇:试验,性能,验证。
关键词:同步化多媒体整合语言,唱机,公开源代码,演示。
1.动机:早期公开的同步化媒体播放器是一个非常有特色的公开源代码的同步化 2.0播放器,它以研究团体的意图被使用(在我们的研究团体内外)目的是为了研究项目的团体在需要源代码的时候可以访问生产特性的同步化播放器的网站。
它也被用作一个独立的不需要专有的媒体格式的同步化播放器使用,播放器支持一系列同步化2.0配置文件(包括台式机和移动的配置)可以被分配利用在Linux,Macintosh,windows系统的台式机,PDA设备和掌上电脑。
同时现存的几个同步化播放器,包括网络视频播放软件,IE浏览器,小型同步化播放器, GRiNS ,X- GRiNS ,以及各种各样专有移动设备,我们发展流动性唱机有三个原因:准许制作数字以及个人或者课堂使用中的的全部硬拷贝即时没有提供拷贝权限或者商业性的利益分摊,而且在第一页有这种拷贝的注意事项。
科技文献阅读与翻译原文红色字体为参考答案,自己酌情修改一下,以免雷同。
Section AI Read the text carefully, and try to sum up (in one sentence if possible) the two or three main points, which the writer is makingGun controlA student of the gun control issue will readily perceive the arena is indeed a broad one, in which we must struggle to preserve the right to keep and bear arms. It is a struggle which will test whatever there might be of genius in any of us and it is one which will merit the devoted efforts of every citizen who in the broadest sense can perceive the relationships which our Bill of Rights liberties bear one to another.I suggest we begin our affirmative role immediately in the area of crime control. The truth is that gun control does not equate with crime control. We have an advantage in this fact which we have neither exploited nor advanced convincingly. It is demonstrable that in those sections of the country where gun possession is most prevalent, crime is least. Encouragingly, many moderate and reasonable men among our opponents are beginning to see that our problem is crime control and that gun control is not going to have much, if any, effect upon it. Of course,for reasons-of their own, some of them still say gun control is desirable. For these people we can only wonder, as would any good citizen, what it is they have in mind for us that our possession of guns makes them so nervous.As long as we concur that any measure of gun control equates with some measure of crime control we are in agreement with those who would eliminate our rights. We would then again be backed into defensive position, held for forty years, always losing a little here and a little there unfit finally nothing would be left us.No group of good citizens has ever struggled more conscientiously along the narrow pathway, between hope and moderation on one hand, and the cold facts of efforts to abolish our rights on the other, than the leaders of the National Rifle Association. Every gun owner in America should applaud the action taken by the Executive Committee of the NRA in Washington, D.C. on July 12, 1974: ‘...the NRA opposes any proposed legislation, at any level of government, which is directed against the inanimate firearm rather than against the criminal misuse of firearms.A reasonable degree of order in society must prevail first. Criminals must be controlled first. we are the decent people. We try to be reasonable and we are not fools even though we have so often made mistakes in the past 40 years.many people turn to England as an example for crime control. The fact isthat in England, for hundreds of years, a man found guilty of any one of number of crimes was promptly hanged. Now that a more humanistic generation of Englishmen has lately abolished these stern but effective methods, crime-including armed crime - is sky-rocketing. Recently armed Englishmen, amid a hail of their own bullets, attempted to kidnap the eldest daughter of the reigning Queen of England! Unbelievable! (From an article in Guns and Ammo by Harlan Carter)Suggested answer.The writer believes that gun-owners are good citizens, and everyone should be free to own guns. If we wish to reduce crime, we should not ban guns, but impose harsher punishments for criminals.II In a paragraph of not more than 100 words, say simply what the witnesses thought happened, and what really happened.A séanceA good example of this technique of investigating the reliability of reports is an experiment reported by S·J Davey. He was interested in the kind of phenomena reported during séances and, using quite simple trickery, which he had planned in advance, he reproduced some of the effects popular among the mediums of the day. His audiences were asked to write down accounts of what they had witnessed, and these observations were then compared with what actually happened. Here is a report written by one witness of such a séance. `On entering the dining-room where the séance was held’, so the report runs, every article of furniture was searched and Mr. Davey turned out his pockets.The door was locked and seated, the gas turned out, and they all sat round the table holding hands, including Mr Davey. A musical box on the table played and floated about. Knockings were heard and bright lights seen. The head of a woman appeared, came close and dematerialized. A half-figure of a man was seena few seconds later .He bowed and then disappeared through the ceiling with a scraping noise..’Another witness also described the searching of the room, the sealing of the door, and the disposition of the medium and sitters round the table. the medium and sitters round the table, She alleged that a female head appeared in a strong light and afterwards a bearded man reading a book, who disappeared through the ceiling.A11 the while Mr. Davey’s hands were held tightly by the sitters on either side, and when the gas was relit the door was still locked and the seal unbroken.A third witness’s account was even more sensational. He reported that ‘nothing was prepared beforehand, the séance was quite casual’. Having described the locking and sealing of the door, he went on to say that he was touched by a cold, clammy hand and heard various raps. After that he saw a bluish-white light which hovered over the heads of the sitters and gradually developed into an apparition that was ‘frightful in itsugliness, but so distinct that everyone could see it .... The features were distinct ... a kind of hood covered the head, and the whole resembled the head of a mummy’. After this an even more wonderful spirit appeared. It began with a streak of light and developed by degrees into a bearded man of Oriental appearance. His eyes were stony and fixed, with a vacant listless expression. At the end of the séance the door was still locked and the seal was intact.So much for some of the reports. Now for the reality. The séance was not a casual affair at all, but had been carefully rehearsed beforehand. At the beginning, Mr Davey went through the motion of apparently locking the door, but he turned the key back again so that the door was actually left unlocked. The ‘props’ for the materializations had been stowed away in a cupboard underneath a bookshelf; this was not looked into by the witnesses who searched the room because, just as they were about to do so, Mr Davey diverted their attention by emptying his pockets to show that he had nothing hidden on his person. The phenomena were produced by a confederate who came in by the unlocked door after the lights had been turned out, and while the musical box was playing loudly to drown the noise of his entry. The ‘apparition offrightful ugliness’ was a mask draped in muslin with a cardboard collar coated with luminous paint. The second spirit was the confederate himself, standing on the back of Mr Davey’s chair, his face faintly illuminated by phosphorescent light fromthe pages of a book he was holding. The rasping noise made when the spirits seemed to disappear through the ceiling was caused accidentally, but interpreted by the witnesses according to their conception of what was happening. When the light was turned on the gummed paper that had been used to seal the door had fallen off, but Mr Davey quickly pressed it back into position and then called the witnesses’ attention to the fact that it was ‘still intact.’ Mr Davey’s performances were so convincing that some leading investigators, including the biologist A. R. Wallace, F. R. S., refused to believe him when he said that he had no mediumistic powers and it had all been done by trickery. In effect the conjurer was challenged to prove that he was not a medium!(From Sense and Nonsense in Psychology by H. J. EysenckSuggested answer.The witnesses thought the room was locked, and that they were alone with Mr Davey. They believed that they saw various supernatural phenomena, such as the spirits of a man and a woman, accompanied by strange lights and noises. In fact, the door was not locked, and the effects were produced by a colleague of Mr Davey who came into the room under cover of darkness and the noise of the musical box. He used materials which had been hidden in a cupboard that was not searched because Mr Davey distracted people’s attention at a crucial moment.Read the following text and make notes.HOW CHILDREN FAILMost children in school fail.For a great many this failure is avowed and absolute. Close to forty per cent of those who begin high school drop out before they finish. For college the figure is one in three.Many others fail in fact if not in name. They complete their schooling only because we have agreed to push them up through the grades and out of the schools, whether they know anything or not. There are many more such children than we think. If we 'raise our standards' much higher, as some would have us do, we will find out very soon just how many there are. Our classrooms will bulge with kids who can't pass the test to get into the next class.But there is a more important sense in which almost all children fail: except for a handful, who may or may not be good students, they fail to develop more than a tiny part of the tremendous capacity for learning, understanding, and creating with which they were born and of which they made full use during the first two or three years of their lives.Why do they fail?They fail because they are afraid, bored, and confused.They are afraid, above all else, of failing, of disappointing or displeasing the many anxious adults around them, whose limitless hopes and expectations for them hang over their heads like a cloud.They are bored because the things they are given and told to do in school are so trivial, so dull, and make such limited and narrow demands on the wide spectrum of their intelligence, capabilities, and talents.They are confused because most of the torrent of words that pours over them in school makes little or no sense. It often flatly contradicts other things they have been told, and hardly ever has any relation to what they really know - to the rough model of reality that they carry around in their minds.How does this mass failure take place? What really goes on in the classroom? What are these children who fail doing? What goes on in their heads? Why don't they make use of more of their capacity?This book is the rough and partial record of a search for answers to these questions. It began as a series of memos written in the evenings to my colleague and friend Bill Hull, whose fifth-grade class I observed and taught in during the day. Later these memos were sent to other interested teachers and parents. A small number of these memos make up this book. They have not been much rewritten, but they have been edited and rearranged under four major topics: Strategy; Fear and Failure; Real Learning; and How Schools Fail. Strategy deals with the ways in whichchildren try to meet, or dodge, the demands that adults make on them in school. Fear and Failure deals with the interaction in children of fear and failure, and the effect of this on strategy and learning. RealLearning deals with the difference between what children appear to know or are expected to know, and what they really know. How SchoolsFail analyses the ways in which schools foster bad strategies, raise children's fears, produce learning which is usually fragmentary, distorted, and short-lived, and generally fail to meet the real needs of children. These four topics are clearly not exclusive. They tend to overlap and blend into each other. They are, at most, different ways of looking at and thinking about the thinking and behaviour of children.It must be made clear that the book is not about unusually bad schools or backward children. The schools in which the experiences described here took place are private schools of the highest standards and reputation. With very few exceptions, the children whose work is described are well above the average in intelligence and are, to all outward appearances, successful, and on their way to 'good' secondary schools and colleges. Friends and colleagues, who understand what I am trying to say about the harmful effect of today's schooling on the character and intellect of children, and who have visited many more schools than I have, tell me that the schools I have not seen are not a bit better than those I have, and very often are worse.How children fail by John Holt, Pitman, 1965Suggested answer.HOW CHILDREN FAILMost children in school fail.o High School - forty per cento College - thirty three per cent.o Others in fact if not name - complete becausepushed, know anythingo But, more importantly, fail to developfull capacity for learning.Why ? Fail because: afraid, bored, and confused.o afraid of failing, disappointing adultso bored because they given trivial, dull, thingsto doo confused because most of school makes littleor no sense, flatly contradicts other things ,no relation to what they really knowHow? Search for answers to questions:o Strategy - ways in which children try to meet, ordodge, the demands made on themo Fear and Failure - interaction in children of fearand failure, + effect on strategy and learning.o Real Learning - compares what childrenappear to know with what really know.o How Schools Fail - ways: schools foster badstrategies; raise children's fears; producefragmentary, distorted & short-lived learning;fail to meet real needsRead the following text quickly and answer the questions.1.When were X-rays discovered?2.Who discovered them?3.What are the four characteristics of X-rays?The Discovery of X-raysExcept for a brief description of the Compton effect, and a few other remarks, we have postponed the discussion of X-rays until the present chapter because it is particularly convenient to treat X-ray spectra after treating optical spectra. Although this ordering may have given the reader a distorted impression of the historical importance of X-rays, this impression will be corrected shortly as we describe the crucial role played by X-rays in the development of modern physics.X-rays were discovered in 1895 by Roentgen while studying the phenomena of gaseous discharge. Using a cathode ray tube with a high voltage of several tens of kilovolts, he noticed that salts of barium would fluoresce when brought near the tube, although nothing visible was emitted by the tube. This effect persisted when the tube was wrapped with a layer of black cardboard. Roentgen soon established that theagency responsible for the fluorescence originated at the point at which the stream of energetic electrons struck the glass wall of the tube. Because of its unknown nature, he gave this agency the name X-rays. He found that X-rays could manifest themselves by darkening wrapped photographic plates, discharging charged electroscopes, as well as by causing fluorescence in a number of different substances. He also found that X-rays can penetrate considerable thicknesses of materials of low atomic number, whereas substances of high atomic number are relatively opaque. Roentgen took the first steps in identifying the nature of X-rays by using a system of slits to show that (1) they travel in straight lines, and that (2) they are uncharged, because they are not deflected by electric or magnetic fields.The discovery of X-rays aroused the interest of all physicists, and many joined in the investigation of their properties. In 1899 Haga and Wind performed a single slit diffraction experiment with X-rays which showed that (3) X-rays are a wave motion phenomenon, and, from the size of the diffraction pattern, their wavelength could be estimated to be 10-8 cm. In 1906 Barkla proved that (4) the waves are transverse by showing that they can be polarized by scattering from many materials.There is, of course, no longer anything unknown about the nature of X-rays. They are electromagnetic radiation of exactly the same nature as visible light, except that their wavelength is several orders of magnitudeshorter. This conclusion follows from comparing properties 1 through 4 with the similar properties of visible light, but it was actually postulated by Thomson several years before all these properties were known. Thomson argued that X-rays are electromagnetic radiation because such radiation would be expected to be emitted from the point at which the electrons strike the wall of a cathode ray tube. At this point, the electrons suffer very violent accelerations in coming to a stop and, according to classical electromagnetic theory, all accelerated charged particles emit electromagnetic radiations. We shall see later that this explanation of the production of X-rays is at least partially correct.In common with other electromagnetic radiations, X-rays exhibit particle-like aspects as well as wave-like aspects. The reader will recall that the Compton effect, which is one of the most convincing demonstrations of the existence of quanta, was originally observed with electromagnetic radiation in the X-ray region of wavelengths.AnswersRead the following text quickly and answer the questions.1.When were X-rays discovered?2.Who discovered them?3.What are the four characteristics of X-rays?1.18952.Roentgen3.1. they travel in straight lines2. they are uncharged3. they are a wave motion phenomenon4. the waves are transverseSection DTranslate the following passage into Chinese:When you are researching, write down every idea, fact, quotation, or paraphrase on a separate index card. Small (5" by 3") cards are easiest to work with. When you've collected all your cards,reshuffle them into the best possible order, and you have an outline, though you will undoubtedly want to reduce this outline to the essential points should you transcribe it to paper.A useful alternative involves using both white and coloured cards. When you come up with a point that you think may be one of the main points in your outline, write it at the top of a coloured card.Put each supporting note on a separate white card, using as much of the card as necessary. When you feel ready, arrange the coloured cards into a workable plan. Some of the points may not fit in. If so, either modify the plan or leave these points out. You may need to fill gaps by creating new cards.You can shuffle your supporting material into the plan by placing each of the white cards behind the point it helps support.当你正在研究,写下每一个想法,事实上,报价,或意译在单独的索引卡。
科技类文章中英文对照范文带翻译现在是科技的时代了,因循守旧是行不通的,应该追随科技的脚步前进。
下面店铺整理了中英文对照的科技类文章,希望大家喜欢! 中英文对照的科技类文章篇一印度首富百亿美元建4G网免费向全国提供India's richest man is rolling out a $20 billion mobile network that could bring lightning-fast Internet to hundreds of millions of people.印度首富正斥资200亿美元建设移动网络,或可使十亿人高速连接互联网。
Indian consumers are already celebrating the arrival of Mukesh Ambani's new Reliance Jio service, seizing on the billionaire's promise to deliver rock bottom prices and download speeds that will enable streaming video.印度消费者已经在庆祝穆克什•安巴尼新推出的瑞来斯Jio网络服务。
这位亿万富翁承诺,该网络会以最低价格提供满足流媒体使用的下载速度。
The 4G network, which reaches more than 80% of the country, officially went live Monday with a set of generous introductory offers.这个覆盖印度超过80%地区的4G网络于周一正式开通,同时慷慨附送试用套餐。
Indians will be able to use Jio for free until the end of 2016, and pay as little as 149 rupees ($2.25) a month for data after that.印度人到今年年底都可免费使用Jio网络,之后的网费也只有每月149卢比(2.25美金)。
Multi-texture-model for Water Extraction Based on Remote Sensing ImageHua WANG, Li PAN, Hong ZHENGSchool of Remote Sensing and Information & Engineering, Wuhan University 129 Luoyu Road,Wuhan 430079,P.R.ChinaSchool of Electronic Information, Wuhan University 129 Luoyu Road, Wuhan 430079,P.R.ChinaAbstract:In this paper, a multi-texture-model for water extraction based on remote sensing imagery is proposed. The model is applied to extract inland water (including wide river, lake and reservoir)from high-resolution panchromatic images. Firstly directional variance is used to find river regions, and then grain table is adopted to avoid noise including objects that have similar directional variance characteristic as water surfaces. The experiment result shows that the proposed method provides an effective way for water extraction.1. IntroductionThe recognition of water from remote sensing image has drawn considerable attention in recent yeas. A large number of publications about water extraction appeared and various approaches for water extraction have been proposed. Zhou developed a descriptive model for automatic extraction of water based on spectral characteristics[1]. Barton applied channel 4 for NOAA/AVHRR to extract water[2]. Du proposed a approach for water extraction from SPOT-5 based on decision tree algorithm[3]. Li recognized and monitored clear water from MODIS[4]. Wu extracted water from Quick Bird image and used active contour model to obtain accurate position of river bank[5]; In order to extract water from high-spatial remote sensing images, He used wavelet technique to expend the information and cleaned main noise of the images, and then presented multi-window linearity reserve technique to conserve linear water[6].Recently, most research work on water extraction was forced on automatic recognition of water from remote sensing images based on spectral characteristics. However, there are some disadvantages of these methods: (1) The resolution of image used for water extraction is low. The minimum size of recognizable object is depended on the spatial resolution of sensor. Therefore it is difficult to obtain accurate position of water boundary. (2) Due to the characteristic of water itself and the sensor applied, in certain channels the spectral features of different objects are equilibrated. The equilibration leads to the phenomena of “different objects same image” or“different images same object”, which results in noise objects included in extraction result.In this paper, a multi-texture-model for water extraction based on remote sensing is proposed. The model is applied to extract inland water (including wide river, lake and reservoir) fromhigh-resolution panchromatic image. Firstly directional variance is applied to find river regions, and then grain table is adopted to avoid noise including objects that have similar directional variance characteristic as water surfaces. The experiment result shows that the proposed method provides an effective way for water extraction.This paper is organized as follows. In Section 2, the directional variance model adopted is introduced. Then, fusion of proposed grain table model with directional variance model is discussed in Section 3.The experimental results of the proposed multi-texture-model and comparative studies with single models are given in Section 4. We conclude this paper in Section 5.2. Directional Variance ModelThe aim of our research is to extract water larger than 100m2from panchromatic images. As shown in Figure 2(a), the research objects can be divided into three classes: wide river, lake and reservoir, which all represent as region in high-resolution imageries. The objects of background can be divided into two classes: building and cropland, which also represent as region.In panchromatic imagery, wide river has a similar gray level to building and cropland, though the mean grayof lake and reservoir is much lower than the background objects. Conventional methods for water extraction based on spectral characteristics are not effective in the situation. In the meantime, water body defines homogeneous areas whereas building and cropland correspond to heterogeneous regions. Therefore, we take into account the homogeneity of the image to separate wide river, lake and reservoir from background instead. To characterize the difference of homogeneity between water body and the other types of areas, we use a textual operator: the directional variance.2.1. The Directional Variance OperatorThe operator is derived from those defined by Guerin & Maitre and Airault & Jamet[10]. As shown in Figure1, the directional variance consists in computing, for each pixel M of the image, the variance of the gray levels of the image on several direction of a circle whose center is M and radius is R. Then, the direction with the highest variance value is kept. Its direction defines the direction for which image is the most heterogeneous, locally. Its variance value is the directional variance value of the pixel M.2.2. Extraction of water based on directional varianceAccording to the definition of the operator, the minimum acreage of recognizable water body is depended on the length of radius R. We have chosen a length of 10 pixels for 1m resolution. The directional variances of the five typical training samples (wide river, lake, reservoir, building and cropland) have been computed and the statistical comparison is summarized in Table1. The overall average of water directional variance is lower than the objects of background.Nevertheless, the directional variance of cropland is similar to wide river with overlapping potion over 90%.Inhigh-resolution panchromatic imagery, details inside wide river, such as boat, wave, etc, are represented clearly which result in the heterogeneous of water. In the meantime, the textures of parts of building (for example, roof ) and cropland are rather fine. In a small window, these potions define homogeneous areas with similar directional variance as wide river. The result is improved if we chosen a length of 100 pixels. The statistical comparison is shown in Table2. If the length of radius is large enough, directional variance of building is higher than other objects obviously with no overlapping portion; the difference between cropland and wide river is increased while the overlapping potion is decreased. However, increasing the radius leads to two problems which are outlined as follow:1) The size of recognizable water body increases;therefore water which has small acreage (for example narrow river) can not be detected.2) The position of water bank is not accurate although the spatial resolution of imagery is rather high.Hence, in this paper, a multi-texture-model is presented and two texture models are fused to extract water from panchromatic images. Firstly, we chose a radius of 10 pixels to extract water based on directional variance; and then, grain table is adopted to avoid noise including parts of building and cropland that have similar directional variance characteristic as water surface.3. Multi-texture-modelIn high-resolution imagery, cropland and building represents structural characteristic. According to this characteristic, grain analysis is adopted for further research on the original extraction based on directional variance. The grain table histogram is able to represent structural characteristic of the research object, which can be applied to recognize many kinds of different objects [12].3.1. Extraction of water fused by grain tableThe grain table histograms of the five typical training samples (wide river, lake, reservoir, building and cropland) are computed and correlation coefficients between them are summarized in Table3. Correlation coefficients between water classes are over 85%, however, correlation coefficients between water classes and background classes are lower than 65%.Hence, we compare the correlation coefficients of regions in extraction image base on directional variance with three water samples and two background samples respectively. If the region has a higher correlation coefficient with background classes, it will be marked background and wiped off[13].4.Experimental ResultsWe run the algorithm on several high-resolution panchromatic images. In Figure2.(a), we have been considering an aerial photograph(6126×4800) of a region in Wuhan, China, the resolution of which is 1m,including building, cropland, wide river( Changjiang river), lake, reservoir and cropland. The results of extraction based on directional variance with radius of 10 pixels is displayed in Figure2.(b), and clearly, water has been detected completely, whereas parts of building and cropland are included as noise objects in the result. Water extraction using directional variance with radius of 100 pixels is displayed in Figure2.(c)with correctness over 95%, however, small lakes are missed and the position of bank is not as accurate as Figure2.(b). Finally, in Figure2.(d), the result of Figure2.(b) is fused by grain table analysis, so that the correctness and completeness of extraction are both over 90%.5. ConclusionsBased on textural analysis of water in high-resolution panchromatic imagery, a multi-texture-model is presented for water extraction.The experimental results proved that the approach is efficient for inland water (including wide river, lake and reservoir) extraction. As the complexity and diversity of water, the rate of recognition of our algorithm fluctuates. Furthermore, the method is supervised which needs a lot of human interference to obtain training samples. Therefore, there are problems to be solved in future:1) Our further work should be extensible to multispectral remote sensing images.2) To decrease human interference, old vector will be applied to obtain training samples instead. 6. AcknowledgmentsThe work was supported by the National Key Technology R&D Program of China under grant No.2006BAB10B01.根据遥感图象的多纹理模型相关的水抽取Hua WANG, Li PAN, Hong ZHENGSchool of Remote Sensing and Information & Engineering, Wuhan University 129 Luoyu Road,Wuhan 430079,P.R.ChinaSchool of Electronic Information, Wuhan University 129 Luoyu Road, Wuhan 430079,P.R.China文摘:在本文中,提议了一个多纹理模型为根据遥感成像的水提取。