热传导问题的有限元方法 33页PPT文档
- 格式:ppt
- 大小:4.04 MB
- 文档页数:33
6. 穩態熱傳導問題的有限元法本章的內容如下:6.1熱傳導方程與換熱邊界6.2穩態溫度場分析的一般有限元列式 6.3三角形單元的有限元列式 6.4溫度場分析舉例6.1熱傳導方程與換熱邊界在分析工程問題時,經常要瞭解工件內部的溫度分佈情況,例如發動機的工作溫度、金屬工件在熱處理過程中的溫度變化、流體溫度分佈等。
物體內部的溫度分佈取決於物體內部的熱量交換,以及物體與外部介質之間的熱量交換,一般認為是與時間相關的。
物體內部的熱交換採用以下的熱傳導方程(Fourier 方程)來描述,Q z T z y T y x T x tT c+⎪⎭⎫⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂=∂∂z y x λλλρ (6-1)式中ρ為密度,kg/m 3; c 為比熱容,K)J/(kg ⋅;z y x λλλ,,為導熱係數,)k m w ⋅;T 為溫度,℃;t 為時間,s ;Q 為內熱源密度,w/m 3。
對於各向同性材料,不同方向上的導熱係數相同,熱傳導方程可寫為以下形式,Q zT yT xT tT c222222+∂∂+∂∂+∂∂=∂∂λλλρ (6-2)除了熱傳導方程,計算物體內部的溫度分佈,還需要指定初始條件和邊界條件。
初始條件是指物體最初的溫度分佈情況,() z y,x,T T00t ==(6-3)邊界條件是指物體外表面與周圍環境的熱交換情況。
在傳熱學中一般把邊界條件分為三類。
1)給定物體邊界上的溫度,稱為第一類邊界條件。
物體表面上的溫度或溫度函數為已知,s sT T=或 ),,,(t z y x T Ts s=(6-4)2)給定物體邊界上的熱量輸入或輸出,稱為第二類邊界條件。
已知物體表面上熱流密度,s sz zy yx xq n zT n yT n xT =∂∂+∂∂+∂∂)(λλλ或),,,()(t z y x q n zT n yT n xT s sz zy yx x=∂∂+∂∂+∂∂λλλ(6-5)3)給定對流換熱條件,稱為第三類邊界條件。