专题55 一次函数中的构造等腰直角三角形(原卷版)
- 格式:docx
- 大小:123.45 KB
- 文档页数:7
(培优特训)专项19.3 一一次函数与几何综合高分必刷1.(2023春•普兰店区期中)已知△ABC中,∠C=90°,AC=3,CD=4,BD =AD.点F从点A出发,沿AC﹣CD运动,速度为1cm/s,同时点E从点B 出发,沿BD﹣DA运动,运动速度为1cm/s,一个点到达终点,另一点也停止运动.(1)求BD的长;(2)设△AEF的面积为S,点P、Q运动时间为t,求S与的函数关系式,并写出的取值范围.2.(2023春•鼓楼区期中)如图1,已知直线l1:y=ax﹣6a交x轴于点A,交轴y于点B,直线l2:y=bx﹣18a交x轴于点C,交y轴于点D,交直线l1于点E.(1)求点A的坐标;(2)若点B为线段AE的中点,求证:EC=EA;(3)如图2,已知P(0,m),将线段P A绕点P逆时针方向旋转90°至PF,连接OF,求证:点F在某条直线上运动,并求OF的最小值.3.(2023春•苍南县期中)如图,在平面直角坐标系中,▱OABC的顶点A落在x轴上,点B的坐标为(7,4),AB=2,点D是OC的中点,点E是线段AD上一动点,EF⊥BC于点F,连结DF.(1)求点A、C的坐标.(2)求直线AD的函数表达式.(3)若△DEF是等腰三角形,求CF的长.4.(2023•佳木斯一模)如图,将矩形纸片OABC放在平面直角坐标系中,O为坐标原点.点A在y轴上,点C在x轴上,OA,OB的长是x2﹣16x+60=0的两个根,P是边AB上的一点,将△OAP沿OP折叠,使点A落在OB上的点Q处.(1)求点B的坐标;(2)求直线PQ的解析式;(3)点M在直线OP上,点N在直线PQ上,是否存在点M,N,使以A,C.M,N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.5.(2023春•顺德区校级月考)如图,请根据图象所提供的信息解答下列问题:(1)当x时,kx+b≥mx﹣n;(2)不等式kx+b<0的解集是;(3)求两个一次函数表达式;(4)若直线l1分别交x轴、y轴于点M、A,直线l2分别交x轴、y轴于点B、N,求点M的坐标和四边形OMPN的面积.6.(2023春•北碚区校级期中)如图,在平面直角坐标系中,直线y=2x﹣2与x 轴、y轴分别交于点A、点B,与直线CD:y=kx+b(k≠0)交于点P,OC =OD=4OA.(1)求直线CD的解析式;(2)连接OP、BC,若直线AB上存在一点Q,使得S△PQC =S四边形OBCP,求点Q的坐标;(3)将直线CD向下平移1个单位长度得到直线,直线l与x轴交于点E,点N为直线l上的一点,在平面直角坐标系中,是否存在点M,使以点O,E,N,M为顶点的四边形是矩形?若存在,请直接写出点M的坐标;若不存在,请说明理由.7.(2023春•宜兴市期中)如图,在平面直角坐标系中,已知A(0,4),点B、C都在x轴上,BC=12,AD∥BC,CD所在直线的函数表达式为y=﹣x+9,E是BC的中点,点P是BC边上一个动点.(1)当PB=时,以点P、A、D、E为顶点的四边形为平行四边形;(2)点P在BC边上运动过程中,以点P、A、D、E为顶点的四边形能否构成菱形?试说明理由.8.(2023春•工业园区校级期中)如图,在平面直角坐标系中,点A、点B分别在x轴与y轴上,直线AB的解析式为,以线段AB、BC为边作平行四边形ABCD.(1)如图1,若点C的坐标为(3,7),判断四边形ABCD的形状,并说明理由;(2)如图2,在(1)的条件下,P为CD边上的动点,点C关于直线BP的对称点是Q,连接PQ,BQ.①当∠CBP=°时,点Q位于线段AD的垂直平分线上;②连接AQ,DQ,设CP=x,设PQ的延长线交AD边于点E,当∠AQD=90°时,求证:QE=DE,并求出此时x的值.9.(2023•沈阳一模)如图,在平面直角坐标系中,直线y=kx+b与x轴交于点B(﹣5,0),与y轴交于点A,直线过点A,与x轴交于点C,点P 是x轴上方一个动点.(1)求直线AB的函数表达式;(2)若点P在线段AB上,且S△APC =S△AOB,求点P的坐标;(3)当S△PBC =S△AOB时,动点M从点B出发,先运动到点P,再从点P运动到点C后停止运动.点M的运动速度始终为每秒1个单位长度,运动的总时间为t(秒),请直接写出t的最小值.10.(2023春•鼓楼区期中)如图1,已知函数与x轴交于点A,与y轴交于点B,点C与点A关于y轴对称.(1)求直线BC的函数解析式;(2)设点M是x轴上的一个动点,过点M作y轴的平行线,交直线AB于点P,交直线BC于点Q.①若△PQB的面积为,求点M的坐标;②连接BM,如图2,若∠BMP=∠BAC,求点P的坐标.11.(2023春•顺德区校级期中)一次函数y=kx+b的图象经过点A(﹣2,0)、B(﹣1,1),且和一次函数y=﹣2x+a的图象交于点C,如图所示.(1)填空:不等式kx+b<0的解集是;(2)若不等式kx+b>﹣2x+a的解集是x>1,求点C的坐标;(3)在(2)的条件下,点P是直线y=﹣2x+a上一动点.且在点C上方,当∠P AC=15°时,求点P的坐标.12.(2023春•重庆期中)如图,已知函数y=x+1的图象与y轴交于点A,一次函数y=kx+b的图象经过点B(0,﹣1),与x轴以及y=x+1的图象分别交于点C,D,且点D的坐标为(1,n).(1)则k=,b=,n=;(2)求四边形AOCD的面积;(3)在x轴上是否存在点P,使得以点P,C,D为顶点的三角形是直角三角形,请求出点P的坐标.13.(2023春•崇川区校级月考)模型建立:如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于D,过B作BE⊥ED于E.(1)求证:△BEC≌△CDA;(2)模型应用:已知直线l1:y=﹣x﹣4与y轴交于A点.将直线l1绕着A 点逆时针旋转45°至l2,如图2,求l2的函数解析式.14.(2023春•崇川区校级月考)如图,在平面直角坐标系中,直线l1:y=﹣x+4分别与x轴,y轴交于点B,C.直线l2:y=x.(1)直接写出点B,C的坐标:B,C.(2)若D是直线l2上的点,且△COD的面积为6,求直线CD的函数表达式;(3)在(2)的条件下,且当点D在第一象限时,设P是射线CD上的点,在平面内存在点Q.使以O,C,P,Q为顶点的四边形是菱形,请直接求点Q的坐标.15.(2023•城固县模拟)如图,A、B两个长方体水箱放置在同一水平桌面上,开始时水箱A中没有水,水箱B盛满水,现以6dm3/min的流量从水箱B中抽水注入水箱A中,直至水箱A注满水为止.设注水时间为t(min),水箱A 的水位高度为y A(dm),水箱B中的水位高度为y B(dm).(抽水水管的体积忽略不计)(1)分别求出y A,y B与t之间的函数表达式;(2)当水箱A与水箱B中的水的体积相等时,求出此时两水箱中水位的高度差.16.(2022秋•常州期末)在平面直角坐标系中,一次函数的图象l1与x轴交于点A,一次函数y=x+6的图象l2与x轴交于点B,与l1交于点P.直线l3过点A且与x轴垂直,C是l3上的一个动点.(1)分别求出点A、P的坐标;(2)设直线PC对应的函数表达式为y=kx+b,且满足函数值y随x的增大而增大.若△PCA的面积为15,分别求出k、b的值;(3)是否存在点C,使得2∠PCA+∠P AB=90°?若存在,直接写出点C的坐标;若不存在,请说明理由.17.(2023春•靖江市期中)如图,平面直角坐标系中,已知点A(0,a)在y 轴正半轴上,点B(0,b)(a>b),点C(c,0)在x轴正半轴上,且a2﹣2ab+b2(1)如图1,求证:AB=OC;(2)如图2,当a=3,b=1时,过点B的直线与AC成45°夹角,试求该直线与AC交点的横坐标;(3)如图3,当b<0时,点D在OC的延长线上,且CD=OB,连接AD,射线BC交AD于点E.当点B在y轴负半轴上运动时,∠AEB的度数是否为定值?如果是,请求出∠AEB的度数;如果不是,请说明理由.18.(2023春•沙坪坝区校级期中)如图,在平面直角坐标系xOy中,直线AB:与直线CD:y=kx﹣2相交于点M(4,a),分别交坐标轴于点A,(1)求直线CD的解析表达式;(2)如图,点P是直线CD上的一个动点,当△PBM的面积为20时,求点P的坐标;(3)直线AB上有一点F,在平面直角坐标系内找一点N,使得以BF为一边,以点B,D,F,N为顶点的四边形是菱形,请直接写出符合条件的点N的坐标.19.(2023春•揭西县校级月考)在平面直角坐标系中,直线y1=kx+b经过点P (2,2)和点Q(0,﹣2),与x轴交于点A,与直线y2=mx+n交于点P.(1)求出直线y1=kx+b的解析式;(2)当m<0时,直接写出y1<y2时自变量x的取值范围;(3)直线y2=mx+n绕着点P任意旋转,与x轴交于点B,当△P AB是等腰三角形时,请直接写出符合条件的所有点B的坐标.20.(2023春•溧阳市校级月考)如图,四边形OABC是矩形,点A、C在坐标轴上,△ODE是由△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H,线段BC、OC的长是2和4;(1)求直线BD的表达式;(2)求△OFH的面积;(3)点M在坐标轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.21.(2023春•江都区月考)如图,在平面直角坐标系中,直线y=﹣x+3与x 轴、y轴相交于A、B两点,动点C在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上时,过点D作DE⊥x轴于点E.(1)求证:△BOC≌△CED;(2)求点D的坐标;(3)若点P在y轴上,点Q在直线AB上,是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的Q点坐标;若不存在,请说明理由.22.(2023春•新城区校级月考)如图,在平面直角坐标系中,直线l1的解析式为y=x,直线l2的解析式为,与x轴、y轴分别交于点A、点B,直线l1与l2交于点C.(1)若直线l2上存在点P(不与B重合),满足S△COP=S△COB,求出点P的坐标;(2)在y轴右侧有一动直线平行于y轴,分别与l1,l2交于点M、N,且点M 在点N的下方,y轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请直接写出满足条件的点Q的坐标;若不存在,请说明理由.23.(2022秋•宿豫区期末)如图,直线l分别与x轴、y轴交于点A(4,0)、B (0,5),把直线l沿y轴向下平移3个单位长度,得到直线m,且直线m分别与x轴、y轴交于点C、D.(1)求直线l对应的函数表达式;(2)求四边形ABDC的面积.24.(2022秋•临淄区期末)如图,在直角坐标系中,四边形ABCD的顶点坐标分别为A(﹣1,0),B(0,2),C(2,3),D(4,0).(1)求直线BC的表达式;(2)线段AB与BC相等吗?请说明理由;(3)求四边形ABCD的面积;(4)已知点M在x轴上,且△MBC是等腰三角形,求点M的坐标.25.(2022秋•金牛区期末)如图1,在平面直角坐标系xOy中,直线AB:y=2x+b 与x轴交于点A(﹣2,0),与y轴交于点B.(1)求直线AB的解析式;(2)若直线CD:y=﹣x+与x轴、y轴、直线AB分别交于点C、D、E,求△BDE面积;(3)如图2,在(2)的条件下,点F为线段AC上一动点,将△EFC沿直线EF翻折得到△EFN,EN交x轴于点M.当△MNF为直角三角形时,求点N 的坐标.26.(2022秋•婺城区期末)如图,直线y=x+4与x轴、y轴分别交于点A、点B,点P是射线BO上的动点,过点B作直线AP的垂线交x轴于点Q,垂足为点C,连结OC.(1)当点P在线段BO上时,①求证:△AOP≌△BOQ;②若点P为BO的中点,求△OCQ的面积.(2)在点P的运动过程中,是否存在某一位置,使得△OCQ成为等腰三角形?若存在,求点P的坐标;若不存在,请说明理由.27.(2022秋•郫都区期末)在直角坐标系xOy中,直线l1:y=﹣x+4与x轴、y 轴分别交于点A,点B.直线l2:y=mx+m(m>0)与x轴,y轴分别交于点C,点D,直线l1与l2交于点E.(1)若点E坐标为(,n).ⅰ)求m的值;ⅱ)点P在直线l2上,若S△AEP=3S△BDE,求点P的坐标;(2)点F是线段CE的中点,点G为y轴上一动点,是否存在点F使△CFG 为以FC为直角边的等腰直角三角形.若存在,求出m的值,若不存在,请说明理由.28.(2022秋•市中区期末)如图,直线y=kx+b经过点,点B(0,25),与直线交于点C,点D为直线AB上一动点,过D点作x轴的垂线交直线OC于点E.(1)求直线AB的表达式和点C的坐标;(2)当时,求△CDE的面积;(3)连接OD,当△OAD沿着OD折叠,使得点A的对应点A'落在直线OC 上,直接写出此时点D的坐标.29.(2022秋•新都区期末)如图1,在平面直角坐标系中,点A的坐标为(4,4),点B的坐标为(﹣4,0).(1)求直线AB的表达式;(2)点M是坐标轴上的一点,若以AB为直角边构造Rt△ABM,请求出满足条件的所有点M的坐标;(3)如图2,以A为直角顶点作∠CAD=90°,射线AC交x轴的正半轴于点C,射线AD交y轴的负半轴于点D,当∠CAD绕点A旋转时,求OC﹣OD 的值.30.(2022秋•皇姑区期末)如图,在平面直角坐标系中,直线AD:y=﹣x+4交y轴于点A,交x轴于点D.直线AB交x轴于点B(﹣3,0),点P为直线AB上的动点.(1)求直线AB的关系式;(2)连接PD,当线段PD⊥AB时,直线AD上有一点动M,x轴上有一动点N,直接写出△PMN周长的最小值;(3)若∠POA=∠BAO,直接写出点P的纵坐标.31.(2022秋•新都区期末)如图所示,直线l1:y=x﹣1与y轴交于点A,直线l2:y=﹣2x﹣4与x轴交于点B,直线l1与l2交于点C.(1)求点A,C的坐标;(2)点P在直线l1上运动,求出满足条件S△PBC=S△ABC且异于点A的点P的坐标;(3)点D(2,0)为x轴上一定点,当点Q在直线l1上运动时,请直接写出|DQ﹣BQ|的最大值.32.(2022秋•鸡西期末)如图,直角三角形ABC在平面直角坐标系中,直角边BC在y轴上,AB,BC的长分别是一元二次方程x2﹣14x+48=0的两个根,AB<BC,且BC=2OB,P为BC上一点,且∠BAP=∠C.(1)求点A的坐标;(2)求直线AP的解析式;(3)M为x轴上一点,在平面内是否存在点N,使以A,C,M,N为顶点的四边形为矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.33.(2022秋•锦江区校级期末)如图,直线y=kx+b与x轴、y轴分别交于点A 和点B,点C在线段AO上,将△ABC沿BC所在直线折叠后,点A恰好落在y轴上点D处,若OA=4,OD=2.(1)求直线AB的解析式.(2)求S△ABC :S△OCD的值.(3)直线CD上是否存在点P使得∠PBC=45°,若存在,请直接写出P的坐标.34.(2022秋•福田区校级期末)已知:如图,一次函数的图象分别与x 轴、y轴相交于点A、B,且与经过点C(2,0)的一次函数y=kx+b的图象相交于点D.点D的横坐标为4,直线CD与y轴相交于点E.(1)直线CD的函数表达式为:;(2)点Q为线段DE上的一个动点,连接BQ.①若直线BQ将△BDE的面积分为1:2两部分,求点Q的坐标;②点Q是否存在某个位置,将△BQD沿着直线BQ翻折,使得点D恰好落在直线AB下方的坐标轴上?若存在,请直接写出点Q的坐标;若不存在,请说明理由.35.(2022秋•抚州期末)如图,在平面直角坐标系xOy中,直线AP交x轴于点P(p,0),与y轴交于点A(0,a),且a,p满足=0.(1)求直线AP的解析式;(2)如图1,直线x=﹣2与x轴交于点N,点M在x轴上方且在直线x=﹣2上,若△MAP的面积等于6,请求出点M的坐标;(3)如图2,已知点C(﹣2,4),若点B为射线AP上一动点,连接BC,在坐标轴上是否存在点Q,使△BCQ是以BC为底边,点Q为直角顶点的等腰直角三角形,若存在,请直接写出点Q坐标;若不存在,请说明理由.36.(2022秋•天桥区期末)如图1,在平面直角坐标系xOy中,点O是坐标原点,直线AB:y=kx+与直线AC:y=﹣2x+b交于点A,两直线与x轴分别交于点B(﹣3,0)和C(2,0).(1)求直线AB和AC的表达式.(2)点P是y轴上一点,当P A+PC最小时,求点P的坐标.(3)如图2,点D为线段BC上一动点,将△ABD沿直线AD翻折得到△ADE,线段AE交x轴于点F,若△DEF为直角三角形,求点D坐标.37.(2023•桐乡市校级开学)如图,一次函数y=x+6的图象与x轴交于点A,与y轴交于点B,OC⊥AB于点C,点P在直线AB上运动,点Q在y轴的正半轴上运动.(1)求点A,B的坐标;(2)求OC的长;(3)若以O,P,Q为顶点的三角形与△OCP全等,求点Q的坐标.38.(2022秋•秦都区期末)如图,平面直角坐标系中,直线AB与x轴交于点A (﹣3,0)与y轴交于点B(0,6),点C是直线AB上的一点,它的坐标为(m,4),经过点C作直线CD∥x轴交y轴于点D.(1)求点C的坐标;(2)已知点P是直线CD上的动点,①若△POC的面积为4,求点P的坐标;②若△POC为直角三角形,请求出所有满足条件的点P的坐标.39.(2022秋•南海区期末)如图,在平面直角坐标系中,直线y=x+1分别交x 轴,y轴于点A、B.另一条直线CD与直线AB交于点C(a,6),与x轴交于点D(3,0),点P是直线CD上一点(不与点C重合).(1)求a的值.(2)当△APC的面积为18时,求点P的坐标.(3)若直线MN在平面直角坐标系内运动,且MN始终与AB平行,直线MN 交直线CD于点M,交y轴于点N,当∠BMN=90°时,求△BMN的面积.40.(2023•丰顺县校级开学)问题提出:如图,等腰Rt△ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过点A作AD⊥ED于点D,过点B作BE⊥ED于点E,求证:△BEC≌△CDA;问题探究:如图2,在平面直角坐标系中,一次函数与x轴交于点A,与y轴交于点B,以AB为腰在第二象限作等腰直角△ABC,∠BAC=90°,求点C的坐标;问题解决:古城西安已经全面迎来地铁时代!继西安地铁2号线于2011年9月16日通车试运行以来,共有八条线路开通运营,极大促进了西安市的交通运输,目前还有多条线路正在修建中.如图,地铁某线路原计划按OA﹣AB的方向施工,由于在AB方向发现一处地下古建筑,地铁修建须绕开此区域.经实地勘测,若将AB段绕点A顺时针或逆时针方向旋转45°至AC或AD方向,则可以绕开此区域.已知OA长为1千米,以点O为原点,OA所在直线为x轴,1千米为单位长度,建立平面直角坐标系,且射线AB与直线y=﹣2x平行,请帮助施工队计算出AC和AD所在直线的解析式.41.(2022秋•碑林区校级期末)(1)模型建立:如图1,在等腰直角三角形ABC中,∠ACB=90°,CA=CB,直线ED经过点C,过点A作AD⊥ED于点D,过点B作BE⊥ED于点E,请直接写出图中相等的线段(除CA=CB);模型应用:(2)如图2,在平面直角坐标系xOy中,直线与x,y轴分别交于A、B两点,C为第一象限内的点,若△ABC是以AB为直角边的等腰直角三角形,请求出点C的坐标和直线BC的表达式;探究提升:(3)如图3,在平面直角坐标系xOy中,A(3,0),点B在y轴上运动,将AB绕点A顺时针旋转90°至AC,连接OC,求CA+OC的最小值,及此时点B坐标.42.(2023•南岸区校级开学)如图,已知直线l1:y=﹣x+b与直线l2:y=kx+3相交于y轴的B点,且分别交x轴于点A、C,已知OC=OA.(1)如图,求点C的坐标及k的值;(2)如图,若E为直线l1上一点,且E点的横坐标为,点P为y轴上一个动点,求当|PC﹣PE|最大时,点P的坐标;(3)若M为x轴上一点,当△ABM是等腰三角形时,直接写出点M的坐标.43.(2022秋•驿城区校级期末)(1)操作思考:如图1,在平面直角坐标系中,等腰直角△ACB的直角顶点C在原点,将其绕着点O旋转,若顶点A恰好落在点(1,2)处.则:①OA的长为;②点B的坐标为.(直接写结果)(2)感悟应用:如图2,在平面直角坐标系中,将等腰直角△ACB如图放置,直角顶点C(﹣1,0),点A(0,4),试求直线AB的函数表达式.(3)拓展研究:如图3,在直角坐标系中,点B(4,3),过点B作BA⊥y 轴,垂足为点A,作BC⊥x轴,垂足为点C,P是线段BC上的一个动点,点Q是直线y=2x﹣8上一动点,存在以点P为直角顶点的等腰直角△APQ,请直接写出点P的坐标.。
例题精讲考点一:一次函数中等腰三角形存在性问题【例1】.如果一次函数y=﹣x+6的图象与x轴、y轴分别交于A、B两点,M点在x轴上,并且使得以点A、B、M为定点的三角形是等腰三角形,则M点的坐标为.变式训练【变1-1】.如图,在平面直角坐标系中,直线MN的函数解析式为y=﹣x+3,点A在线段MN上且满足AN=2AM,B点是x轴上一点,当△AOB是以OA为腰的等腰三角形时,则B点的坐标为.【变1-2】.如图,在平面直角坐标系中,直线y=﹣2x+12与x轴交于点A,与y轴交于点B,与直线y=x交于点C.(1)求点C的坐标.(2)若P是x轴上的一个动点,直接写出当△OPC是等腰三角形时P的坐标.考点二:一次函数中直角三角形存在性问题【例2】.已知点A、B的坐标分别为(2,2)、(5,1),试在x轴上找一点C,使△ABC为直角三角形.【变2-1】.如图,一次函数y=kx+1的图象过点A(1,2),且与x轴相交于点B.若点P 是x轴上的一点,且满足△ABP是直角三角形,则点P的坐标是.【变2-2】.如图,已知一次函数y=x﹣2的图象与y轴交于点A,一次函数y=4x+b的图象与y轴交于点B,且与x轴以及一次函数y=x﹣2的图象分别交于点C、D,点D的坐标为(﹣2,﹣4).(1)关于x、y的方程组的解为.(2)求△ABD的面积;(3)在x轴上是否存在点E,使得以点C,D,E为顶点的三角形是直角三角形?若存在,求出点E的坐标;若不存在,请说明理由.考点三:一次函数中平行四边形存在性问题【例3】.如图,已知一次函数y=kx+b的图象经过A(1,3),B(﹣2,﹣1)两点,并且交x轴于点C,交y轴于点D.(1)求该一次函数的表达式;(2)求△AOB的面积;(3)平面内是否存在一点M,使以点M、C、O、B为顶点的四边形是平行四边形,若存在,请直接写出点M的坐标,若不存在,请说明理由.变式训练【变3-1】.如图1,在平面直角坐标系中,直线y=﹣x+3与x轴、y轴相交于A、B两点,点C在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上,过点D作DE⊥x轴于点E.(1)求证:△BOC≌△CED;(2)如图2,将△BCD沿x轴正方向平移得△B'C'D',当B'C'经过点D时,求△BCD平移的距离及点D的坐标;(3)若点P在y轴上,点Q在直线AB上,是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的P点的坐标;若不存在,请说明理由.考点四:一次函数中矩形存在性问题【例4】.如图,在平面直角坐标系中,已知Rt△AOB的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,且OA、OB的长满足|OA﹣8|+(OB﹣6)2=0,∠ABO的平分线交x轴于点C过点C作AB的垂线,垂足为点D,交y轴于点E.(1)求线段AB的长;(2)求直线CE的解析式;(3)若M是射线BC上的一个动点,在坐标平面内是否存在点P,使以A、B、M、P为顶点的四边形是矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.变式训练【变4-1】.如图,四边形OABC是矩形,点A、C在坐标轴上,△ODE是△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H,线段BC、OC的长是方程x2﹣4x+3=0的两个根,且OC>BC.(1)求直线BD的解析式;(2)求点H到x轴的距离;(3)点M在坐标轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.考点五:一次函数中菱形存在性问题【例5】.如图1,直线y=x+6与x,y轴分别交于A,B两点,∠ABO的角平分线与x轴相交于点C.(1)求点C的坐标;(2)在直线BC上有两点M,N,△AMN是等腰直角三角形,∠MAN=90°,求点M 的坐标;(3)点P在y轴上,在平面上是否存在点Q,使以点A、B、P、Q为顶点的四边形为菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.变式训练【变5-1】.如图,在平面直角坐标系中,直线y=x+4与x轴、y轴分别交于点D、C,直线AB与y轴交于点B(0,﹣2),与直线CD交于点A(m,2).(1)求直线AB的解析式;(2)点E是射线CD上一动点,过点E作EF∥y轴,交直线AB于点F,若以O、C、E、F为顶点的四边形是平行四边形,请求出点E的坐标;(3)设P是射线CD上一点,在平面内是否存在点Q,使以B、C、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.1.一次函数y=x+4分别交x轴、y轴于A、B两点,在x轴上取一点C,使△ABC为等腰三角形,则这样的点C的坐标为.2.如图,在平面直角坐标系中,点A坐标为(2,1),连接OA,点P是x轴上的一动点,如果△OAP是等腰三角形,请你写出符合条件的点P坐标.3.如图,在平面直角坐标系中,点A的坐标为(1,0),点B的坐标为(4,0),点C在y 的正半轴上,且OB=2OC,在直角坐标平面内确定点D,使得以点D、A、B、C为顶点的四边形是平行四边形,请写出点D的坐标为.4.如图,一次函数y=k2x+b的图象与y轴交于点B,与正比例函数y=k1x的图象相交于点A(3,4),且OA=OB.(1)分别求出这两个函数的解析式;(2)求△AOB的面积;(3)点P在x轴上,且△POA是等腰三角形,请直接写出点P的坐标.5.直线l1交x轴于点A(6,0),交y轴于B(0,6).(1)如图,折叠△AOB,使BA落在y轴上,折痕所在直线为l2,直线l2与x轴交于C 点,求C点坐标及l2的解析式;(2)在直线l1上找点M,使得以M、A、C为顶点的三角形是等腰三角形,求出所有满足条件的M点的坐标.6.在平面直角坐标系中,直线y=kx+8k(k是常数,k≠0)与坐标轴分别交于点A,点B,且点B的坐标为(0,6).(1)求点A的坐标;(2)如图1,将直线AB绕点B逆时针旋转45°交x轴于点C,求直线BC的解析式;(3)在(2)的条件下,直线BC上有一点M,坐标平面内有一点P,若以A、B、M、P 为顶点的四边形是菱形,请直接写出点P的坐标.7.如图,在平面直角坐标系中,一次函数的图象与x轴交于点A(﹣4,0),与y轴交于点B,且与正比例函数y=x的图象交于点C(m,6).(1)求一次函数的解析式;(2)求△BOC的面积;(3)在x轴上是否存在一点P,使得△ABP是等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.8.如图,已知一次函数y=x+m的图象与x轴交于点A(﹣6,0),交y轴于点B.(1)求m的值与点B的坐标(2)问在x轴上是否存在点C ABC的面积为16?若存在,求出点C的坐标;若不存在,说明理由.(3)问在x轴是否存在点P,使得△ABP为等腰三角形,求出点P坐标.(4)一条经过点D(0,2)和直线AB上的一点的直线将△AOB分成面积相等的两部分,请求出这条直线的函数表达式.9.在平面直角坐标系中,一次函数y=﹣x+2的图象交x轴、y轴分别于A、B两点,交直线y=kx于P(2,a).(1)求点A、B的坐标;(2)若Q为x轴上一动点,△APQ为等腰三角形,直接写出Q点坐标;(3)点C在直线AB上,过C作CE⊥x轴于E,交直线OP于D,我们规定若C,D,E 中恰好有一点是其他两点所连线段的中点,则称C,D,E三点为“和谐点”,求出C,D,E三点为“和谐点”时C点的坐标.10.如图所示,直线l:y=﹣x+2与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4).(1)求△AOB的面积;(2)动点M从A点以每秒1个单位的速度沿x轴向左移动,求△COM的面积S与M的移动时间t之间的函数关系式;(3)当动点M在x轴上移动的过程中,在平面直角坐标系中是否存在点N,使以点A,C,N,M为顶点的四边形为菱形,若存在,请直接写出点N的坐标;若不存在,请说明理由.11.如图,直线y=﹣x+4与x轴、y轴分别交于A、B两点,直线BC与x轴、y轴分别交于C、B两点,连接BC,且OC=OB.(1)求点A的坐标及直线BC的函数关系式;(2)点M在x轴上,连接MB,当∠MBA+∠CBO=45°时,求点M的坐标;(3)若点P在x轴上,平面内是否存在点Q,使点B、C、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.12.已知,一次函数y=的图象与x轴、y轴分别交于点A、点B,与直线y=相交于点C.过点B作x轴的平行线l.点P是直线l上的一个动点.(1)求点A,点B的坐标.(2)求点C到直线l的距离.=S△BCP,求点P的坐标.(3)若S△AOC(4)若点E是直线y=上的一个动点,当△APE是以AP为直角边的等腰直角三角形时,请直接写出点E的坐标.13.如图,在平面直角坐标系xOy中,直线y=﹣x+与y=x相交于点A,与x轴交于点B.(1)求点A,B的坐标;(2)在平面直角坐标系xOy中,是否存在一点C,使得以O,A,B,C为顶点的四边形是平行四边形?如果存在,试求出所有符合条件的点C的坐标;如果不存在,请说明理由;(3)在直线OA上,是否存在一点D,使得△DOB是等腰三角形?如果存在,试求出所有符合条件的点D的坐标,如果不存在,请说明理由.14.如图,经过点B(0,2)的直线y=kx+b与x轴交于点C,与正比例函数y=ax的图象交于点A(﹣1,3)(1)求直线AB的函数的表达式;(2)直接写出不等式(kx+b)﹣ax<0的解集;(3)求△AOC的面积;(4)点P是直线AB上的一点,且知△OCP是等腰三角形,写出所有符合条件的点P 的坐标.15.如图1,已知直线l1:y=kx+4交x轴于A(4,0),交y轴于B.(1)直接写出k的值为;(2)如图2,C为x轴负半轴上一点,过C点的直线l2:经过AB的中点P,点Q(t,0)为x轴上一动点,过Q作QM⊥x轴分别交直线l1、l2于M、N,且MN=2MQ,求t的值;(3)如图3,已知点M(﹣1,0),点N(5m,3m+2)为直线AB右侧一点,且满足∠OBM=∠ABN,求点N坐标.16.如图,平面直角坐标系中,直线l分别交x轴、y轴于A、B两点(OA<OB)且OA、OB的长分别是一元二次方程x2﹣(+1)x+=0的两个根,点C在x轴负半轴上,且AB:AC=1:2(1)求A、C两点的坐标;(2)若点M从C点出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM 的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.17.如图1,在平面直角坐标系中.直线与x轴、y轴相交于A、B两点,动点C 在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上时,过点D作DE⊥x轴于点E.(1)求证:△BOC≌△CED;(2)如图2,将△BCD沿x轴正方向平移得△B'C'D',当直线B′C′经过点D时,求点D的坐标;(3)若点P在y轴上,点Q在直线AB上.是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的Q点坐标;若不存在,请说明理由.18.如图,在平面直角坐标系中,直线AB:y=﹣x+4与x轴、y轴分别交于点A、B,点C在y轴的负半轴上,若将△CAB沿直线AC折叠,点B恰好落在x轴正半轴上的点D 处.(1)点A的坐标是,点B的坐标是,AB的长为;(2)求点C的坐标;=S△OCD,直接写出点M的坐标.(3)点M是y轴上一动点,若S△MAB(4)在第一象限内是否存在点P,使△PAB为等腰直角三角形,若存在,直接写出点P 的坐标;若不存在,请说明理由.19.如图,直角坐标系中,直线y=kx+b分别与x轴、y轴交于点A(3,0),点B(0,﹣4),过D(0,8)作平行x轴的直线CD,交AB于点C,点E(0,m)在线段OD上,延长CE交x轴于点F,点G在x轴正半轴上,且AG=AF.(1)求直线AB的函数表达式.(2)当点E恰好是OD中点时,求△ACG的面积.(3)是否存在m,使得△FCG是直角三角形?若存在,直接写出m的值;若不存在,请说明理由.20.如图直线l:y=kx+6与x轴、y轴分别交于点B、C两点,点B的坐标是(﹣8,0),点A的坐标为(﹣6,0).(1)求k的值.(2)若点P是直线l在第二象限内一个动点,当点P运动到什么位置时,△PAC的面积为3,求出此时直线AP的解析式.(3)在x轴上是否存在一点M,使得△BCM为等腰三角形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.21.如图1,在平面直角坐标系中,O为坐标原点,直线l:y=﹣x+m与x、y轴的正半轴分别相交于点A、B,过点C(﹣4,﹣4)画平行于y轴的直线交直线AB于点D,CD=10(1)求点D的坐标和直线l的解析式;(2)求证:△ABC是等腰直角三角形;(3)如图2,将直线l沿y轴负方向平移,当平移适当的距离时,直线l与x、y轴分别相交于点A′、B′,在直线CD上存在点P,使得△A′B′P是等腰直角三角形.请直接写出所有符合条件的点P的坐标.(不必书写解题过程)22.直线y=kx﹣4与x轴、y轴分别交于B、C两点,且=.(1)求点B的坐标和k的值;(2)若点A时第一象限内的直线y=kx﹣4上的一动点,则当点A运动到什么位置时,△AOB的面积是6?(3)在(2)成立的情况下,x轴上是否存在点P,使△POA是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.23.如图,一次函数y1=x+n与x轴交于点B,一次函数y2=﹣x+m与y轴交于点C,且它们的图象都经过点D(1,﹣).(1)则点B的坐标为,点C的坐标为;(2)在x轴上有一点P(t,0),且t>,如果△BDP和△CDP的面积相等,求t的值;(3)在(2)的条件下,在y轴的右侧,以CP为腰作等腰直角△CPM,直接写出满足条件的点M的坐标.24.如图,在平面直角坐标系中,一次函数y=kx+b的图象与y轴交于点A(0,4),与直线y=﹣x﹣1在第四象限相交于点B,连接OB,△AOB的面积为6.(1)求点B的坐标及直线AB的解析式;(2)已知点M在直线AB右侧,且△MAB是以AB为直角边的等腰直角三角形,请求出符合条件的点M的坐标.25.综合与探究:如图,直线l1:y=x+3与过点A(3,0)的直线l2:y=kx+b(k≠0)交于点C(1,m)与x轴交于点B.(1)求直线l2对应的函数解析式;(2)请直接写出不等式kx+b<x+3的解集;(3)若点N在平面直角坐标系内,则在直线l1上是否存在点F使以A,B,F,N为顶点的四边形为菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.26.一次函数y=kx+(k≠0)的图象与x轴、y轴分别交于A(1,0)、B(0,m)两点.(1)求一次函数解析式和m的值;(2)将线段AB绕着点A旋转,点B落在x轴负半轴上的点C处.点P在直线AB上,直线CP把△ABC分成面积之比为2:1的两部分.求直线CP的解析式;(3)在第二象限是否存在点D,使△BCD是以BC为腰的等腰直角三角形?若存在,请直接写出点D的坐标;若不存在,请说明理由.27.如图,在平面直角坐标系中,一次函数y=k1x+b的图象与x轴交于点A(﹣3,0),与y轴交于点B,且与正比例函数y=k2x的图象交点为C(3,4).(1)求正比例函数与一次函数的关系式.(2)若点D在第二象限,△DAB是以AB为直角边的等腰直角三角形,请求出点D的坐标.(3)在y轴上是否存在一点P使△POC为等腰三角形,若存在,求出所有符合条件的点P的坐标.28.在学习一元一次不等式与一次函数的过程中,小新在同一个坐标系中发现直线l1:y1=﹣x+3与坐标轴相交于A,B两点,直线l2:y2=kx+b(k≠0)与坐标轴相交于C,D两点,两直线相交于点E,且点E的横坐标为2.已知OC=,点P是直线l2上的动点.(1)求直线l2的函数表达式;(2)过点P作x轴的垂线与直线l1和x轴分别相交于M,N两点,当点N是线段PM的三等分点时,求P点的坐标;(3)若点Q是x轴上的动点,是否存在以A,E,P,Q为顶点的四边形是平行四边形?若存在,请求出所有满足条件的P点坐标;若不存在,请说明理由.29.(1)认识模型:如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于D,过B作BE⊥ED于E.求证:△BEC≌△CDA;(2)应用模型:①已知直线y=﹣2x+4与y轴交于A点,与x轴交于B点,将线段AB绕点B顺时针旋转90度,得到线段CB,求点C的坐标;②如图3,矩形ABCO,O为坐标原点,B的坐标为(5,4),A,C分别在坐标轴上,P是线段BC上动点,已知点D在第一象限,且是直线y=2x﹣3上的一点,点Q是平面内任意一点.若四边形ADPQ是正方形,请直接写出所有符合条件的点D的坐标.30.如图,四边形OABC为矩形,其中O为原点,A、C两点分别在x轴和y轴上,点B的坐标是(4,6),将矩形沿直线DE折叠,使点C落在AB边上点F处,折痕分别交OC、BC于点E、D,且点D的坐标是(,6).(1)求BF的长度;(2)如图2,点P在第二象限,且△PDE≌△CED,求直线PE的解析式;(3)若点M为直线DE上一动点,在x轴上是否存在点N,使以M、N、D、F为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.。
专题二等腰三角形的存在性问题【考题研究】近几年各地的中考数学试题中,探索等腰三角形的存在性问题频频出现,这类试题的知识覆盖面较广,综合性较强,题意构思精巧,要求学生要有较高的分析问题的能力和解决问题的能力,这类问题符合课标对学生能力提高的要求。
【解题攻略】在讨论等腰三角形的存在性问题时,一般都要先分类.如果△ABC是等腰三角形,那么存在①AB=AC,②BA=BC,③CA=CB三种情况.解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快.几何法一般分三步:分类、画图、计算.哪些题目适合用几何法呢?如果△ABC的∠A(的余弦值)是确定的,夹∠A的两边AB和AC可以用含x的式子表示出来,那么就用几何法.①如图1,如果AB=AC,直接列方程;②如图2,如果BA=BC,那么;③如图3,如果CA=CB,那么.代数法一般也分三步:罗列三边长,分类列方程,解方程并检验.如果三角形的三个角都是不确定的,而三个顶点的坐标可以用含x的式子表示出来,那么根据两点间的距离公式,三边长(的平方)就可以罗列出来.【解题类型及其思路】解题类型:动态类型:1.一动点类型问题;2.双动点或多动点类型问题背景类型:1.几何图形背景;2.平面直角坐标系和几何图形背景解题思路:几何法一般分三步:分类、画图、计算;代数法一般也分三步:罗列三边长,分类列方程,解方程并检验.如果△ABC是等腰三角形,那么存在①AB=AC,②BA=BC,③CA=CB三种情况.已知腰长画等腰三角形用圆规画圆,已知底边画等腰三角形用刻度尺画垂直平分线.解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快.【典例指引】类型一【二次函数综合题中根据条件判定三角形的形状】典例指引1.抛物线2y x bx c =++与x 轴交于点A ,点B (1,0),与y 轴交于点C (0,﹣3),点M 是其顶点. (1)求抛物线解析式;(2)第一象限抛物线上有一点D ,满足∠DAB =45°,求点D 的坐标;(3)直线x t = (﹣3<t <﹣1)与x 轴相交于点H .与线段AC ,AM 和抛物线分别相交于点E ,F ,P .证明线段HE ,EF ,FP 总能组成等腰三角形.【举一反三】(2020·江西初三期中)如图①,已知抛物线y =ax 2+bx +3(a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C .(1)求抛物线的解析式;(2)设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P ,使△CMP 为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由;(3)如图②,若点E 为第二象限抛物线上一动点,连接BE 、CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标.类型二【利用二次函数的性质与等腰三角形的性质确定点的坐标】典例指引2.(2019·山东初三期末)如图1,已知抛物线2()30y ax bx a =++≠与x 轴交于点(1,0)A 和点(3,0)B -,与y 轴交于点C .(l )求抛物线的表达式;(2)如图l ,若点E 为第二象限抛物线上一动点,连接,BE CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标;(3)如图2,在x 轴上是否存在一点D 使得ACD ∆为等腰三角形?若存在,请求出所有符合条件的点D 的坐标;若不存在,请说明理由.【举一反三】(2019·广东省中山市中山纪念中学三鑫双语学校初三期中)如图,已知抛物线y =ax 2+bx +c 的图象与x 轴交于A (2,0),B (﹣8,0)两点,与y 轴交于点C (0,﹣8).(1)求抛物线的解析式;(2)点F是直线BC下方抛物线上的一点,当△BCF的面积最大时,求出点F的坐标;(3)在(2)的条件下,是否存在这样的点Q(0,m),使得△BFQ为等腰三角形?如果有,请直接写出点Q的坐标;如果没有,请说明理由.类型三【确定满足等腰三角形的动点的运动时间】典例指引3.(2018济南中考)如图1,抛物线平移后过点A(8,,0)和原点,顶点为B,对称轴与轴相交于点C,与原抛物线相交于点D.(1)求平移后抛物线的解析式并直接写出阴影部分的面积;(2)如图2,直线AB与轴相交于点P,点M为线段OA上一动点,为直角,边MN与AP相交于点N,设,试探求:①为何值时为等腰三角形;②为何值时线段PN的长度最小,最小长度是多少.【举一反三】如图所示,抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0)、B(3,0)、C(0,3)三点.点D从C出发,沿线段CO以1个单位/秒的速度向终点O运动,过点D作OC的垂线交BC于点E,作EF∥OC,交抛物线于点F.(1)求此抛物线的解析式;(2)小明在探究点D运动时发现,①当点D与点C重合时,EF长度可看作O;②当点D与点O重合时,EF长度也可以看作O,于是他猜想:设点D运动到OC中点位置时,当线段EF最长,你认为他猜想是否正确,为什么?(3)连接CF、DF,请直接写出△CDF为等腰三角形时所有t的值.【新题训练】1.(2020·江西初三)如图,在平面直角坐标系中,已知点A(﹣2,﹣4),直线x=﹣2与x轴相交于点B,连接OA,抛物线y=﹣x2从点O沿OA方向平移,与直线x=﹣2交于点P,顶点M到点A时停止移动.(1)线段OA 所在直线的函数解析式是 ;(2)设平移后抛物线的顶点M 的横坐标为m ,问:当m 为何值时,线段P A 最长?并求出此时P A 的长. (3)若平移后抛物线交y 轴于点Q ,是否存在点Q 使得△OMQ 为等腰三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.2.(2018·山东中考真题)如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴于点()4,0A -、()2,0B ,交y 轴于点()0,6C ,在y 轴上有一点()0,2E -,连接AE .(1)求二次函数的表达式;(2)若点D 为抛物线在x 轴负半轴上方的一个动点,求ADE ∆面积的最大值;(3)抛物线对称轴上是否存在点P ,使AEP ∆为等腰三角形,若存在,请直接写出所有P 点的坐标,若不存在请说明理由.3.(2016·广西中考真题)在平面直角坐标系中,抛物线223y x x =--+与x 轴交于A ,B 两点(A 在B 的左侧),与y 轴交于点C ,顶点为D . (1)请直接写出点A ,C ,D 的坐标;(2)如图(1),在x 轴上找一点E ,使得△CDE 的周长最小,求点E 的坐标;(3)如图(2),F 为直线AC 上的动点,在抛物线上是否存在点P ,使得△AFP 为等腰直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.4.(2019·广东广州市第二中学初三)如图(1),在平面直角坐标系中,矩形ABCO,B点坐标为(4,3),抛物线y=12-x2+bx+c经过矩形ABCO的顶点B、C,D为BC的中点,直线AD与y轴交于E点,与抛物线y=12-x2+bx+c交于第四象限的F点.(1)求该抛物线解析式与F点坐标;(2)如图,动点P从点C出发,沿线段CB以每秒1个单位长度的速度向终点B运动;同时,动点M从点A出发,沿线段AE 13个单位长度的速度向终点E运动.过点P作PH⊥OA,垂足为H,连接MP,MH.设点P的运动时间为t秒.①问EP+PH+HF是否有最小值,如果有,求出t的值;如果没有,请说明理由.②若△PMH是等腰三角形,求出此时t的值.5.(2019·湖南中考模拟)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y 轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.6.(2018·山东中考模拟)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.7.(2019·山东中考模拟)已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C (﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△P AB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P 使△PDE 为等腰直角三角形?若存在,求出点P 的坐标;若不存在,说明理由.8.(2018·广东中考模拟)如图,在平面直角坐标系xOy 中,二次函数24y ax bx =+-(0a ≠)的图象与x 轴交于A (﹣2,0)、B (8,0)两点,与y 轴交于点B ,其对称轴与x 轴交于点D .(1)求该二次函数的解析式;(2)如图1,连结BC ,在线段BC 上是否存在点E ,使得△CDE 为等腰三角形?若存在,求出所有符合条件的点E 的坐标;若不存在,请说明理由;(3)如图2,若点P (m ,n )是该二次函数图象上的一个动点(其中m >0,n <0),连结PB ,PD ,BD ,求△BDP 面积的最大值及此时点P 的坐标.9.(2019·四川中考模拟)如图,已知二次函数y =﹣x 2+bx +c (c >0)的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,且OB =OC =3,顶点为M .(1)求二次函数的解析式;(2)点P 为线段BM 上的一个动点,过点P 作x 轴的垂线PQ ,垂足为Q ,若OQ =m ,四边形ACPQ 的面积为S ,求S 关于m 的函数解析式,并写出m 的取值范围;(3)探索:线段BM 上是否存在点N ,使△NMC 为等腰三角形?如果存在,求出点N 的坐标;如果不存在,请说明理由.10.(2019·甘肃中考模拟)如图,已知二次函数y =ax 2+bx +c 的图象与x 轴相交于A (﹣1,0),B (3,0)两点,与y 轴相交于点C (0,﹣3). (1)求这个二次函数的表达式;(2)若P 是第四象限内这个二次函数的图象上任意一点,PH ⊥x 轴于点H ,与BC 交于点M ,连接PC . ①求线段PM 的最大值;②当△PCM 是以PM 为一腰的等腰三角形时,求点P 的坐标.11.(2019·安徽中考模拟)如图,已知直线1y x =+与抛物线2y ax 2x c =++相交于点()1,0A -和点()2,B m 两点.(1)求抛物线的函数表达式;(2)若点P 是位于直线AB 上方抛物线上的一动点,当PAB ∆的面积S 最大时,求此时PAB ∆的面积S 及点P 的坐标;(3)在x 轴上是否存在点Q ,使QAB ∆是等腰三角形?若存在,直接写出Q 点的坐标(不用说理);若不存在,请说明理由.12.(2018·江苏中考模拟)(2017南宁,第26题,10分)如图,已知抛物线2239y ax ax a =--与坐标轴交于A ,B ,C 三点,其中C (0,3),∠BAC 的平分线AE 交y 轴于点D ,交BC 于点E ,过点D 的直线l 与射线AC ,AB 分别交于点M ,N .(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若△P AD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时,11AM AN均为定值,并求出该定值.13.(2019·重庆中考模拟)如图,在平面直角坐标系中,一抛物线的对称轴为直线,与y轴负半轴交于C点,与x轴交于A、B两点,其中B点的坐标为(3,0),且OB=OC.(1)求此抛物线的解析式;(2)若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上一动点,当点P运动到什么位置时,△APG的面积最大?求出此时P点的坐标和△APG的最大面积.(3)若平行于x轴的直线与该抛物线交于M、N两点(其中点M在点N的右侧),在x轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.14.(2019·辽宁中考模拟)抛物线y=ax2+bx﹣3(a≠0)与直线y=kx+c(k≠0)相交于A(﹣1,0)、B(2,﹣3)两点,且抛物线与y轴交于点C.(1)求抛物线的解析式;(2)求出C、D两点的坐标(3)在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,求出点P的坐标.15.(2020·浙江初三期末)如图,抛物线y=﹣12x2+2x+6交x轴于A,B两点(点A在点B的右侧),交y轴于点C,顶点为D,对称轴分別交x轴、线段AC于点E、F.(1)求抛物线的对称轴及点A的坐标;(2)连结AD,CD,求△ACD的面积;(3)设动点P从点D出发,沿线段DE匀速向终点E运动,取△ACD一边的两端点和点P,若以这三点为顶点的三角形是等腰三角形,且P为顶角顶点,求所有满足条件的点P的坐标.16.(2020·湖北初三期末)如图,已知二次函数的图象经过点A(4,4),B(5,0)和原点O,P为二次函数图象上的一个动点,过点P作x轴的垂线,垂足为D(m,0),并与直线OA相较于点C.(1)求出二次函数的解析式;(2)当点P在直线OA的上方时,求线段PC的最大值;(3)当点P在直线OA的上方时,是否存在一点P,使射线OP平分∠AOy,若存在,请求出P点坐标;若不存在.请说明理由;(4)当m>0时,探索是否存在点P,使得△PCO为等腰三角形,若存在,求出P点的坐标;若不存在,请说明理由.17.(2019·吉林初三)如图1,抛物线与y =﹣211433x x ++与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC 、BC ,点D 是线段AB 上一点,且AD =CA ,连接CD .(1)如图2,点P 是直线BC 上方抛物线上的一动点,在线段BC 上有一动点Q ,连接PC 、PD 、PQ ,当△PCD 面积最大时,求PQ +10CQ 的最小值; (2)将过点D 的直线绕点D 旋转,设旋转中的直线l 分别与直线AC 、直线CO 交于点M 、N ,当△CMN 为等腰三角形时,直接写出CM 的长.18.(2020·江苏初三期末)在平面直角坐标系xOy 中,抛物线2y x mx n =-++与x 轴交于点A ,B ( A 在B的左侧)(1)如图1,若抛物线的对称轴为直线3,4x AB =-= .①点A 的坐标为( , ),点B 的坐标为( , ); ②求抛物线的函数表达式;(2)如图2,将(1)中的抛物线向右平移若干个单位,再向下平移若干个单位,使平移后的抛物线经过点O ,且与x 正半轴交于点C ,记平移后的抛物线顶点为P ,若OCP ∆是等腰直角三角形,求点P 的坐标.。
2019年中考数学总复习等腰三角形专题综合训练题1.在△ABC中,∠ABC=30°,∠BAC=70°.在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画( )A.7条 B.8条C.9条D.10条2. 如图,在△ABC中,AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数为( )A.80° B.75° C.65° D.45°3. 如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=( )A.3 B.4 C.5 D.64. 如图,矩形纸片ABCD中,AB=4,BC=6.将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值是( )A.6 B.3 C.2.5 D.25. 如图,在△ABC中,AB=AC,AD是∠B AC的平分线.已知AB=5,AD=3,则BC的长为( )A.5 B.6 C.8 D.106. 如图,已知直线l1∥l2,将等边三角形如图放置,若∠α=40°,则∠β等于____.7. 如图钢架中,焊上等长的13根钢条来加固钢架.若AP1=P1P2=P2P3=…=P13P14=P14A,则∠A的度数是____.8. 在△ABC中,∠C是最小内角.若过顶点B的一条直线把这个三角形分成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为△ABC的关于点B的伴侣分割线.例如:如图1,△ABC 中,∠A=90°,∠C=20°,若过顶点B的一条直线BD交AC于点D,且∠DBC=20°,则直线BD是△ABC 的关于点B的伴侣分割线.(1)如图2,△ABC中,∠C=20°,∠ABC=110°.请在图中画出△ABC关于点B的伴侣分割线,并注明角度;(2)△ABC中,设∠B的度数为y,最小内角∠C的度数为x.试探索y与x应满足什么要求时,△ABC存在关于点B的伴侣分割线.9. 如图,抛物线y=ax2+bx过A(4,0),B(1,3)两点,点C,B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.(1)求抛物线的表达式;(2)若点M在直线BH上运动,点N在x轴上运动,当以点C、M、N为顶点的三角形为等腰直角三角形时,请直接写出此时△CMN的面积.解析:第(2)题分别以点C,M,N为直角顶点分三类进行讨论,利用全等三角形和勾股定理求CM或CN的长,利用面积公式进行计算.10. 如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)11. 在等腰Rt△ABC中,∠C=90°,AC=1,过点C作直线l∥AB,F是l上的一点,且AB=AF,求点F 到直线BC的距离.12. 如图,已知抛物线y =ax 2+bx +c(a ≠0)经过A(-1,0),B(3,0),C(0,-3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)点M 是直线l 上的动点,且△MAC 为等腰三角形,求出所有符合条件的点M 的坐标.13. 如图,在△ABC 中,AB =AC ,∠BAC =90°,BD 是∠ABC 的平分线,CE ⊥BD ,垂足是E ,BA 和CE 的延长线交于点F.(1) 在图中找出与△ABD 全等的三角形,并证明你的结论; (2) 证明:BD =2EC.参考答案: 1. C2. D 【解析】∠BCA=12(180°-∠A)=75°,∠BCD =∠BCA-∠DCA=∠BCA-∠A=75°-30°=45°.3. C【解析】作PQ⊥MN 于Q ,由PM =PN 知PQ 垂直平分MN∴MQ=1.∠AOB=60°,OP =12,∴OQ =12OP =6,OM=OQ -MQ =6-1=5. 4. C【解析】 如图,以BC 为边作等腰直角三角形△EBC,延长BE 交AD 于F ,得△ABF 是等腰直角三角形,作EG⊥CD 于G ,得△EGC 是等腰直角三角形,在矩形ABCD 中剪去△ABF,△BCE ,△ECG 得到四边形EFDG ,此时剩余部分的面积最小,最小值为4×6-12×4×4-12×3×6-12×3×3=2.5,故选C.5. C 【解析】∵AB=AC ,AD 是∠BAC 的平分线,∴AD ⊥BC ,BD =CD ,∴BD =AB 2-AD 2=4,∴BC =2BD =8,故选C. 6. 20° 【解析】过点A 作AD∥l 1,根据平行线的性质可得∠BAD=∠β.AD∥l 2,从而得到∠DAC=∠α=40°.再根据等边△ABC 可得到∠BAC=60°,∴∠β=∠BAD=∠BAC-∠DAC=60°-40°=20°.7. 12° 【解析】设∠A=x ,∵AP 1=P 1P 2=P 2P 3=…=P 13P 14=P 14A ,∴∠A =∠AP 2P 1=∠AP 13P 14=x ,∴∠P 2P 1P 3=∠P 13P 14P 12=2x ,∴∠P 3P 2P 4=∠P 12P 13P 11=3x ,……,∠P 7P 6P 8=∠P 8P 9P 7=7x ,∴∠AP 7P 8=7x ,∠AP 8P 7=7x.在△AP 7P 8中,∠A +∠AP 7P 8+∠AP 8P 7=180°,即x +7x +7x =180°,解得x =12°.8. 解:(1)画图正确,角度标注正确,如图① (2)考虑直角顶点,只有点A ,B ,D 三种情况.当点A 为直角顶点时,如图②,此时y =90°-x.当点B 为直角顶点时,再分两种情况:若∠DBC=90°,如图③,此时y =90°+12(90°-x)=135°-12x.若∠ABD=90°,如图④,此时y =90°+x.当点D 为直角顶点时,又分两种情况:若△ABD 是等腰三角形,如图⑤,此时y =45°+(90°-x)=135°-x.若△DBC 是等腰三角形,如图⑥,此时x =45°,45°<y <90°9. 解:(1)把点A(4,0),B(1,3)代入抛物线y =ax 2+bx 中,得⎩⎪⎨⎪⎧0=16a +4b ,3=a +b ,解得⎩⎪⎨⎪⎧a =-1,b =4,∴抛物线表达式为:y =-x 2+4x (2)点C 的坐标为(3,3),点B 的坐标为(1,3),以点C ,M ,N 为顶点的三角形为等腰直角三角形时,分三类情况讨论:①以点M 为直角顶点且M 在x 轴上方时,如图2,CM =MN ,∠CMN=90°,则△CBM≌△MHN,∴BC =MH =2,BM =HN =3-2=1,∴M(1,2),N(2,0),由勾股定理得MC =22+12=5,∴S △CMN =12×5×5=52;②以点M 为直角顶点且M 在x 轴下方时,如图3,作辅助线,构建如图所示的两直角三角形:Rt △NEM 和Rt △MDC ,得Rt △NEM ≌Rt △MDC ,∴MD =ME =2,EM =CD =5,由勾股定理得CM =22+52=29,∴S △CMN=12×29×29=292;③以点N 为直角顶点且N 在y 轴左侧时,如图4,CN =MN ,∠MNC =90°,作辅助线,同理得CN =32+52=34,∴S △CMN =12×34×34=17;④以点N 为直角顶点且N 在y 轴右侧时,作辅助线,如图5,同理得CN =32+12=10,∴S △CMN =12×10×10=5;⑤以C 为直角顶点时,不能构成满足条件的等腰直角三角形.综上所述,△CMN 的面积为52或292或17或510. 解:满足条件的所有等腰三角形如下图所示:解析:利用等腰三角形的性质,分别以长度为3的边为等腰三角形的底边和腰长进行分类.11. 解:①如图a ,延长AC ,作FD⊥BC 于点D ,FE ⊥AC 于点E ,易得四边形CDFE 是正方形,则CD =DF=FE =EC.∵在等腰直角△ABC 中,AC =BC =1,AB =AF ,∴AB =AC 2+BC 2=12+12=2,∴AF = 2.在Rt △AEF 中,(1+EC)2+EF 2=AF 2,即 (1+DF)2+DF 2=(2)2,解得DF =3-12;②如图b ,延长BC ,作FD⊥BC 于点D ,延长CA ,作FE⊥CA 于点E ,易得四边形CDFE 是正方形,则CD =DF =FE =EC.在Rt △AEF 中,(EC -1)2+EF 2=AF 2,即(FD -1)2+FD 2=(2)2,解得FD =3+12.综上可知,点F 到BC 的距离为3+12或3-1212. 解:(1)将A(-1,0),B(3,0),C(0,-3)代入抛物线y =ax 2+bx +c 中,得⎩⎪⎨⎪⎧a -b +c =0,9a +3b +c =0,c =-3,解得⎩⎪⎨⎪⎧a =1,b =-2,c =-3,故抛物线的解析式为y =x 2-2x -3 (2)如图,抛物线的对称轴为x =-b 2a=1,设M(1,m),已知A(-1,0),C(0,-3),则MA 2=m 2+4,MC 2=(3+m)2+1=m 2+6m +10,AC 2=10.①若MA =MC ,则MA 2=MC 2,得m 2+4=m 2+6m +10,解得m =-1;②若MA =AC ,则MA 2=AC 2,得m 2+4=10,得m =±6;③若MC =AC ,则MC 2=AC 2,得m 2+6m +10=10,得m 1=0,m 2=-6,当m =-6时,M ,A ,C 三点共线,不构成三角形,不合题意,故舍去.综上可知,符合条件的M 点的坐标为 (1,6)(1,-6)(1,-1)(1,0)13. 解:(1)△ABD≌△ACF,证明:∵AB =AC ,∠BAC =90°,∴∠FAC =∠BAC=90°,∵BD ⊥CE ,∠BAC =90°,∠ADB =∠EDC,∴∠ABD =∠ACF,∴△ABD ≌△ACF(ASA)(2)∵△ABD≌△ACF,∴BD =CF ,∵BD ⊥CE ,∴∠BEF =∠BEC,∵BD 是∠ABC 的平分线,∴∠FBE =∠CBE,∵BE =BE ,∴△FBE ≌△CBE(ASA),∴CF =2CE ,∴BD =2CE2019-2020学年数学中考模拟试卷一、选择题1.如图,以边长为a 的等边三角形各定点为圆心,以a 为半径在对边之外作弧,由这三段圆弧组成的曲线是一种常宽曲线.此曲线的周长与直径为a 的圆的周长之比是( )A .1:1B .1:3C .3:1D .1:22.昆明市有关负责人表示,预计年昆明市的地铁修建资金将达到亿元,将亿用科学记数法表示为( )A.B.C. D.3.如图,在直角三角形ABC 中,∠ACB =90°,AC =3,BC =4,点P 在边AB 上,∠CPB 的平分线交边BC 于点D ,DE ⊥CP 于点E ,DF ⊥AB 于点F .当△PED 与△BFD 的面积相等时,BP 的值为( )A. B. C. D.4.下列计算的结果是a 6的为( ) A .a 12÷a 2B .a 7﹣aC .a 2•a 4D .(﹣a 2)35.如图,是一个几何体的三视图,根据图中标注的数据可求得这个几何体的体积为( )A .12πB .24πC .36πD .48π6.如图,抛物线()()142L y x t x t =---+:(常数0t >),双曲线6(0)y x x=>.设L 与双曲线有个交点的横坐标为0x ,且满足034x <<,在L 位置随t 变化的过程中,t 的取值范围是( )A .322t << B .34t << C .45t << D .57t <<7.如图所示的几何体的俯视图为( )A .B .C .D .8.如图,四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,若∠BAC =20°,则∠ADC 的度数是( )A .90°B .100°C .110°D .130°9.如图,一次函数y =kx+b 与y =x+2的图象相交于点P (m ,4),则关于x ,y 的二元一次方程组2kx y by x -=-⎧⎨-=⎩的解是( )A .34x y =⎧⎨=⎩B . 1.84x y =⎧⎨=⎩C .24x y =⎧⎨=⎩D . 2.44x y =⎧⎨=⎩10.如图1,△ABC 中,∠A =30°,点P 从点A 出发以2cm/s 的速度沿折线A→C→B 运动,点Q 从点A 出发以vcm/s 的速度沿AB 运动,P ,Q 两点同时出发,当某一点运动到点B 时,两点同时停止运动.设运动时间为x (s ),△APQ 的面积为y (cm 2),y 关于x 的函数图象由C 1,C 2两段组成,如图2所示,有下列结论:①v =1;②sinB =13;③图象C 2段的函数表达式为y =﹣13x 2+103x ;④△APQ 面积的最大值为8,其中正确有( )A .①②B .①②④C .①③④D .①②③④11.已知函数6y x -= 与y =﹣x+1的图象的交点坐标是(m ,n ),则11m n+的值为( ) A .﹣16B .16C .﹣6D .612.整数a 满足下列两个条件,使不等式﹣2≤352x +<12a+1恰好只有3个整数解,使得分式方程135-22ax x x x----=1的解为整数,则所有满足条件的a 的和为( )A .2B .3C .5D .6二、填空题13.任意写出一个3的倍数(例如:111),首先把这个数各数位上的数字都立方,再相加,得到一个新数,然后把这个新数重复上述运算,运算结果最终会得到一个固定不变的数M ,它会掉入一个数字“黑洞”.那么最终掉入“黑洞”的那个数M 是______.14.如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是_______.15.如图,已知在△ABC 中,AB=AC ,BC=8,D 、E 两点分别在边BC 、AB 上,将△ABC 沿着直线DE 翻折,点B 正好落在边AC 上的点M 处,并且AC=4AM ,设BD=m ,那么∠ACD 的正切值是______(用含m 的代数式表示)16.如图,在平面直角坐标系中,直线l:y=x+1交x轴于点A,交y轴于点B,点A1、A2、A3,…在3x轴的正半轴上,点B1、B2、B3,…在直线l上.若△OB1A1,△A1B2A2,△A2B3A3,…均为等边三角形,则△A6B7A7的周长是______.17 ______.18.如图,AB是圆O的弦,AB=,点C是圆O上的一个动点,且∠ACB=45°,若点M、N分别是AB、BC的中点,则MN的最大值是_____.三、解答题19.如图,以D为顶点的抛物线y=﹣x2+bx+c交x轴于点A,B(3,0),交y轴于点C(0,3).(1)求抛物线的解析式;(2)在直线BC上有一点P,使PO+PA的值最小,求点P的坐标;(3)在x轴上是否存在一点Q,使得以A,C,Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.20.如图,四边形ABCD为⊙O的内接四边形,且对角线AC为直径,AD=BC,过点D作DG⊥AC,垂足为E,DG分别与AB,⊙O及CB延长线交于点F、G、M.(1)求证:四边形ABCD为矩形;(2)若N为MF中点,求证:NB是⊙O的切线;(3)若F为GE中点,且DE=6,求⊙O的半径.21.某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.(1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x天(x为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x(天)的利润为y(元),求y与x(1≤x<15)之间的函数解析式,并求出第几天时销售利润最大.22.已知二次函数y=ax2+4x+c,当x=﹣2时,y=﹣5;当x=1时,y=4(1)求这个二次函数表达式.(2)此函数图象与x轴交于点A,B(A在B的左边),与y轴交于点C,求点A,B,C点的坐标及△ABC的面积.(3)该函数值y能否取到﹣6?为什么?23.某高速铁路位于某省南部,是国家“八纵八横”高速铁路网的重要连接通道,也是某省“三横五纵”高速铁路网的重要组成部分.东起日照,向西贯穿临沂、曲阜、济宁、菏泽,与郑徐客运专线兰考南站接轨.工程有一段在一条河边,且刚好为东西走向.B处是一个高铁维护站,如图①,现在想过B处在河上修一座桥,需要知道河宽,一测量员在河对岸的A处测得B在它的东北方向,测量员从A点开始沿岸边向正东方向前进300米到达点C处,测得B在C的北偏西30度方向上.(1)求所测之处河的宽度;(结果保留的十分位)(2)除(1)的测量方案外,请你再设计一种测量河宽的方案,并在图②中画出图形.24.如图,已知△ABC.按如下步骤作图:①以A为圆心,AB长为半径画弧;②以C为圆心,CB长为半径画弧,两弧相交于点D;③连结BD,与AC交于点E,连结AD,CD(1)求证:△ABC≌△ADC;(2)若∠BAC =30°,∠BCA =45°,BC =2; ①求∠BAD 所对的弧BD 的长;②直接写出AC 的长.25.解不等式组1531x x x +≤⎧⎨->⎩①②请结合题意填空,完成本题的解答. (Ⅰ)解不等式①,得_________; (Ⅱ)解不等式②,得_________;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为________.【参考答案】*** 一、选择题二、填空题 13.153 14.1215.316. 17.18.20 三、解答题19.(1)y =﹣x 2+2x+3;(2)点P 的坐标为(97,127);(3)当Q 的坐标为(0,0)或(9,0)时,以A ,C ,Q 为顶点的三角形与△BCD 相似. 【解析】 【分析】(1)根据点B ,C 的坐标,利用待定系数法可求出抛物线的解析式;(2)利用二次函数图象上点的坐标特征可得出点A 的坐标,由点B ,C 的坐标可得出直线BC 的解析式,作O关于BC的对称点O′,则点O′的坐标为(3,3),由两地之间线段最短可得出当A,P,O′共线时,PO+PA取最小值,由点O′,A的坐标可求出该最小值,由点A,O′的坐标,利用待定系数法可求出直线AO′的解析式,联立直线AO′和直线BC的解析式成方程组,通过解方程组可求出点P的坐标;(3)由点B,C,D的坐标可得出BC,BD,CD的长,由CD2+BC2=BD2可得出∠BCD=90°,由点A,C的坐标可得出OA,OC的长度,进而可得出OA OCCD CB=,结合∠AOC=∠DCB=90°可得出△AOC∽△DCB,进而可得出点Q与点O重合时△AQC∽△DCB;连接AC,过点C作CQ⊥AC,交x轴与点Q,则△ACQ∽△AOC∽△DCB,由相似三角形的性质可求出AQ的长度,进而可得出点Q的坐标.综上,此题得解.【详解】(1)将B(3,0),C(0,3)代入y=﹣x2+bx+c,得:9303b cc-++=⎧⎨=⎩,解得:23bc=⎧⎨=⎩,∴抛物线的解析式为y=﹣x2+2x+3.(2)当y=0时,﹣x2+2x+3=0,解得:x1=﹣1,x2=3,∴点A的坐标为(﹣1,0).∵点B的坐标为(3,0),点C的坐标为(0,3),∴直线BC的解析式为y=﹣x+3.如图1,作O关于BC的对称点O′,则点O′的坐标为(3,3).∵O与O′关于直线BC对称,∴PO=PO′,∴PO+PA=5.设直线AO′的解析式为y=kx+m,将A(﹣1,0),Q′(3,3)代入y=kx+m,得:-k0 33mk m+=⎧⎨+=⎩,解得:3k434m⎧=⎪⎪⎨⎪=⎪⎩,∴直线AO′的解析式为y =34x+34. 联立直线AO′和直线BC 的解析式成方程组,得:33y 443x y x ⎧=+⎪⎨⎪=-+⎩,解得:9x 7127y ⎧=⎪⎪⎨⎪=⎪⎩,∴点P 的坐标为(97,127). (3)∵y =﹣x 2+2x+3=﹣(x ﹣1)2+4, ∴点D 的坐标为(1,4).又∵点C 的坐标为(0,3),点B 的坐标为(3,0), ∴CD,BC,BD∴CD 2+BC 2=BD 2, ∴∠BCD =90°.∵点A 的坐标(﹣1,0),点C 的坐标为(0,3), ∴OA =1,OC =3, ∴OA OC CD CB ==. 又∵∠AOC =∠DCB =90°, ∴△AOC ∽△DCB ,∴当Q 的坐标为(0,0)时,△AQC ∽△DCB . 如图2,连接AC ,过点C 作CQ ⊥AC ,交x 轴与点Q . ∵△ACQ 为直角三角形,CO ⊥AQ , ∴△ACQ ∽△AOC . 又∵△AOC ∽△DCB , ∴△ACQ ∽DCB ,∴AC AQDC DB =AQ=, ∴AQ =10,∴点Q 的坐标为(9,0).综上所述:当Q 的坐标为(0,0)或(9,0)时,以A ,C ,Q 为顶点的三角形与△BCD 相似. 【点睛】本题考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、待定系数法求一次函数解析式、一次函数图象上点的坐标特征以及相似三角形的判定与性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用两点之间线段最短确定点P 的位置;(3)分两种情况,利用相似三角形的性质求出点Q 的坐标.20.(1)详见解析;(2)详见解析;(3)⊙O 的半径是2. 【解析】 【分析】(1)根据AC 为⊙O 直径,得到∠ADC =∠CBA =90°,通过全等三角形得到CD =AB ,推出四边形ABCD 是平行四边形,根据矩形的判定定理得到结论; (2)根据直角三角形的性质得到NB =12MF =NF ,根据等腰三角形的性质和余角的性质即可得到NB 是⊙O 的切线;(3)根据垂径定理得到DE =GE =6,根据四边形ABCD 是矩形,得到∠BAD =90°,根据余角的性质得到∠FAE =∠ADE ,推出△AEF ∽△DEA ,根据相似三角形的性质列比例式得到AE =,连接OD ,设⊙O 的半径为r ,根据勾股定理列方程即可得到结论. 【详解】解:(1)∵AC 为⊙O 直径, ∴∠ADC =∠CBA =90°,在Rt △ADC 与Rt △CBA 中,AC ACAD BC =⎧⎨=⎩,∴Rt △ADC ≌Rt △CBA , ∴CD =AB , ∵AD =BC ,∴四边形ABCD 是平行四边形, ∵∠CBA =90°, ∴四边形ABCD 是矩形; (2)连接OB ,∵∠MBF =∠ABC =90°, ∴NB =12MF =NF , ∴∠1=∠2,∵∠2=∠3,∴∠1=∠3,∵OB=OA,∴∠5=∠4,∵DG⊥AC,∴∠AEF=90°,∴∠3+∠4=90°,∴∠1+∠5=90°,∴OB⊥NB,∴NB是⊙O的切线;(3)∵AC为⊙O直径,AC⊥DG,∴DE=GE=6,∵F为GE中点,∴EF=GF=3,∵四边形ABCD是矩形,∴∠BAD=90°,∴∠FAE+∠DAE=90°,∵∠ADE+∠DAE=90°,∴∠FAE=∠ADE,∵∠AEF=∠DEA=90°,∴△AEF∽△DEA,∴AE EF DE AE,∴AE=,连接OD,设⊙O的半径为r,∴OA=OD=r,OE=r﹣,∵OE2+DE2=OD2,∴(r﹣)2+62=r2,∴r,∴⊙O的半径是2.【点睛】本题考查了圆周角定理,矩形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质,直角三角形的性质,勾股定理,证得AEF∽△DEA是解决(3)的关键.21.(1)该种水果每次降价的百分率是10%;(2)第10天时销售利润最大;【解析】【分析】(1)设这个百分率是x,根据某商品原价为10元,由于各种原因连续两次降价,降价后的价格为8.1元,可列方程求解;(2)根据两个取值先计算:当1≤x<9时和9≤x<15时销售单价,由利润=(售价-进价)×销量-费用列函数关系式,并根据增减性求最大值,作对比;【详解】(1)设该种水果每次降价的百分率是x,10(1﹣x)2=8.1,x=10%或x=190%(舍去),答:该种水果每次降价的百分率是10%;(2)当1≤x<9时,第1次降价后的价格:10×(1﹣10%)=9,∴y=(9﹣4.1)(80﹣3x)﹣(40+3x)=﹣17.7x+352,∵﹣17.7<0,∴y随x的增大而减小,∴当x=1时,y有最大值,y大=﹣17.7×1+352=334.3(元),当9≤x<15时,第2次降价后的价格:8.1元,∴y=(8.1﹣4.1)﹣(3x2﹣64x+400)=﹣3x2+60x+80=﹣3(x﹣10)2+380,∵﹣3<0,∴当9≤x≤10时,y随x的增大而增大,当10<x<15时,y随x的增大而减小,∴当x=10时,y有最大值,y大=380(元),综上所述,第10天时销售利润最大.【点睛】本题考查了一元二次方程的应用及二次函数的有关知识,解题的关键是正确的找到题目中的等量关系且利用其列出方程,注意第2问中x 的取值,两个取值中的最大值才是最大利润.22.(1)y =x 2+4x ﹣1;(3)函数值y 不能取到﹣6;理由见解析. 【解析】 【分析】(1)把x =﹣2时,y =﹣5;x =1时,y =4代入y =ax 2+4x+c ,求得a 、c 的值即可求得;(2)令y =0,解方程求得A 、B 点的坐标,令x =0,求得y =﹣1,得到C 点的坐标,然后根据三角形面积公式即可求得△ABC 的面积;(3)把(1)中求得的解析式化成顶点式,求得函数y 的最小值为﹣5,故函数值y 不能取到﹣6. 【详解】解:(1)把x =﹣2时,y =﹣5;x =1时,y =4代入y =ax 2+4x+c 得48544a c a c -+=-⎧⎨++=⎩,解得11a c =⎧⎨=-⎩,∴这个二次函数表达式为y =x 2+4x ﹣1; (2)令y =0,则x 2+4x ﹣1=0,解得x∴A(﹣20),B(﹣0), 令x =0,则y =﹣1, ∴C(0,﹣1),∴△ABC 的面积:12AB•OC=12(﹣ (3)∵y =x 2+4x ﹣1=(x+2)2﹣5, ∴函数y 的最小值为﹣5, ∴函数值y 不能取到﹣6. 【点睛】本题考查了抛物线和x 轴的交点,待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,以及二次函数的性质,二次函数图象上点的坐标适合解析式是解题的关键. 23.(1)所测之处江的宽度为190.5m ;(2)见解析. 【解析】 【分析】解:(1)过点B 作BF ⊥AC 于F ,根据题意得到∠EAB =45°,∠GCB =30°,AC =300m ,求得∠FBA =45°,∠CBF =30°,得到BF =AF ,解直角三角形即可得到结论;(2)构造相似三角形,根据相似三角形的性质得到方程即可得到结论.. 【详解】(1)过点B 作BF ⊥AC 于F ,由题意得:∠EAB =45°,∠GCB =30°,AC =300m , ∴∠FBA =45°,∠CBF =30°,∴FC =300﹣AF =300﹣BF (m ), 在Rt △BFC 中,tan ∠CBF =FCFB, ∴tan30°=300BFBF-,300BFBF-=,解得:BF ﹣150(3m ), 答:所测之处江的宽度为190.5m ;(2)①在河岸取点A ,使B 垂直于河岸,延长BA 至C ,测得AC 做记录, ②从C 沿平行于河岸的方向走到D ,测得CD ,做记录, ③B0与河岸交于E ,测AE ,做记录.根据△BAE ~△BCD , 得到比例线段,从而求出河宽AB .【点睛】此题考查了方向角问题.此题难度适中,注意能构造直角三角形,并能借助于解直角三角形的知识求解是关键,注意数形结合思想与方程思想的应用.24.(1)见解析;(2)①BD ;②AC =【解析】 【分析】(1)由“SSS”可证△ABC ≌△ADC ;(2)①由题意可得AC 垂直平分BD ,可得BE=DE ,AC ⊥BD ,由直角三角形的性质可得,,由等腰三角形的性质可得∠BAD=2∠BAC=60°,由弧长公式可求弧BD 的长;②由AC=AE+CE 可求解. 【详解】证明:(1)由题意可得AB =AD ,BC =CD ,∴△ABC ≌△ADC (SSS ); (2)①∵AB =AD ,BC =CD ∴AC 垂直平分BD ∴BE =DE ,AC ⊥BD ∵∠BCA =45°,BC =2;∴BE =CE ,且∠BAC =30°,AC ⊥BD∴AB =2BE =,AE ∵AB =AD ,AC ⊥BD ∴∠BAD =2∠BAC =60°∴60BD 1803π︒︒⨯⨯==②∵AC =AE+CE∴AC +【点睛】本题考查了全等三角形的判定和性质,直角三角形的性质,等腰三角形的性质,弧长公式,灵活运用这些性质解决问题是本题的关键. 25.(Ⅰ)4x ≤;(Ⅱ)12x >;(Ⅲ)见解析;(Ⅳ)142x <≤. 【解析】 【分析】(Ⅰ)直接移项即可得出答案;(Ⅱ)移项,两边同时除以2,即可得答案;(Ⅲ)根据解集在数轴上的表示方法表示出①②的解集即可;(Ⅳ)根据数轴找出两个解集的公共部分即可. 【详解】 (Ⅰ)15x +≤ 移项得:x≤4, 故答案为:x≤4 (Ⅱ) 31x x -> 移项得:2x>1,解得:x>12, 故答案为:x>12(Ⅲ)不等式①和②的解集在数轴上表示如图所示:(Ⅳ) 由数轴可得①和②的解集的公共解集为142x<≤,故原不等式的解集为:142x<≤,故答案为:14 2x<≤【点睛】本题考查的是一元一次不等式组的整数解,会求一元一次不等式组的解集是解决此类问题的关键.求不等式组的解集,借助数轴找公共部分或遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.2019-2020学年数学中考模拟试卷一、选择题1.某商品价格为a 元,降价10%后,又降价10%,因销售量猛增,商店决定再提价20%,提价后这种商品的价格为( )A.0.96a 元B.0.972a 元C.1.08a 元D.a 元 2.如图,一次函数y=-x 与二次函数y=ax 2+bx+c 的图象相交于点M 、N ,则关于x 的一元二次方程ax 2+(b+1)x+c=0的根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.以上结论都正确 3.把抛物线y =ax 2+bx+c 图象先向左平移2个单位长度,再向下平移3个单位长度,所得的图象的解析式是y =x 2+5x+6,则a ﹣b+c 的值为( )A.2B.3C.5D.12 4.如图所示,小兰用尺规作图作△ABC 边AC 上的高BH ,作法如下:①分别以点DE 为圆心,大于DE 的长为半径作弧两弧交于F ;②作射线BF ,交边AC 于点H ;③以B 为圆心,BK 长为半径作弧,交直线AC 于点D 和E ;④取一点K 使K 和B 在AC 的两侧;所以BH 就是所求作的高.其中顺序正确的作图步骤是( )A.①②③④B.④③①②C.②④③①D.④③②①5.在平面直角坐标系中,点P(3,-5)关于原点对称的点的坐标是( )A .(3,5)B .(3,-5)C .(-3,-5)D .(-3,5)6.使用家用燃气灶烧开同一壶水所需的燃气量y (单位:3m )与旋钮的旋转角度x (单位:度)(090x <≤)近似满足函数关系y=ax 2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x 与燃气量y 的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为( )A .18B .36C .41D .58o7.港珠澳大桥东起香港国际机场附近的香港口岸人工导,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海港湾,全长55千米,设计时速100千米/小时,工程项目总投资额1269亿元,用科学记数法表示1269亿元为( )A .1269×108B .1.269×108C .1.269×1010D .1.269×10118.如图,在△ABC 中,AC =BC ,∠C =90°,AD 是∠BAC 的平分线且交BC 于点D ,DE ⊥AB ,垂足为点E ,若AB =8cm ,则△DBE 的周长( )A .B .cmC .8cmD .cm9.如图,在锐角ABC 中,延长BC 到点D ,点O 是AC 边上的一个动点,过点O 作直线MN BC ,MN 分别交ACB ∠、ACD ∠的平分线于E ,F 两点,连接AE 、AF .在下列结论中.①OE OF =;②CE CF =;③若12CE =,5CF =,则OC 的长为6;④当AO CO =时,四边形AECF 是矩形.其中正确的是( )A .①④B .①②C .①②③D .②③④ 10.如图,在菱形中,,,点是这个菱形内部或边上的一点,若以点,,为顶点的三角形是等腰三角形,则,(,两点不重合)两点间的最短距离为( )A. B. C. D.11.如图,在Rt ABC ∆中,90,6,8ACB AC BC ∠=︒==,则Rt ABC ∆的中线CD 的长为( )A.5B.6C.8D.1012.如果方程x 2﹣8x+15=0的两个根分别是Rt △ABC 的两条边,△ABC 最小的角为A ,那么tanA 的值为( ) A.34 B.35 C.45 D.34或35二、填空题13.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为_______。
【例1】.如图,在平面直角坐标系中,点A(12,0),点B(0,4),点P是直线y=﹣x﹣1上一点,且∠ABP=45°,则点P的坐标为.➢变式训练【变1-1】.如图,在平面直角坐标系中,一次函数y=﹣2x+4的图象与x轴、y轴分别交于点A、B将直线AB绕点B顺时针旋转45°,交x轴于点C,则直线BC的函数表达式为.【变1-2】.如图,已知点A:(2,﹣5)在直线l1:y=2x+b上,l1和l2:y=kx﹣1的图象交于点B,且点B 例题精讲的横坐标为8,将直线l1绕点A逆时针旋转45°与直线l2,相交于点Q,则点Q的坐标为.【例2】.如图,在平面直角坐标系中,一次函数y=2x+4的图象分别与x轴,y轴相交于A,B两点.将直线AB绕点A逆时针旋转45°后,与y轴交于点C,则点C的坐标为.➢变式训练【变2-1】.如图,在平面直角坐标系中,一次函数y=2x﹣2的图象分别交x、y轴于点A、B,直线BC与x轴正半轴交于点C,若∠ABC=45°,则直线BC的函数表达式是()A.y=3x﹣2B.y=x﹣2C.y=x﹣2D.y=﹣x﹣2【变2-2】.如图,一次函数y=2x+b的图象经过点M(1,3),且与x轴,y轴分别交于A,B两点.(1)填空:b=;(2)将该直线绕点A顺时针旋转45°至直线l,过点B作BC⊥AB交直线l于点C,求点C的坐标及直线l的函数表达式.1.如图,直线y=x+1与坐标轴交于A、B两点,点C在x轴上,若∠ABO+∠ACO=45°,则点C的坐标为.2.如图,在平面直角坐标系xOy中,直线y=﹣x+m(m≠0)分别交x轴,y轴于A,B两点,已知点C(2,0).设点P为线段OB的中点,连接P A,PC,若∠CP A=45°,则m的值是.3.如图,在平面直角坐标系中,直线AB的解析式为y=﹣x+3.点C是AO上一点且OC=1,点D在线段BO上,分别连接BC,AD交于点E,若∠BED=45°,则OD的长是.4.如图,直线y=4x+4交x轴于点A,交y轴于点B,直线BC:y=﹣x+4交x轴于点C,点P为线段BC 上一点,∠P AB=45°,求点P的坐标.5.如图,正比例函数y=kx经过点A,点A在第二象限,过点A作AC⊥y轴于点C,AC=2,且△AOC的面积为5.(1)求正比例函数的解析式;(2)若直线y=ax上有一点B满足∠AOB=45°,且OB=AB,求a的值.6.如图,在平面直角坐标系中,A、B、C为坐标轴上的三个点,且OA=OB=OC=6,过点A的直线AD 交直线BC于点D,交y轴于点E,△ABD的面积为18.(1)求点D的坐标.(2)求直线AD的表达式及点E的坐标.(3)过点C作CF⊥AD,交直线AB于点F,求点F的坐标.7.如图1,在平面直角坐标系中,点O为坐标原点,直线y=﹣x+3分别交x、y轴于点B、A.(1)如图1,点C是直线AB上不同于点B的点,且CA=AB.则点C的坐标为;(2)点C是直线AB外一点,满足∠BAC=45°,求出直线AC的解析式;(3)如图3,点D是线段OB上一点,将△AOD沿直线AD翻折,点O落在线段AB上的点E处,点M 在射线DE上,在x轴的正半轴上是否存在点N,使以M、A、N、B为顶点的四边形是平行四边形?若存在,请求出点N的坐标;若不存在,请说明理由.8.直角坐标系中,点A的坐标为(9,4),AB⊥x轴于点B,AC垂直y轴于点C,点D为x轴上的一个动点,若CD=2.(1)直接写出点D的坐标;(2)翻折四边形ACOB,使点C与点D重合,直接写出折痕所在直线的解析式;(3)在线段AB上找点E使∠DCE=45°.①直接写出点E的坐标;②点M在线段AC上,点N在线段CE上,直接写出当△EMN是等腰三角形且△CMN是直角三角形时点M的坐标.9.如图,在平面直角坐标系中,A(0,4)、B(6,0)为坐标轴上的点,点C为线段AB的中点,过点C 作DC⊥x轴,垂足为D,点E为y轴负半轴上一点,连接CE交x轴于点F,且CF=FE.(1)直接写出E点的坐标;(2)过点B作BG∥CE,交y轴于点G,交直线CD于点H,求四边形ECBG的面积;(3)直线CD上是否存在点Q使得∠ABQ=45°,若存在,请求出点Q的坐标,若不存在,请说明理由.10.在平面直角坐标系中,点A的坐标为(﹣6,6),以A为顶点的∠BAC的两边始终与x轴交于B、C两点(B在C左面),且∠BAC=45°.(1)如图1,连接OA,当AB=AC时,试说明:OA=OB.(2)过点A作AD⊥x轴,垂足为D,当DC=2时,将∠BAC沿AC所在直线翻折,翻折后边AB交y 轴于点M,求点M的坐标.11.模型建立:如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD ⊥ED于D,过B作BE⊥ED于E.易证:△BEC≌△CDA模型应用:如图2,已知直线l1:y=x+4与y轴交于A点,将直线l1绕着A点顺时针旋转45°至l2.(1)在直线l2上求点C,使△ABC为直角三角形;(2)求l2的函数解析式;(3)在直线l1、l2分别存在点P、Q,使得点A、O、P、Q四点组成的四边形是平行四边形?请直接写出点Q的坐标.12.在平面直角坐标系xOy中,已知点M(﹣2,﹣2),过点M作直线AB,交x轴负半轴于点A,交y轴负半轴于点B(0,m).(1)如图1,当m=﹣6时.i)求直线AB的函数表达式;ii)过点A作y轴的平行线l,点N是l上一动点,连接BN,MN,若S△MBN=S△ABO,求满足条件的点N的坐标.(2)如图2,将直线AB绕点B顺时针旋转45°后,交x轴正半轴于点C,过点C作CD⊥BC,交直线AB于点D.试问:随着m值的改变,点D的横坐标是否发生变化?若不变,求出点D的横坐标;若变化,请说明理由.13.在平面直角坐标系中,直线y=﹣2x﹣4与x轴,y轴分别交于点A、B,与直线y=3交于点C,点D 为直线y=3上点C右侧的一点.(1)如图1,若△ACD的面积为6,则点D的坐标为;(2)如图2,当∠CAD=45°时,求直线AD的解析式;(3)在(2)的条件下,点E为直线AD上一点,设点E的横坐标为m,△ACE的面积为S,求S关于m的函数关系式,并直接写出自变量m的取值范围.14.(1)基本图形的认识:如图1,在四边形ABCD中,∠B=∠C=90°,点E是边BC上一点,AB=EC,BE=CD,连结AE、DE,求证:△AED是等腰直角三角形.(2)基本图形的构造:如图2,在平面直角坐标系中,A(2,0),B(0,3),连结AB,过点A在第一象限内作AB的垂线,并在垂线截取AC=AB,求点C的坐标;(3)基本图形的应用:如图3,一次函数y=﹣2x+2的图象与y轴交于点A,与x轴交于点B,直线AC交x轴于点D,且∠CAB =45°,求点D的坐标.15.【模型建立】:(1)如图①,在Rt△ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过点A作AD⊥ED于点D,过点B作BE⊥ED于点E,求证:△BEC≌△CDA;【模型应用】:(2)如图②,已知直线l1:y=﹣2x+4与x轴交于点A、与y轴交于点B,将直线l1绕点A 顺时针旋转45°至直线l2,求直线l2的函数表达式;(3)如图③,平面直角坐标系内有一点B(﹣4,﹣6),过点B作BA⊥x轴于点A、BC⊥y轴于点C,点P是线段AB上的动点,点D是直线y=3x+3上的动点且在第三象限内.试探究△CPD能否成为等腰直角三角形?若能,求出点D的坐标,若不能,请说明理由.。
一次函数之等腰直角三角形存在性(人教版)(专
题)
一、单选题(共4道,每道25分)
1.如图,直线y=2x+2与x轴、y轴分别交于点A,点B,点P是平面内一点且在直线AB下方,若使△ABP为等腰直角三角形,则点P的坐标为( )
A.(-3,1),(-2,3)或
B.(1,-1),(2,1)或
C.(1,-1),(2,1),(-3,1)或(-2,3)
D.(1,-1),(2,1)(-3,1),(-2,3),或
答案:B
解题思路:
试题难度:三颗星知识点:略
2.如图,直线与x轴、y轴分别交于点A、点B,点D是线段OA的中点,点P 是第一象限内一点,且使△BDP是等腰直角三角形,则点P的坐标为( )
A. B.
C.(2,8),(8,2),(4,4)
D.(2,5),(5,3),(4,4)
答案:B
解题思路:
试题难度:三颗星知识点:略
3.如图,直线与x轴、y轴分别交于点A、点B,其中点.点P 是平面内一点,若△ABP是以点A为直角顶点的等腰直角三角形,则点P的坐标为( )
A.
B.
C.
D.
答案:A
解题思路:
试题难度:三颗星知识点:略
4.如图,直线y=2x-4与x轴、y轴分别交于点A,点B,点P是平面内一点,若△ABP是以线段AB为直角边的等腰直角三角形,则点P的坐标为( )
A.(6,-2)或(4,-6)
B.(-2,2),(4,-6)或(3,-3)
C.(-2,2),(6,-2),(-4,-2)或(4,-6)
D.(-2,2),(6,-2),(-4,-2),(4,-6),(3,-3)或(1,-1)
答案:C
解题思路:
试题难度:三颗星知识点:略。
专题55 一次函数中的构造等腰直角三角形1、如图1,等腰直角三角形A3C中,ZAC5=90°, CB=CA,直线经过点C,过A作AO_LED于点D,过B作BE工ED于点E.求证:4 BECW4CDA;解:(1)由题意可知:△ BEOgAAOD (K型全等),:.OE=AD9・: k= - 1,,y= - x+4,:.B(0, 4),;・OB=4,・:BE=3,・•・OE=H:・AD=54 1 4(2) k=-77时,v= -77.1+4,3 3•"⑶ o),①当且时,过点"作加人」丫轴,:•△BMNWMBO (AAS),:・MN=OB, BN=OA,:.MN=49 BN=3,:.M (4, 7):②当且AM=A3 时,过点M作x轴垂线MK,:.^ABO^/^AMK (AAS),:.OB=AK, OA=MK t,AK=4, MK=3,:.M(7, 3):③当且AM=3M 时,过点M作轴,MG_Ly轴,:•△BMGQAAHM (AAS),;・BG=AH, GM=MH,:・GM=MH,,MH=二,7 7 综上所述:M(7, 3)或M (4, 7)或M (左彳)乙乙4 (3)当Q0 时,4?=子.k过点。
作3。
轴,:•△ABO94BQS (AAS),:・BS=OA, SQ=OB,4:.Q(4, 4-丁),k,当k=l时,。
最小值为4:4当&VO 时,Q(4, 4-丁),k,当k=l时,。
最小值为明与k<0矛盾, ,。
的最小值为4.2、己如,在平面直角坐标系中,点A的坐标为(6, 0)、点8的坐标为(0, 8),点。
在y轴上,作直线AC.点3关于直线AC的对称点方刚好在x轴上,连接。
夕.(1)写出点夕的坐标,并求出直线AC对应的函数表达式:(2)点。
在线段AC上,连接。
5、DB\ BB',当△。
89是等腰直角三角形时,求点。
坐标:(3)如图2,在(2)的条件下,点尸从点3出发以每秒2个单位长度的速度向原点。
专题5.5 一次函数的应用【八大题型】【浙教版】【题型1 行程问题】 (1)【题型2 工程问题】 (2)【题型3 利润最大问题】 (4)【题型4 费用最低问题】 (6)【题型5 调运问题】 (7)【题型6 体积问题】 (9)【题型7 几何图形问题】 (10)【题型8 其他问题】 (11)【题型1 行程问题】【例1】(2022春•大足区期末)甲、乙两车分别从A,B两地同时相向匀速行驶,当乙车到达A地后,继续保持原速向远离B的方向行驶,而甲车到达B地后立即掉头,并保持原速与乙车同向行驶,经过12小时后两车同时到达距A地300千米的C地(中途休息时间忽略不计).设两车行驶的时间为x(小时),两车之间的距离为y(千米),y与x之间的函数关系如图所示,则当乙车到达A地时,甲车距A地150千米.【变式11】(2022•前进区校级开学)甲、乙两车从佳木斯出发前往哈尔滨,甲车先出发,1h以后乙车出发,在整个过程中,两车离开佳木斯的距离y(km)与乙车行驶时间x(h)的对应关系如图所示:(1)直接写出佳木斯、哈尔滨两城之间距离是多少km?(2)求乙车出发多长时间追上甲车?(3)直接写出甲车在行驶过程中经过多长时间,与乙车相距18km.【变式12】(2022秋•舞钢市期末)甲、乙两人分别从笔直道路上的A、B两地出发相向匀速而行,已知甲比乙先出发6分钟,两人在C地相遇,相遇后甲立即按原速原路返回A地,乙继续向A地前行,约定先到A地者停止运动就地休息.若甲、乙两人相距的路程y(米)与甲行走的时间x(分钟)之间的关系如图所示,有下列说法:①甲的速度是60米/分钟,乙的速度是80米/分钟;②甲出发30分钟时,两人在C地相遇;③乙到达A地时,甲与A地相距450米,其中正确的说法有()A.0个B.1个C.2个D.3个【变式13】(2022春•南川区期末)甲、乙两运动员在直线跑道上同起点、同终点、同方向匀速跑步560米,先到终点的运动员原地休息.已知甲先出发1秒,两运动员之间的距离y(米)与乙出发的时间x (秒)之间的关系如图所示.给出以下结论:①a=7;②b=63;③c=80.其中正确的是()A.①②③B.②③C.①②D.①③【题型2 工程问题】【例2】(2022•李沧区一模)李沧区海绵工程建设过程中,需要将某小区内两段长度相等的人行道改造为透水人行道,人行道绿篱改造为下沉式绿篱.现分别交给甲、乙两个施工队同时进行施工.如图是反映所铺设人行道的长度y(米)与施工时间x(时)之间关系的部分图象,请解答下列问题:(1)求乙队在2≤x≤6的时间段内,y与x的函数关系式;(2)若甲队施工速度不变,乙队在施工6小时后,施工速度增加到12米/时,结果两队同时完成了任务,求甲队从开始施工到完成,所铺设的人行道共是多少米.【变式21】(2022春•华容县期末)某乳品公司向某地运输一批牛奶,由铁路运输每千克需运费0.60元,由公路运输,每千克需运费0.30元,另需补助600元.(1)设该公司运输的这批牛奶为x千克,选择铁路运输时,所需运费为y1元,选择公路运输时,所需运费为y2元,请分别写出y1、y2与x之间的关系式;(2)若公司只支出运费1500元,则选用哪种运输方式运送的牛奶多?若公司运送1500千克牛奶,则选用哪种运输方式所需用较少?【变式22】(2022春•庐江县期末)甲、乙两工程队维修同一段路面,甲队先清理路面,乙队在甲队清理后铺设路面.乙队在中途停工了一段时间,然后按停工前的工作效率继续工作.在整个工作过程中,甲队清理完的路面长y(米)与时间x(时)的函数图象为线段OA,乙队铺设完的路面长y(米)与时间x (时)的函数图象为折线BC﹣﹣CD﹣﹣DE,如图所示,从甲队开始工作时计时.(1)直接写出乙队铺设完的路面长y(米)与时间x(时)的函数关系式;(2)当甲队清理完路面时,乙队还有多少米的路面没有铺设完?【变式23】(2022•无锡模拟)甲,乙两人同时各接受了300个零件的加工任务,甲比乙每小时加工的数量多,两人同时开工,其中一人因机器故障停止加工若干小时后又继续按原速加工,直到他们完成任务.如图表示甲比乙多加工的零件数量y(个)与加工时间x(小时)之间的函数关系,观察图象解决下列问题:(1)其中一人因故障,停止加工小时,C点表示的实际意义是.甲每小时加工的零件数量为个;(2)求线段BC对应的函数关系式和D点坐标;(3)乙在加工的过程中,多少小时时比甲少加工75个零件?(4)为了使乙能与甲同时完成任务,现让丙帮乙加工,直到完成.丙每小时能加工80个零件,并把丙加工的零件数记在乙的名下,问丙应在第多少小时时开始帮助乙?并在图中用虚线画出丙帮助后y与x 之间的函数关系的图象.【题型3 利润最大问题】【例3】(2022春•遵义期末)钓鱼成为越来越多人休闲娱乐的选择,鱼密度大的鱼塘的门票在300﹣600元不等,这让爱好钓鱼的钓友们喜欢到能回鱼的鱼塘垂钓(回鱼是指钓友钓上的鱼返卖给塘主),如果鱼情和钓鱼技能好的话还能获得一些利润.欢乐鱼塘的门票为450元5小时,回鱼标准为56斤以内为12元/斤,超过56斤的部分7元/斤:云门鱼塘门票为320元5小时,回鱼标准是律按8元/斤.(斤是重量单位,1斤0.5千克),设钓友获得的利润为y元,鱼的重量为x斤.(1)求在两家鱼塘钓鱼时y欢乐、y云门与x之间的函数关系式;(2)如图,在平面直角坐标系中,M,N为图象的交点,m,n分别为点M,N的横坐标,写出图中m,n的值分别为、;(3)钓友会根据自己的钓鱼技能和鱼塘的回鱼标准选择不同的鱼塘垂钓,请帮钓友们分析选择在哪家鱼塘钓鱼更划算?【变式31】(2022春•武汉期末)某商店销售一种产品,该产品成本价为6元/件,售价为8元/件,销售人员对该产品一个月(30天)销售情况记录绘成图象.图中的折线ODE表示日销量y(件)与销售时间x(天)之间的函数关系,若线段DE表示的函数关系中,时间每增加1天,日销量减少5件.(1)第25天的日销量是件,这天销售利润是元;(2)求y与x之间的函数关系式,并写出x的取值范围;(3)日销售利润不低于640元的天数共有多少天?销售期间日销售最大利润是多少元?【变式32】(2022•济宁二模)某商店购进了A,B两种家用电器,相关信息如下表:家用电器进价(元/件)售价(元/件)A m+2001800B m1700已知用6000元购进的A种电器件数与用5000元购进的B种电器件数相同.(1)求表中m的值.(2)由于A,B两种家用电器热销,该商店计划用不超过23000元的资金再购进A,B两种电器总件数共20件,且获利不少于13300元.请问:有几种进货方案?哪一种方案才能获得最大利润?最大利润是多少?【变式33】(2022•长垣市模拟)某营业厅销售3部A型号和2部B型号的营业额为10800元,销售4部A型号和1部B型号的营业额为10400元.(1)求每部A型号和B型号的售价;(2)该营业厅计划一次性购进两种型号共50部,其中B型号的进货数量不超过A型号数量的3倍.已知A型和B型的进货价格分别为1500元/部和1800元/部,设购进A型号a部,这50部的销售总利润为W元.①求W关于a的函数关系式;②该营业厅购进A型号和B型号各多少部时,才能使销售总利润最大,最大利润为多少元?【题型4 费用最低问题】【例4】(2022春•前郭县期末)共享电动车是一种新理念下的交通工具,主要面向3~10km的出行市场现有A、B品牌的共享电动车,收费与骑行时间之间的函数关系如图所示,其中A品牌收费方式对应y1,B 品牌的收费方式对应y2.(1)请求出两个函数关系式.(2)如果小明每天早上需要骑行A品牌或B品牌的共享电动车去工厂上班,已知两种品牌共享电动车的平均行驶速度均为20km/h,小明家到工厂的距离为6km,那么小明选择哪个品牌的共享电动车更省钱呢?(3)直接写出第几分钟,两种收费相差1.5元.【变式41】(2022春•碑林区校级期末)某校张老师寒假准备带领他们的“三好学生”外出旅游,甲、乙两家旅行社的服务质量相同,且报价都是每人400元,经协商,甲旅行社表示:“如果带队张老师买一张全票,则学生可半价”;乙旅行社表示:“所有游客全部享受6折优惠.”则:(1)设学生数为x(人),甲旅行社收费为y甲(元),乙旅行社收费为y乙(元),两家旅行社的收费各是多少?(2)哪家旅行社收费较为优惠?【变式42】(2022春•滦南县期末)某人因需要经常去复印资料,甲复印社直接按每次印的张数计费,乙复印社可以加入会员,但需按月付一定的会员费.两复印社每月收费情况如图所示,根据图中提供的信息解答下列问题:(1)乙复印社要求客户每月支付的会员费是元;甲复印社每张收费是元;(2)求出乙复印社收费情况y关于复印页数x的函数解析式,并说明一次项系数的实际意义;(3)当每月复印多少页时,两复印社实际收费相同;(4)如果每月复印200页时,应选择哪家复印社?【变式43】(2022春•石河子期末)某种黄金饰品在甲、乙两个商店销售,甲店标价280元/克,按标价出售,不优惠,乙店标价300元/克,但若买的黄金饰品重量超过3克,则超出部分可打八折出售.(1)分别写出到甲、乙商店购买该种黄金饰品所需费用y(元)和重量x(克)之间的函数关系,并写出定义域;(2)李阿姨要买一条重量不超过10克的此种黄金饰品,到哪个商店购买最合算?请说明理由.【题型5 调运问题】【例5】(2022•贺兰县模拟)云南某县境内发生地震,某市积极筹集救灾物资260吨从该市区运往该县甲、乙两地,若用大、小两种货车共20辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如下表:甲地(元/辆)乙地(元/辆)车型运往地大货车720800小货车500650(1)求这两种货车各用多少辆?(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a辆,前往甲、乙两地的总运费为w元,求出w与a的函数关系式(写出自变量的取值范围);(3)在(2)的条件下,若运往甲地的物资不少于132吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费.【变式51】(2022春•扎鲁特旗期末)某农机租赁公司共有50台收割机,其中甲型20台,乙型30台,现将这50台联合收割机派往A,B两地区收割水稻,其中30台派往A地区,20台派往B地区,两地区与该农机公司商定的每天租赁价格如表:每台甲型收割机的租金每台乙型收割机的租金A地区1800元1600元B地区1600元1200元(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y元,求y关于x的函数关系式;(2)试问有无可能一天获得总租金是80050元?若有可能,请写出相应的调运方案;若无可能,请说明理由.【变式52】(2022春•海淀区校级期末)某市A,B两个蔬菜基地得知四川C,D两个灾民安置点分别急需蔬菜240t和260t的消息后,决定调运蔬菜支援灾区,已知A蔬菜基地有蔬菜200t,B蔬菜基地有蔬菜300t,现将这些蔬菜全部调运C,D两个灾民安置点从A地运往C,D两处的费用分别为每吨20元和25元,从B地运往C,D两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为x吨.(1)请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值:C D总计/tA200B x300总计/t240260500(2)设A,B两个蔬菜基地的总运费为w元,求出w与x之间的函数关系式,并求总运费最小的调运方案;(3)经过抢修,从B地到C处的路况得到进一步改善,缩短了运输时间,运费每吨减少m元(m>0),其余线路的运费不变,试讨论总运费最小的调动方案.【变式53】(2022春•巴南区月考)某公司在甲、乙两座仓库分别有农用车12辆和6辆,现要调往A县10辆,调往B县8辆,已知调运一辆农用车的费用如表:县名A B费用仓库甲4080乙3050(1)设从乙仓库调往A县农用车x辆,求总运费y关于x的函数关系式.(2)若要求总运费不超过900元.共有哪几种调运方案?(3)求出总运费最低的调运方案,最低运费是多少元?【题型6 体积问题】【例6】(2022秋•邗江区月考)某水池的容积为90m3,水池中已有水10m3,现按8m3/h的流量向水池注水.(1)写出水池中水的体积y(m3)与进水时间t(h)之间的函数表达式,并写出自变量t的取值范围;(2)当t=1时,求y的值;当y=50时,求t的值.【变式61】(2022春•北京期末)如图,有一个装水的容器,容器内的水面高度是10cm,水面面积是100cm2.现向容器内注水,并同时开始计时.在注水过程中,水面高度以每秒0.2cm的速度匀速增加.容器注满水之前,容器内水面的高度h,注水量V随对应的注水时间t的变化而变化,则h与t,V与t满足的函数关系分别是()A.正比例函数关系,正比例函数关系B.正比例函数关系,一次函数关系C.一次函数关系,一次函数关系D.一次函数关系,正比例函数关系【变式62】(2022春•梁子湖区期末)水龙头关闭不严会造成漏水浪费,已知漏水量与漏水时间之间满足一次函数关系,八年级同学进行了以下实验:在漏水的水龙头下放置一个能显示水量的容器,每10分钟记录一次容器中的水量.下表是一位同学的记录结果,老师发现有一组数据记录有较大偏差,它是()组别12345010203040时间t(min)1 2.4 3.8 5.2 6.8水量w(ml)A.第2组B.第3组C.第4组D.第5组【变式63】(2022•宣城模拟)某容器有一个进水管和一个出水管,从某时刻开始的前4分钟内只进水不出水,在随后的8分钟内既进水又出水,12分钟后关闭进水管,放空容器中的水.已知进水管进水的速度与出水管出水的速度是两个常数,容器内水量y (升)与时间x (分钟)之间的关系如图所示.则每分钟的出水量为( )A .4升B .152升C .154升D .134升 【题型7 几何图形问题】【例7】(2022春•交城县期末)菜农张大叔要用63米的篱笆围一个矩形的菜地,已知在菜地的一边AB 边上留有1米宽的入口.设AB 边的长为x ,BC 边的长为y ,则y 与x 之间的函数关系式是( )A .y =63−2x 2B .y =63−2x+12C .y =63﹣2xD .y =632−12x 【变式71】(2022春•阿荣旗期末)已知等腰三角形周长为20(1)写出底边长y 关于腰长x 的函数解析式(x 为自变量);(2)写出自变量的取值范围;(3)在直角坐标系中,画出函数图象.【变式72】(2022秋•富民县校级期末)如图,正方形ABCD 的边长为6cm ,动点P 从A 点出发,在正方形的边上由A ⇒B ⇒C ⇒D 运动,设运动的时间为t (s ),△APD 的面积为S (cm 2),S 与t 的函数图象如图所示,请回答下列问题:(1)点P 在AB 上运动的速度为 ,在CD 上运动的速度为 ;(2)求出点P 在CD 上时S 与t 的函数关系式;(3)t为何值时,△APD的面积为10cm2?【变式73】(2022春•泰和县期末)如图1是一个大型的圆形花坛建筑物(其中AB与CD是一对互相垂直的直径),小川从圆心O出发,按图中箭头所示的方向匀速散步,并保持同一个速度走完下列三条线路:①线段OA、②圆弧A→D→B→C、③线段CO后,回到出发点.记小川所在的位置距离出发点的距离为y(即所在位置与点O之间线段的长度)与时间t之间的图象如图2所示,(注:圆周率π取近似值3)(1)a=,b=.(2)当t≤2时,试求出y关于t的关系式;(3)在沿途某处小川遇见了他的好朋友小翔并聊了两分钟的时间,然后继续保持原速回到终点O,请回答下列两小问:①小川渝小翔的聊天地点位于哪两点之间?并求出此时他距离终点O还有多远;②求他此行总共花了多少分钟的时间.【题型8 其他问题】【例8】(2022春•昌平区期末)某旅客携带x(公斤)的行李乘飞机,登机前,旅客可选择托运或快递行李,托运费y1(元)与行李质量x(公斤)的对应关系由如图所示的一次函数图象确定,下表列出了快递费y2(元)与行李质量x(公斤)的对应关系,行李的质量x(公斤)快递费不超过1公斤10元超过1公斤但不超过5公斤的3元/公斤部分5元/公斤超过5公斤但不超过15公斤的部分(1)如果旅客选择托运,求可携带的免费行李的最大质量为多少公斤?(2)如果旅客选择快递,当1≤x≤15时,求快递费y2(元)与行李质量x(公斤)的函数关系式;(3)某旅客携带25公斤的行李,设托运m(公斤)行李(10≤m<24,m为正整数),剩下的行李选择快递,m为何值时,总费用y的值最小,总费用的最小值是多少?【变式81】(2022春•正定县期中)弹簧挂物体会伸长,测得弹簧长度y(cm)(最长为20cm),与所挂物体质量x(kg)之间有下面的关系:x/kg01234…y/cm88.599.510…下列说法不正确的是()A.x与y都是变量,x是自变量,y是x的函数B.所挂物体质量为6kg时,弹簧长度为11cmC.y与x的函数表达式为y=8+0.5xD.挂30kg物体时,弹簧长度一定比原长增加15cm【变式82】(2022秋•和平县期末)某生物小组观察一植物生长,得到植物高度y(单位:厘米)与观察时间x(单位:天)之间的关系,并画出如图所示的图象(AC是线段,射线CD平行于x轴).有下列说x+6;③观察第40天时,法:①从开始观察起,60天后该植物停止长高;②直线AC的函数表达式为y=15该植物的高度为14厘米;④该植物最高为15厘米.其中说法正确的是()A.①②③B.②④C.②③D.①②③④【变式83】(2022•阿城区模拟)某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费,分两档收费:第一档是当月用电量不超过240度时实行“基础电价”;第二档是当用电量超过240度时,其中240度仍按照“基础电价”计费,超过的部分按照“提高电价”收费,设每个家庭月用电量为x度时,应交电费为y元.具体收费情况如折线图所示,下列叙述错误的是()A.“基础电价”是0.5元/度B.“提高电价”是0.6元/度C.小红家5月份用电260度的电费是132元D.小红家4月份198元电费的用电量是129度。
专题11一次函数的定义、图象和性质压轴题九种模型全攻略【考点导航】目录【典型例题】 (1)【考点一判别是否一次函数】 (1)【考点二根据一次函数的定义求参数的值】 (2)【考点三画一次函数的图象】 (2)【考点四一次函数的图象和性质】 (4)【考点五根据一次函数经过的象限求参数问题】 (4)【考点六根据一次函数的增减性求参数问题】 (5)【考点七一次函数的图象与坐标轴的交点问题】 (5)【考点八两个一次函数图象共存问题】 (5)【考点九一次函数中的规律探究问题】 (6)【过关检测】 (7)【典型例题】【考点一判别是否一次函数】【变式训练】【考点二根据一次函数的定义求参数的值】【变式训练】【考点三画一次函数的图象】(1)请在所给的平面直角坐标系中画出该函数的图象.(2)结合所画图象,分别求出在函数图象上满足下列条件的点的坐标:①横坐标是4-;②和x轴的距离是2个单位长度.【变式训练】1.(2023上·福建漳州·八年级福建省漳州第一中学校考阶段练习)已知,一次函数24y x =-+的图像分别与x 轴,y 轴交于点A ,B .(1)请直接写出,A B 两点坐标:A :__________,B :__________;(2)在直角坐标系中画出函数图象(不用列表,直接描点、连线);(3)点P 是一次函数24y x =-+上一动点,则OP 的最小值为___________.2.(2023上·宁夏银川·八年级银川唐徕回民中学校考期中)已知函数24y x =-+回答下列问题:(1)画出函数24y x =-+的图象;当x _________时,0y >.(2)设直线与x 轴交于点A ,与y 轴交于点B ,求出AOB 的面积.(3)直线AB 上是否存在一点C (C 与B 不重合),使AOC 的面积等于8?若存在,求出点C 的坐标;若不存在,请说明理由.【考点四一次函数的图象和性质】例题:(2023上·广东深圳·八年级校考期中)下列关于函数32y x =+的结论中,错误的是()A .图象经过点()1,1--B .点()11,A x y ,()22,B x y 在该函数图象上,若12x x >,则12y y >C .将函数图象向下平移2个单位长度后,经过点()0,1D .图象不经过第四象限【变式训练】1.(2023下·广西南宁·八年级校考阶段练习)对于一次函数2y x =+,下列说法正确的是()A .图象不经过第三象限B .当2x >时,4y <C .图象由直线y x =向上平移2个单位长度得到D .图象与x 轴交于点()2,02.(2023上·安徽六安·八年级校考阶段练习)一次函数24y x =-+,下列结论错误..的是()A .若两点A (11,x y ),B (22,x y )在该函数图象上,且12x x <,则12y y >B .函数的图象不经过第三象限C .函数的图象向下平移4个单位长度得到2y x =-的图象D .函数的图象与x 轴的交点坐标是()04,【考点五根据一次函数经过的象限求参数问题】【变式训练】【考点六根据一次函数的增减性求参数问题】【变式训练】【考点七一次函数的图象与坐标轴的交点问题】【变式训练】【考点八两个一次函数图象共存问题】例题:(2023上·陕西西安·八年级统考期末)直线y kx k =-+与直线y kx =在同一坐标系中的大致图象可能是图中()A .B .C .D .【变式训练】.B .C .D .2023上·辽宁铁岭·八年级统考期末)下列图形中,表示一次函数y mx =+与正比例函数y mnx =为常数,且0mn ≠)的图象的是().B .C .D .【考点九一次函数中的规律探究问题】(2024上·河北保定·八年级统考期末)如图,在平面直角坐标系中,点1A 2,3A …都在x 轴上,点【变式训练】1.(2023上·四川成都·八年级校考阶段练习)如图,在平面直角坐标系中,333A B C △,……,n n n A B C 都是等腰直角三角形,点点A ,1C ,2C ,3C ,…,n C 都在直线1122n n AC AC A C A C ⋅⋅⋅∥∥∥∥∥2.(2022上·贵州贵阳·八年级统考期末)如图,已知直线以11A B 为边作正方形1112A B C A ,过点2A 作x 轴的垂线交直线按此规律进行,则点2023C 的坐标为.【过关检测】一、单选题3.(2024上·河南平顶山·八年级统考期末)一次函数()12y m x =-+中,若y 随x 的增大而减小,则m 的值可能是()A .0B .1C .2D .34.(2023上·山东济南·八年级统考阶段练习)在同一平面直角坐标系中,函数()0y mx m =-≠与2y x m =+的图象大致是()A .B .C .D .5.(2023上·江苏无锡·八年级校联考阶段练习)关于一次函数31y x m =+-的图像与性质,下列说法中不正..确.的是()A .y 随x 的增大而增大B .当1m ≠时,该图像与函数3y x =的图像是两条平行线C .若图像不经过第四象限,则1m >D .不论m 取何值,图像都经过第一、三象限二、填空题三、解答题11.(2024上·安徽合肥·八年级校考期末)已知正比例函数图像经过点()1,2A -.(1)求此正比例函数的解析式:(2)点()2,2B -是否在此函数图像上?请说明理由;12.(2023上·江苏扬州·八年级校联考期末)已知2y +与x 成正比例,且3x =时4y =.(1)求y 与x 之间的函数关系式;(2)当2y =时,求x 的值.13.(2024上·江西吉安·八年级统考期末)已知函数()2321-=+-m x y m 是一次函数,(1)求m 的值;(2)该一次函数当31y -<<时,求x 的取值范围.14.(2023上·四川达州·八年级达州市高级中学校考期中)已知一次函数(21)(3)y m x n =--+,求:(1)m 当为何值时,y 的值随x 的增加而增加;(2)当m 、n 为何值时,此一次函数也是正比例函数;(3)若12m n ,,==求直线与x 轴和y 轴的交点坐标.15.(2023上·甘肃兰州·八年级校考期中)已知一次函数32y x =-.(1)求图象与两条坐标轴的交点坐标,并在如图的直角坐标系中画出它的图象;(2)从图象看,y随着x的增大而增大,还是随y>.(3)x取何值时,016.(2023上·山西太原·八年级统考阶段练习)如图,直线(1)点B的坐标为__________,点(2)若点P是x轴上的一个动点,画图说明并求出当点最小值.17.(2022上·陕西西安·八年级交大附中分校校考期中)如图,在平面直角坐标系中,直线6y x =-与y 轴交于A 点,点(4,)C m 为直线6y x =-上一点,直线y x b =-+过点C 且与y 轴交于点B .动点P 、Q 分别在线段AB ,BC 上,且满足CPQ BAC ∠=∠.(1)求m ,b 的值;(2)是否存在点P ,使得ACP BPQ ≌△△,若存在,求出点P 的坐标;若不存在,请说明理由;(3)当CPQ 为直角三角形时,求点P 的坐标.。
专题期中模拟测试卷学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一、选择题(本大题共10小题,每小题3分,满分30分)1.(24-25八年级上·河北廊坊·阶段练习)在下列条件:①∠AA+∠BB=∠CC,②∠AA:∠BB:∠CC=5:3:2,③∠AA= 90°−∠BB,④∠AA=2∠BB=3∠CC,⑤一个外角等于与它相邻的内角.中,能确定△AABBCC是直角三角形的条件有()A.2个B.3个C.4个D.5个2.(24-25八年级上·全国·单元测试)已知数轴上点A,B,C,D对应的数字分别为−1,1,x,7,点C在线段BBBB上且不与端点重合,若线段AABB,BBCC,CCBB能围成三角形,则x可能是()A.2 B.3 C.4 D.53.(23-24八年级上·内蒙古呼伦贝尔·期中)如图,EEBB交AACC于点MM,交FFCC于点BB,∠EE=∠FF=90°,∠BB=∠CC,AAEE=AAFF,给出下列结论:①∠1=∠2;②BBEE=CCFF;③△AACCAA≌△AABBMM;④CCBB=BBAA,其中正确的有()A.①②③B.①②④C.①③④D.②③④4.(24-25八年级上·江苏无锡·阶段练习)如图,∠AA=∠BB=90°,AABB=60,EE、FF分别为线段AABB和射线BBBB上的一点,若点EE从点BB出发向点AA运动,同时点FF从点BB出发向点BB运动,二者速度之比为3:7,运动到某时刻同时停止,在射线AACC上取一点GG,使△AAEEGG与△BBEEFF全等,则AAGG的长为()A.18 B.88 C.88或62 D.18或705.(24-25八年级上·湖北荆州·阶段练习)如图,在△AABBCC中,∠AACCBB=90°,AACC=BBCC,点C的坐标为(−2,0),点B的坐标为(1,6),则A点的坐标为()A.(8,−2)B.(−8,3)C.(−6,2)D.(−6,3)6.(23-24八年级上·福建莆田·期中)如图,在五边形AABBCCBBEE中,∠BBAAEE=142°,∠BB=∠EE=90°,AABB=BBCC,AAEE=BBEE.在BBCC,BBEE上分别找一点MM,AA,使得△AAMMAA的周长最小时,则∠AAMMAA+∠AAAAMM的度数为()A.76° B.84° C.96° D.109°7.(24-25八年级上·重庆江北·开学考试)如图,点D是△AABBCC边BBCC上的中点,点E是AABB上一点且BBEE=3AAEE,F、G是边AABB上的三等分点,若四边形FFGGBBEE的面积为14,则△AABBCC的面积是()A.24 B.42 C.48 D.56 8.(2024·江苏·模拟预测)如图,将四边形纸片AABBCCBB沿MMAA折叠,使点AA落在四边形CCBBMMAA外点AA′的位置,点BB落在四边形CCBBMMAA内点BB′的位置,若∠BB=90°,∠2−∠1=36°,则∠CC等于()A.36°B.54°C.60°D.72°9.(23-24八年级上·江苏南通·期中)如图,在△AABBCC中,∠BBAACC和∠AABBCC的平分线AAEE,BBFF相交于点OO,AAEE交BBCC 于EE,BBFF交AACC于FF,过点OO作OOBB⊥BBCC于BB,下列四个结论:①∠AAOOBB=90°+12∠CC;②当∠CC=60°时,AAFF+ BBEE=AABB;③OOEE=OOFF;④若OOBB=aa,AABB+BBCC+CCAA=2bb,则SS△AAAAAA=aabb.其中正确的结论是()A.①②③B.②③④C.①③④D.①②④10.(23-24八年级上·湖北荆门·期末)如图,C为线段AAEE上一动点(不与点A,点E重合),在AAEE同侧分别作等边△AABBCC和等边△CCBBEE,AABB交于点O,AABB与BBCC交于点P,BBEE与CCBB交于点Q,连接PPPP,OOCC.以下六个结论:①AABB=BBEE;②PPPP∥AAEE;③AAPP=BBPP;④BBEE=BBPP;⑤∠AAOOBB=60°;⑥OOCC平分∠AAOOEE,其中正确的结论的个数是()A.3个B.4个C.5个D.6个评卷人得分二、填空题(本大题共5小题,每小题3分,满分15分)11.(24-25八年级上·江苏宿迁·阶段练习)在的正方形网格中,以格点为顶点的三角形称为格点三角形,在图中画出与△AABBCC关于某条直线对称的格点三角形,最多能画个个.12.(24-25八年级上·黑龙江哈尔滨·阶段练习)风筝又称“纸鸢”、“风鸢”、“纸鹞”等,起源于中国东周春秋时期,距今已有2000多年的历史,如图是一款风筝骨架的简化图,已知AABB=AABB,BBCC=CCBB,AACC=90cm,BBBB=60cm,制作这个风筝需要的布料至少为cm2.13.(24-25八年级上·四川德阳·阶段练习)如图所示,由五个点组成的图形,则∠AA+∠BB+∠CC+∠BB+∠EE=度.14.(24-25八年级上·内蒙古呼和浩特·阶段练习)如图,在Rt△AABBCC中,∠AACCBB=90°,AACC=6,BBCC=8,AABB=10,AABB是∠BBAACC的平分线,若PP,PP分别是AABB和AACC上的动点,则PPCC+PPPP的最小值是.15.(24-25八年级上·福建福州·阶段练习)如图,在△AABBCC中,AABB=AACC,∠BBAACC=120°,AABB⊥BBCC于点D,点P是CCAA延长线上一点,点O在AABB延长线上,OOPP=OOBB,下面的结论:①∠AAPPOO−∠OOBBBB=30°;②△BBPPOO是等边三角形;③AABB−AAPP=AAOO;④SS四边形AAAAAAAA=2SS△AAAAAA,其中正确的结论是.评卷人得分三、解答题(本大题共8小题,满分55分)16.(6分)(23-24八年级上·山东菏泽·期末)如图,在平面直角坐标系中,AA(−1,4),BB(−3,3),CC(−2,1).(1)画出△AABBCC关于xx轴的对称图形△AA1BB1CC1;(2)求△AABBCC的面积;(3)在yy轴上找一点PP,使得△PPBBCC的周长最小.17.(6分)(24-25八年级上·福建莆田·阶段练习)如图,在四边形AABBCCBB中,AACC平分∠BBAABB,过CC作CCEE⊥AABB 于EE,并且∠AABBCC+∠AABBCC=180°.(1)求证:BBCC=BBCC.(2)求证:AAEE=12(AABB+AABB).18.(6分)(24-25八年级上·湖北孝感·阶段练习)如图,△AABBBB和△CCAAEE是等腰直角三角形,其中∠BBAABB=∠CCAAEE=90°,AABB=AABB,AAEE=AACC,过A点作AAFF⊥CCBB,垂足为点F.(1)求证:△AABBCC≌△AABBEE;(2)若CCAA平分∠BBCCEE,求证:CCBB=2BBFF+BBEE.19.(6分)(24-25八年级上·福建莆田·阶段练习)如图,在△AAOOBB和△CCOOBB中,OOAA=OOBB,OOCC=OOBB,若∠AAOOBB=∠CCOOBB=60°,连接AACC、BBBB交于点P;(1)求证∶△AAOOCC≌△BBOOBB.(2)求∠AAPPBB的度数.(3)如图(2),△AABBCC是等腰直角三角形,∠AACCBB=90°,AACC=BBCC,AABB=14cm,点D是射线AABB上的一点,连接CCBB,在直线AABB上方作以点C为直角顶点的等腰直角△CCBBEE,连接BBEE,若BBBB=4cm,求BBEE的值.20.(6分)(23-24八年级上·江苏南通·阶段练习)如图:△AABBCC是边长为6的等边三角形,P是AACC边上一动点.由点A向点C运动(P与点AA、CC不重合),点Q同时以点P相同的速度,由点B向CCBB延长线方向运动(点Q不与点B重合),过点P作PPEE⊥AABB于点E,连接PPPP交AABB于点D.(1)若设AAPP的长为x,则PPCC=_________,PPCC=____________.(2)当∠BBPPBB=30°时,求AAPP的长;(3)点PP,PP在运动过程中,线段EEBB的长是否发生变化?如果不变,直接写出线段EEBB的长;如果变化,请说明理由.21.(8分)(24-25八年级上·湖北省直辖县级单位·阶段练习)如图①,在△AABBCC中,∠AABBCC与∠AACCBB的平分线相交于点P.(1)若∠AA=60°,则∠BBPPCC的度数是;(2)如图②,作△AABBCC外角∠MMBBCC,∠AACCBB的角平分线交于点Q,试探索∠PP,∠AA之间的数量关系;(3)如图③,延长线段BBPP,PPCC交于点E,在△BBPPEE中,存在一个内角等于另一个内角的3倍,请直接写出∠AA的度数是.22.(8分)(23-24八年级上·湖北黄石·期末)在平面直角坐标系中,AA(−5,0),BB(0,5),点C为x轴正半轴上一动点,过点A作AABB⊥BBCC交y轴于点E.(1)如图①,若CC(3,0),求点E的坐标;(2)如图②,若点C在x轴正半轴上运动,且OOCC<5,其它条件不变,连接BBOO,求证:BBOO平分∠AABBCC;(3)若点C在x轴正半轴上运动,当OOCC+CCBB=AABB时,求∠OOBBCC的度数.23.(9分)(24-25八年级上·山东济宁·阶段练习)(1)问题背景:如图1,在四边形AABBCCBB中,AABB=AABB,∠BBAABB= 120°,∠BB=∠AABBCC=90°,E、F分别是BBCC,CCBB上的点,且∠EEAAFF=60°,探究图中线段BBEE、EEFF、FFBB之间的数量关系.小李同学探究此问题的方法是:延长FFBB到点G,使BBGG=BBEE.连接AAGG,先证明△AABBEE≌△AABBGG,再证明△AAEEFF≌△AAGGFF,可得出结论.他的结论应是______________________.(2)如图2,在四边形AABBCCBB中,AABB=AABB,∠BB+∠BB=180°,EE,FF分别是边BBCC,CCBB上的点,且∠EEAAFF= 12∠BBAABB.(1)中的结论是否仍然成立?请写出证明过程.(3)在四边形AABBCCBB中,AABB=AABB,∠BB+∠BB=180°,E,F分别是边BBCC,CCBB所在直线上的点,且∠EEAAFF= 12∠BBAABB.请直接写出线段EEFF,BBEE,FFBB之间的数量关系.。
专题04 等腰三角形的性质和判定(综合题)知识互联网易错点拨知识点1:等腰三角形的定义的三角形,叫做等腰三角形,其中叫做腰,另一边叫做,两腰所夹的角叫做,叫做底角.如图所示,在△ABC中,,则它叫等腰三角形,其中AB、AC为,BC为,∠A是,∠B、∠C是.细节剖析:等腰直角三角形的 相等,且都等于 .等腰三角形的底角只能为 ,不能为 ,但顶角可为 .∠A =180°-2∠B ,∠B =∠C = . 知识点2:等腰三角形的性质1.等腰三角形的性质性质1:等腰三角形的 (简称“ ”).性质2:等腰三角形的 互相重合(简称“ ”).2.等腰三角形的性质的作用性质1证明 相等.是证明角相等的一个重要依据.性质2用来证明 等.3.等腰三角形是轴对称图形等腰三角形 所在直线是它的对称轴,通常情况 对称轴. 知识点3:等腰三角形的判定如果一个三角形中有两个角相等,那么这 也相等(简称“ ”).要点诠释:等腰三角形的判定是证明两条线段相等的重要定理,是将三角形中的角的相等关系转化为边的相等关系的重要依据.等腰三角形的性质定理和判定定理是互逆定理.一.选择题 1.(2022秋•朝阳区校级月考)如图,BO 平分∠ABC ,CO 平分∠ACB ,MN ∥BC ,AB =15,AC =18,则△AMN 的周长为( )1802A ︒-∠易错题专训A.15B.18C.30D.332.(2021秋•微山县期末)如图,在△ABC中,∠A=60°,∠ABC=40°,BD平分∠ABC,CE⊥BD,交AB 于点E.关于下面两个结论,说法正确的是()结论①∠ADE=20°;结论②BC=BE.A.结论①②都正确B.结论①②都错误C.只有结论①正确D.只有结论②正确3.(2021秋•建昌县期末)如图所示,在△ABC中,∠ABC与∠ACB的平分线交于点P,过点P作MN∥BC 交AB于点M,交AC于点N,那么下列结论:①BP=CP;②MN=BM+CN;③△BMP和△CNP都是等腰三角形;④△AMN的周长等于AB+AC,其中正确的有()A.4个B.3个C.2个D.1个4.(2021秋•覃塘区期末)如图,在△ABC中,AB=AC,点E、F分别在BA、BC的延长线上,∠EAC、∠ABC、∠ACF的平分线相交于点D.对于以下结论:①AD∥BC;②AD=AC;③∠ADC=∠ACB;④∠ADB与∠ADC互余.其中正确结论的个数为()A.4B.3C.2D.15.(2021秋•巢湖市期末)如图,在△ABC中,AB=AC,AD=BD,∠A=36°,下列结论错误的是()A.BD是AC边上的中线B.BD是∠ABC的平分线C.图中共有3个等腰三角形D.∠DBC=36°6.(2021•太仓市自主招生)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过O点作EF∥BC 交AB于点E,交AC于点F,过点O作OD⊥AC于D,下列四个结论.①EF=BE+CF;②∠BOC=90°+∠A;③点O到△ABC各边的距离相等;④设OD=m,AE+AF=n,则S△AEF=mn,正确的结论有()个.A.1个B.2个C.3个D.4个二.填空题7.(2022春•五华区校级期中)如图,在△ABC中,ED∥BC,∠ABC和∠ACB的平分线分别交ED于点G、F,若FG=4,ED=8,求EB+DC=.8.(2021秋•句容市期末)如图,BD平分∠ABC,DE∥BC交BA于点E,若DE=,则EB=.9.(2021秋•市中区期末)如图,△ABC中,AC=DC=4,AD平分∠BAC,BD⊥AD于D,E为AC的中点,则图中两个阴影部分面积之差的最大值为.10.(2021秋•澄城县期末)如图,在Rt△ABC中,∠A=90°,CM平分∠ACB交AB于点M,过点M作MN ∥BC交AC于点N,且MN平分∠AMC,若AN=2,则BC的长为.11.(2021秋•崇川区期末)如图,在△ABC中,AB=AC=3,∠ABC和∠ACB的平分线交于点E,过点E 作EM∥BC分别交AB,AC于M,N,则△AMN的周长为.12.(2021秋•宁津县期末)如图,△ABC中,∠A=∠ACB,CP平分∠ACB,BD,CD分别是△ABC的两外角的平分线,下列结论中:①CP⊥CD;②∠P=∠A;③BC=CD;④∠D=90°﹣∠A;⑤PD∥AC.其中正确的结论是(直接填写序号).13.(2021•长沙模拟)如图,△ABC中,AD平分∠BAC,∠ACB=3∠B,CE⊥AD,AC=8,BC=BD,则CE=.三.解答题14.(2021秋•祥云县期末)如图,在△ABC中,∠ABC与∠ACB的角平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若△ADE的周长为7,△ABC的周长为12,求BC的长度.15.(2021秋•海沧区期末)定义:一个三角形,若过一个顶点的线段将这个三角形分为两个三角形,其中一个是直角三角形,另一个是等腰三角形,则称这个三角形是等直三角形,这条线段叫做这个三角形的等直分割线段.例如:如图1,在△ABC中,∵AD⊥BC于D,且BD=AD,∴△ACD是直角三角形,△ABD是等腰三角形,∴△ABC是等直三角形,AD是△ABC的一条等直分割线段.(1)如图2,已知Rt△ABC中,∠C=90°,DE是AB的垂直平分线,请说明AD是△ABC的一条等直分割线段;(2)若△ABC是一个等直三角形,恰好有两条等直分割线,∠B和∠C均小于45°,求证:△ABC是等腰三角形.16.(2022春•会宁县期末)已知:如图,E为△ABC的外角平分线上的一点,AE∥BC,BF=AE,求证:(1)△ABC是等腰三角形;(2)AF=CE.17.(2021秋•开福区校级期末)如图,在四边形ABCD中,BD所在的直线垂直平分线段AC,过点A作AF ∥BC交CD于F,延长AB、DC交于点E.(1)求证:AC平分∠EAF;(2)求证:∠F AD=∠E;(3)若∠EAD=90°,AE=5,AF=3,求CF的长.18.(2021秋•伊通县期末)如图,△ABC中,AB=AC,∠A=36°,AB的垂直平分线交AC于点D,交AB 于点M,证明:△BCD是等腰三角形.19.(2021秋•雨花区校级月考)已知△ABC中,∠ACB的平分线CD交AB于点D,DE平分∠ADC,DE∥BC.(1)如图1,如果点E是边AC的中点,AC=10,求DE的长;(2)在(1)的条件下,求证:△ADC是等腰三角形.(3)如图2,若∠ABC=30°,在BC边上取点F使BF=DF,若BC=18,求DF的长.20.(2021春•项城市校级期末)如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF ∥BC交AB、AC于E、F.(1)图中有几个等腰三角形?猜想:EF与BE、CF之间有怎样的关系,并说明理由.(2)如图②,若AB≠AC,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF与BE、CF间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC交AB 于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF关系又如何?说明你的理由.。
专题08.平面直角坐标系与一次函数一、单选题1.(2021·四川自贡市·中考真题)如图,()8,0A,()2,0C -,以点A 为圆心,AC 长为半径画弧,交y 轴正半轴于点B ,则点B 的坐标为( )A .()0,5B .()5,0C .()6,0D .()0,62.(2021·湖南邵阳市·中考真题)某天早晨7:00,小明从家骑自行车去上学,途中因自行车发生故障,就地修车耽误了一段时间,修好车后继续骑行,7:30赶到了学校.图所示的函数图象反映了他骑车上学的整个过程.结合图象,判断下列结论正确的是( )A .小明修车花了15minB .小明家距离学校1100mC .小明修好车后花了30min 到达学校D .小明修好车后骑行到学校的平均速度是3m/s3.(2021·重庆中考真题)小明从家出发沿笔直的公路去图书馆,在图书馆阅读书报后按原路回到家.如图,反映了小明离家的距离y (单位:km )与时间t (单位:h )之间的对应关系.下列描述错误..的是( )A .小明家距图书馆3kmB .小明在图书馆阅读时间为2hC .小明在图书馆阅读书报和往返总时间不足4hD .小明去图书馆的速度比回家时的速度快 4.(2021·陕西中考真题)在平面直角坐标系中,若将一次函数21y x m =+-的图象向左平移3个单位后,得到个正比例函数的图象,则m 的值为( )A .-5B .5C .-6D .65.(2021·湖南邵阳市·中考真题)在平面直角坐标系中,若直线y x m =-+不经过第一象限,则关于x 的方程210mx x ++=的实数根的个数为( )A .0个B .1个C .2个D .1或2个6.(2021·江苏苏州市·中考真题)已知点)Am ,3,2B n ⎛⎫ ⎪⎝⎭在一次函数21y x =+的图像上,则m 与n 的大小关系是( )A .m n >B .m n =C .m n <D .无法确定7.(2021·四川乐山市·中考真题)如图,已知直线1:24l y x =-+与坐标轴分别交于A 、B 两点,那么过原点O 且将AOB 的面积平分的直线2l 的解析式为( )A .12y x =B .y x =C .32y x =D .2y x =8.(2021·江苏扬州市·中考真题)如图,一次函数y x =+的图像与x 轴、y 轴分别交于点A 、B ,把直线AB 绕点B 顺时针旋转30交x 轴于点C ,则线段AC 长为( )A B.C .2+D 9.(2021·重庆中考真题)甲无人机从地面起飞,乙无人机从距离地面20m 高的楼顶起飞,两架无人机同时匀速上升10s .甲、乙两架无人机所在的位置距离地面的高度y (单位:m )与无人机上升的时间x (单位:s )之间的关系如图所示.下列说法正确的是( )A .5s 时,两架无人机都上升了40mB .10s 时,两架无人机的高度差为20mC .乙无人机上升的速度为8m /sD .10s 时,甲无人机距离地面的高度是60m10.(2021·甘肃武威市·中考真题)将直线5y x =向下平移2个单位长度,所得直线的表达式为( ) A .52y x =- B .52y x =+ C .()52y x =+ D .()52y x =-11.(2021·安徽中考真题)某品牌鞋子的长度y cm 与鞋子的“码”数x 之间满足一次函数关系.若22码鞋子的长度为16cm ,44码鞋子的长度为27cm ,则38码鞋子的长度为( )A .23cmB .24cmC .25cmD .26cm12.(2021·四川凉山州·中考真题)函数y kx b =+的图象如图所示,则关于x 的一元二次方程210x bx k ++-=的根的情况是( )A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .无法确定13.(2021·浙江嘉兴市·中考真题)已知点(),P a b 在直线34y x =--上,且250a b -≤( ) A .52a b ≤ B .52a b ≥ C .25b a ≥ D .25b a ≤ 14.(2020·贵州毕节市·中考真题)在平面直角坐标系中,第二象限内有一点M ,点M 到x 轴的距离为5,到y 轴的距离为4,则点M 的坐标是( )A .()5,4B .()4,5C .()4,5-D .()5,4-15.(2020·浙江嘉兴市·中考真题)一次函数y=-2x -1的图象大致是( )A .B .C .D .16.(2020·四川广安市·中考真题)一次函数7y x =--的图象不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限17.(2020·山东济南市·中考真题)若m <﹣2,则一次函数()11y m x m =++-的图象可能是( ) A . B . C . D .18.(2020·四川中考真题)已知函数1(2)2(2)x x y x x-+<⎧⎪=⎨-≥⎪⎩,当函数值为3时,自变量x 的值为( ) A .﹣2 B .﹣23 C .﹣2或﹣23 D .﹣2或﹣3219.(2020·广西中考真题)直线y =kx +2过点(﹣1,4),则k 的值是( )A .﹣2B .﹣1C .1D .220.(2020·西藏中考真题)如图,一个弹簧不挂重物时长6cm ,挂上重物后,在弹性限度内弹簧伸长的长度与所挂重物的质量成正比.弹簧总长y (单位:cm )关于所挂物体质量x (单位:kg )的函数图象如图所示,则图中a 的值是( )A .3B .4C .5D .621.(2020·辽宁鞍山市·中考真题)如图,在平面直角坐标系中,点1234,,,,A A A A 在x 轴正半轴上,点123,,,B B B在直线(0)3y x x =≥上,若1(1,0)A ,且112223334,,,A B A A B A A B A 均为等边三角形,则线段20192020B B 的长度为( )A.2B.2C.2 D.222.(2020·内蒙古鄂尔多斯市·中考真题)鄂尔多斯动物园内的一段线路如图1所示,动物园内有免费的班车,从入口处出发,沿该线路开往大象馆,途中停靠花鸟馆(上下车时间忽略不计),第一班车上午9:20发车,以后每隔10分钟有一班车从入口处发车,且每一班车速度均相同.小聪周末到动物园游玩,上午9点到达入口处,因还没到班车发车时间,于是从入口处出发,沿该线路步行25分钟后到达花鸟馆,离入口处的路程y (米)与时间x (分)的函数关系如图2所示,下列结论错误的是( )A .第一班车离入口处的距离y (米)与时间x (分)的解析式为y =200x ﹣4000(20≤x≤38)B .第一班车从入口处到达花鸟馆所需的时间为10分钟C .小聪在花鸟馆游玩40分钟后,想坐班车到大象馆,则小聪最早能够坐上第四班车D .小聪在花鸟馆游玩40分钟后,如果坐第五班车到大象馆,那么比他在花鸟馆游玩结束后立即步行到大象馆提前了7分钟(假设小聪步行速度不变)23.(2020·广东广州市·中考真题)一次函数31y x =-+的图象过点()11,x y ,()121,x y +,()132,x y +,则( )A .123y y y <<B .321y y y <<C .213y y y <<D .312y y y <<24.(2020·湖北省直辖县级行政单位·中考真题)对于一次函数2y x =+,下列说法不正确的是( ) A .图象经过点()1,3 B .图象与x 轴交于点()2,0- C .图象不经过第四象限 D .当2x >时,4y < 25.(2020·四川内江市·中考真题)在平面直角坐标系中,横坐标和纵坐标都是整数的点叫做整点,已知直线22y tx t =++(0t >)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则t 的取值范围是( )A .122t ≤<B .112t <≤ C .12t <≤ D .122t ≤≤且1t ≠ 26.(2020·山东潍坊市·中考真题)若定义一种新运算:(2)6(2)a ba b a b a b a b 例如:31312⊗=-=;545463⊗=+-=.则函数(2)(1)y x x =+⊗-的图象大致是( )A .B .C .D .27.(2020·湖南湘潭市·中考真题)如图,直线(0)y kx b k =+<经过点(1,1)P ,当kx b x +≥时,则x 的取值范围为( )A .1x ≤B .1≥xC .1x <D .1x >28.(2020·湖北黄石市·中考真题)函数13y x =+-x 的取值范围是( ) A .2x ≥,且3x ≠ B .2x ≥ C .3x ≠ D .2x >,且3x ≠29.(2020·湖北武汉市·中考真题)一个容器有进水管和出水管,每分钟的进水和出水是两个常数.从某时刻开始4min 内只进水不出水,从第4min 到第24min 内既进水又出水,从第24min 开始只出水不进水,容器内水量y (单位:L )与时间x (单位:min )之间的关系如图所示,则图中a 的值是( ) A .32 B .34 C .36 D .3830.(2020·湖北宜昌市·中考真题)小李、小王、小张、小谢原有位置如图(横为排、竖为列),小李在第2排第4列,小王在第3排第3列,小张在第4排第2列,小谢在第5排第4列.撤走第一排,仍按照原有确定位置的方法确定新的位置,下列说法正确的是( ).A .小李现在位置为第1排第2列B .小张现在位置为第3排第2列C .小王现在位置为第2排第2列D .小谢现在位置为第4排第2列31.(2020·四川凉山彝族自治州·中考真题)点()2,3A 关于x 轴对称的点的坐标是( )A .()2,3--B .()2,3-C .()2,3D .()2,3-32.(2019·山东中考真题)如图,在单位为1的方格纸上,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7,…,都是斜边在x 轴上,斜边长分别为2,4,6,…的等腰直角三角形,若△A 1A 2A 3的顶点坐标分别为A 1(2,0),A 2(1,1),A 3(0,0),则依图中所示规律,A 2019的坐标为( )A .(﹣1008,0)B .(﹣1006,0)C .(2,﹣504)D .(1,505)33.(2019·浙江中考真题)如图是雷达屏幕在一次探测中发现的多个目标,其中对目标A 的位置表述正确的是( )A .在南偏东75º方向处B .在5km 处C .在南偏东15º方向5km 处D .在南偏东75º方向5km 处34.(2019·江苏苏州市·中考真题)若一次函数y kx b =+(k b 、为常数,且0k ≠)的图象经过点()01A -,,()11B ,,则不等式1kx b +>的解为( )A .0x <B .0x >C .1x <D .1x >35.(2019·湖北鄂州市·中考真题)如图,在平面直角坐标系中,点1A 、2A 、3A …n A 在x 轴上,1B 、2B 、3B …n B 在直线3y x =上,若()11,0A ,且112A B A ∆、223A B A ∆…1n n n A B A +∆都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为1S 、2S 、3S …n S .则n S 可表示为( )A .22nB .22n -C .22n -D .22n -36.(2019·四川眉山市·中考真题)如图,一束光线从点()4,4A 出发,经y 轴上的点C 反射后经过点()10B ,,则点C 的坐标是( )A .10,2⎛⎫ ⎪⎝⎭B .40,5⎛⎫ ⎪⎝⎭C .()0,1D .()0,2 二、填空题37.(2021·四川成都市·中考真题)在正比例函数y kx =中,y 的值随着x 值的增大而增大,则点()3,P k 在第______象限.38.(2021·上海中考真题)已知6()f x x=,那么f =__________.39.(2021·湖南怀化市·中考真题)在函数 y = 中,自变量x 的取值范围是___________. 40.(2021·四川广安市·中考真题)如图,在平面直角坐标系中,AB y ⊥轴,垂足为B ,将ABO 绕点A 逆时针旋转到11AB O 的位置,使点B 的对应点1B 落在直线34y x =-上,再将11AB O 绕点1B 逆时针旋转到112A B O 的位置,使点1O 的对应点2O 也落在直线34y x =-上,以此进行下去……若点B 的坐标为()0,3,则点21B 的纵坐标...为______.41.(2021·四川眉山市·中考真题)一次函数()232y a x =++的值随x 值的增大而减少,则常数a 的取值范围是______.42.(2021·上海中考真题)某人购进一批苹果到集贸市场零售,已知卖出的苹果数量与售价之间的关系如图所示,成本为5元/千克,现以8元/千克卖出,赚___________元.43.(2021·上海中考真题)已知函数y kx =经过二、四象限,且函数不经过(1,1)-,请写出一个符合条件的函数解析式_________.44.(2021·江苏苏州市·中考真题)若21x y +=,且01y <<,则x 的取值范围为______.45.(2021·四川自贡市·中考真题)当自变量13x -≤≤时,函数y x k =-(k 为常数)的最小值为3k +,则满足条件的k 的值为_________.46.(2020·黑龙江大庆市·中考真题)点(2,3)关于y 轴对称的点的坐标为_____.47.(2020·四川广安市·中考真题)一次函数y=2x +b 的图象过点(0,2),将函数y=2x +b 的图象向上平移5个单位长度,所得函数的解析式为________.48.(2020·贵州黔南布依族苗族自治州·中考真题)如图,在平面直角坐标系中,直线y =﹣43x+4与x 轴、y 轴分别交于A 、B 两点,点C 在第二象限,若BC =OC =OA ,则点C 的坐标为___.49.(2020·贵州黔南布依族苗族自治州·中考真题)函数1y x =-的图象一定不经过第_________象限. 50.(2020·辽宁鞍山市·中考真题)如图,在平面直角坐标系中,已知(3,6),(2,2)A B -,在x 轴上取两点C ,D (点C 在点D 左侧),且始终保持1CD =,线段CD 在x 轴上平移,当AD BC +的值最小时,点C 的坐标为________.51.(2020·江苏宿迁市·中考真题)已知一次函数y =2x ﹣1的图象经过A (x 1,1),B (x 2,3)两点,则x 1_____x 2(填“>”“<”或“=”).52.(2020·湖南益阳市·中考真题)某公司新产品上市30天全部售完,图1表示产品的市场日销售量与上市时间之间的关系,图2表示单件产品的销售利润与上市时间之间的关系,则最大日销售利润是______元.53.(2020·宁夏中考真题)如图,直线542y x =+与x 轴、y 轴分别交于A 、B 两点,把AOB 绕点B 逆时针旋转90°后得到11AO B ,则点1A 的坐标是_____.54.(2020·辽宁营口市·中考真题)如图,∠MON =60°,点A 1在射线ON 上,且OA 1=1,过点A 1作A 1B 1⊥ON 交射线OM 于点B 1,在射线ON 上截取A 1A 2,使得A 1A 2=A 1B 1;过点A 2作A 2B 2⊥ON 交射线OM 于点B 2,在射线ON 上截取A 2A 3,使得A 2A 3=A 2B 2;…;按照此规律进行下去,则A 2020B 2020长为_____.55.(2020·上海中考真题)小明从家步行到学校需走的路程为1800米.图中的折线OAB 反映了小明从家步行到学校所走的路程s (米)与时间t (分钟)的函数关系,根据图象提供的信息,当小明从家出发去学校步行15分钟时,到学校还需步行____米.56.(2020·黑龙江鹤岗市·中考真题)如图,直线AM 的解析式为1y x =+与x 轴交于点M ,与y 轴交于点A ,以OA 为边作正方形ABCO ,点B 坐标为()1,1.过点B 作1EO MA ⊥交MA 于点E ,交x 轴于点1O ,过点1O 作x 轴的垂线交MA 于点1A 以11O A 为边作正方形1111O A B C ,点1B 的坐标为()5,3.过点1B 作12E O MA ⊥交MA 于1E ,交x 轴于点2O ,过点2O 作x 轴的垂线交MA 于点2A ,以22O A 为边作正方形2222O A B C ,,则点2020B 的坐标______.57.(2020·江苏南京市·中考真题)将一次函数24y x =-+的图象绕原点O 逆时针旋转90,所得到的图像对应的函数表达式是__________.58.(2020·山东临沂市·中考真题)点1,2m ⎛⎫-⎪⎝⎭和点(2,)n 在直线2y x b =+上,则m 与n 的大小关系是_________.59.(2020·四川广安市·中考真题)如图,在平面直角坐标系中,边长为2的正方形OA 1B 1C 1的两边在坐标轴上,以它的对角钱OB 1为边作正方形OB 1B 2C 2,再以正方形OB 1B 2C 2的对角线OB 2为边作正方形OB 2B 3C 3……以此类推,则正方形OB 2020B 2021C 2021的顶点B 2021的坐标是________.60.(2019·四川成都市·中考真题)如图,在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点称为“整点”.已知点A 的坐标为()5,0,点B 在x 轴的上方,OAB ∆的面积为152,则OAB ∆内部(不含边界)的整点的个数为_____.61.(2019·江苏中考真题)如图,将一等边三角形的三条边各8等分,按顺时针方向(图中箭头方向)标注各等分点的序号0、1、2、3、4、5、6、7、8,将不同边上的序号和为8的两点依次连接起来,这样就建立了“三角形”坐标系.在建立的“三角形”坐标系内,每一点的坐标用过这一点且平行(或重合)于原三角形三条边的直线与三边交点的序号来表示(水平方向开始,按顺时针方向),如点A 的坐标可表示为(1,2,5),点B 的坐标可表示为(4,1,3),按此方法,则点C 的坐标可表示为_______.62.(2019·山东济宁市·中考真题)已知点(,)P x y 位于第二象限,并且4y x +≤,,x y 为整数,写出一个符合上述条件的点P 的坐标:______.63.(2019·湖北鄂州市·中考真题)在平面直角坐标系中,点()00,P x y 到直线0Ax By C ++=的距离公式为:d =,则点()3,3P -到直线2533y x =-+的距离为_____.三、解答题64.(2021·浙江绍兴市·中考真题)I号无人机从海拔10m处出发,以10m/min的速度匀速上升,II号无人机从海拔30m处同时出发,以a(m/min)的速度匀速上升,经过5min两架无人机位于同一海拔高度b(m).无人机海拔高度y(m)与时间x(min)的关系如图.两架无人机都上升了15min.(1)求b的值及II号无人机海拔高度y(m)与时间x(min)的关系式.(2)问无人机上升了多少时间,I号无人机比II号无人机高28米.65.(2021·湖北恩施土家族苗族自治州·中考真题)“互联网+”让我国经济更具活力,直播助销就是运用“互联网+”的生机勃勃的销售方式,让大山深处的农产品远销全国各地.甲为当地特色花生与茶叶两种产品助销.已知每千克花生的售价比每千克茶叶的售价低40元,销售50千克花生与销售10千克茶叶的总售价相同.(1)求每千克花生、茶叶的售价;(2)已知花生的成本为6元/千克,茶叶的成本为36元/千克.甲计划两种产品共助销60千克,总成本不高于1260元,且花生的数量不高于茶叶数量的2倍.则花生、茶叶各销售多少千克可获得最大利润?最大利润是多少?66.(2021·湖北宜昌市·中考真题)甲超市在端午节这天进行苹果优惠促销活动,苹果的标价为10元/kg,如果一次购买4kg以上的苹果,超过4kg的部分按标价6折售卖.x(单位:kg)表示购买苹果的重量,y(单位:元)表示付款金额.(1)文文购买3kg苹果需付款________元,购买5kg苹果需付款_______元;(2)求付款金额y关于购买苹果的重量x的函数解析式;(3)当天,隔壁的乙超市也在进行苹果优惠促销活动,同样的苹果的标价也为10元/kg,且全部按标价的8折售卖.文文如果要购买10kg苹果,请问她在哪个超市购买更划算?67.(2021·陕西中考真题)在一次机器“猫”抓机器“鼠”的展演测试中,“鼠”先从起点出发,1min 后,“猫”从同一起点出发去追“鼠”,抓住“鼠”并稍作停留后,“猫”抓着“鼠”沿原路返回“鼠”、“猫”距起点的距离()m y 与时间()min x 之间的关系如图所示.(1)在“猫”追“鼠”的过程中,“猫”的平均速度与“鼠”的平均速度的差是______m /min ;(2)求AB 的函数表达式;(3)求“猫”从起点出发到返回至起点所用的时间.68.(2021·湖南衡阳市·中考真题)如图是一种单肩包,其背带由双层部分、单层部分和调节扣构成.小文购买时,售货员演示通过调节扣加长或缩短单层部分的长度,可以使背带的长度(单层部分与双层部分长度的和,其中调节扣所占长度忽略不计)加长或缩短,设双层部分的长度为cm x ,单层部分的长度为cm y .经测量,得到下表中数据.(1)根据表中数据规律,求出y 与x 的函数关系式;(2)按小文的身高和习惯,背带的长度调为130cm 时为最佳背带长.请计算此时双层部分的长度;(3)设背带长度为cm L ,求L 的取值范围.69.(2021·天津中考真题)在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知学校、书店、陈列馆依次在同一条直线上,书店离学校12km ,陈列馆离学校20km .李华从学校出发,匀速骑行0.6h 到达书店;在书店停留0.4h 后,匀速骑行0.5h 到达陈列馆;在陈列馆参观学习一段时间,然后回学校;回学校途中,匀速骑行0.5h 后减速,继续匀速骑行回到学校.给出的图象反映了这个过程中李华离学校的距离km y 与离开学校的时间h x 之间的对应关系. 请根据相关信息,解答下列问题:(Ⅰ)填表(Ⅱ)填空:①书店到陈列馆的距离为________km ;②李华在陈列馆参观学的时间为_______h ; ③李华从陈列馆回学校途中,减速前的骑行速度为______km/h ;④当李华离学校的距离为4km 时,他离开学校的时间为_______h .(Ⅲ)当0 1.5x ≤≤时,请直接写出y 关于x 的函数解析式.70.(2021·浙江丽水市·中考真题)李师傅将容量为60升的货车油箱加满后,从工厂出发运送一批物资到某地.行驶过程中,货车离目的地的路程s (千米)与行驶时间t (小时)的关系如图所示(中途休息、加油的时间不计.当油箱中剩余油量为10升时,货车会自动显示加油提醒.设货车平均耗油量为0.1升/千米,请根据图象解答下列问题:(1)直接写出工厂离目的地的路程;(2)求s 关于t 的函数表达式;(3)当货车显示加油提醒后,问行驶时间t 在怎样的范围内货车应进站加油?71.(2021·浙江宁波市·中考真题)某通讯公司就手机流量套餐推出三种方案,如下表:A ,B ,C 三种方案每月所需的费用y (元)与每月使用的流量x (兆)之间的函数关系如图所示. (1)请直接写出m ,n 的值.(2)在A 方案中,当每月使用的流量不少于1024兆时,求每月所需的费用y (元)与每月使用的流量x (兆)之间的函数关系式.(3)在这三种方案中,当每月使用的流量超过多少兆时,选择C 方案最划算?72.(2021·甘肃武威市·中考真题)如图1,小刚家,学校、图书馆在同一条直线上,小刚骑自行车匀速从学校到图书馆,到达图书馆还完书后,再以相同的速度原路返回家中(上、下车时间忽略不计).小刚离家的距离()m y 与他所用的时间()min x 的函数关系如图2所示.(1)小刚家与学校的距离为___________m ,小刚骑自行车的速度为________m/min ;(2)求小刚从图书馆返回家的过程中,y 与x 的函数表达式;(3)小刚出发35分钟时,他离家有多远?73.(2021·云南中考真题)某鲜花销售公司每月付给销售人员的工资有两种方案.方案一:没有底薪,只付销售提成;方案二:底薪加销售提成.如图中的射线1l,射线2l分别表示该鲜花销售公司每月按方案一,方案二付给销售人员的工资1y(单位:x )的函数关系.元)和2y(单位:元)与其当月鲜花销售量x(单位:千克)(0(1)分别求1y﹑2y与x的函数解析式(解析式也称表达式);(2)若该公司某销售人员今年3月份的鲜花销售量没有超过70千克,但其3月份的工资超过2000元.这个公司采用了哪种方案给这名销售人员付3月份的工资?74.(2020·辽宁大连市·中考真题)甲、乙两个探测气球分别从海拔5m和15m处同时出发,匀速上升60min.下图是甲、乙两个探测气球所在位置的海拔y(单位:m)与气球上升时间x(单位:min)的函数图象.(1)求这两个气球在上升过程中y关于x的函数解析式;(2)当这两个气球的海拔高度相差15m时,求上升的时间.75.(2020·江苏南通市·中考真题)如图,直线l1:y=x+3与过点A(3,0)的直线l2交于点C(1,m),与x轴交于点B.(1)求直线l2的解析式;(2)点M在直线l1上,MN∥y轴,交直线l2于点N,若MN=AB,求点M的坐标.76.(2020·吉林长春市·中考真题)已知A、B两地之间有一条长240千米的公路.甲车从A地出发匀速开往B地,甲车出发两小时后,乙车从B地出发匀速开往A地,两车同时到达各自的目的地.两车行驶的路程之和y(千米)与甲车行驶的时间x(时)之间的函数关系如图所示.(1)甲车的速度为_________千米/时,a的值为____________.(2)求乙车出发后,y与x之间的函数关系式.(3)当甲、乙两车相距100千米时,求甲车行驶的时间.77.(2020·吉林中考真题)某种机器工作前先将空油箱加满,然后停止加油立即开始工作,当停止工作时,油箱中油量为5L.在整个过程中,油箱里的油量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)机器每分钟加油量为_____L,机器工作的过程中每分钟耗油量为_____L.(2)求机器工作时y关于x的函数解析式,并写出自变量x的取值范围.(3)直接写出油箱中油量为油箱容积的一半时x的值.78.(2019·江西中考真题)如图,在平面直角坐标系中,点A B ,的坐标分别为(,,连接AB ,以AB 为边向上作等边三角形ABC .(1)求点C 的坐标;(2)求线段BC 所在直线的解析式.79.(2019·重庆中考真题)函数图象在探索函数的性质中有非常重要的作用,下面我们就一类特殊的函数展开探索.画函数2||y x =-的图象,经历分析解析式、列表、描点、连线过程得到函数图象如图所示;经历同样的过程画函数2||2y x =-+和2| 2|y x =-+的图象如图所示.(1)观察发现:三个函数的图象都是由两条射线组成的轴对称图形;三个函数解折式中绝对值前面的系数相同,则图象的开口方向和形状完全相同,只有最高点和对称轴发生了变化.写出点A ,B 的坐标和函数-2|2|y x =+的对称轴.(2)探索思考:平移函数2||y x =-的图象可以得到函数2||2y x =-+和2|2|y x =-+的图象,分别写出平移的方向和距离.(3)拓展应用:在所给的平面直角坐标系内画出函数2|3|1y x =--+的图象.若点()11,x y 和(22,)x y 在该函数图象上,且213x x >>,比较1y ,2y 的大小.80.(2019·江苏淮安市·中考真题)快车从甲地驶向乙地,慢车从乙地驶向甲地,两车同时出发并且在同一条公路上匀速行驶,途中快车休息1.5小时,慢车没有休息.设慢车行驶的时间为x 小时,快车行驶的路程为1y 千米,慢车行驶的路程为2y 千米.如图中折线OAEC 表示1y 与x 之间的函数关系,线段OD 表示2y 与x 之间的函数关系.请解答下列问题:(1)求快车和慢车的速度;(2)求图中线段EC 所表示的1y 与x 之间的函数表达式; (3)线段OD 与线段EC 相交于点F ,直接写出点F 的坐标,并解释点F 的实际意义.。
(1)OC 的长为______,OD 的长为______;(2)如图,点()1,M a -是线段CD 上一点,连接OM ,作ON 并判断MON △的形状;(3)如备用图,若点()1,E b 为直线AB 上的点,点P 为y 轴上的点,是以点E 为直角顶点的等腰直角三角形,若存在,请求出此时(1)求直线CD 的函数表达式和点D 的坐标;(2)点P 为线段DE 上的一个动点,连接BP .①若直线BP 将ACD 的面积分为7:9两部分,试求点②点P 是否存在某个位置,将BPD △沿着直线BP 翻折,使得点在,请直接写出点P 的坐标;若不存在,请说明理由.题型2:取值范围问题(1)求点A 的坐标;(2)若点C 在第二象限,ACD ①求点C 的坐标;②直接写出不等式组4x kx +>③将CAD 沿x 轴平移,点C(1)求点C 的坐标及直线BC 的表达式;(2)在点E 运动的过程中,若△DEF 的面积为5,求此时点(3)设点E 的坐标为(0,m );①用m 表示点F 的坐标;②在点E 运动的过程中,若△DEF 始终在△ABC 的内部(包括边界)题型3:最值问题5.已知一次函数()134502y kx k k =++≠.的坐标为(),a a ,求CM MP +的最小值.6.如图1,在平面直角坐标系xoy 中,直线1:1l y x =+与x 轴交于点A ,直线2:33l y x =-与x 轴交于点B ,与1l 相交于C 点,过x 轴上动点(),0E t 作直线3l x ⊥轴分别与直线1l 、2l 交于P 、Q 两点.(1)①请直接写出点A ,点B ,点C 的坐标:A ______,B ______,C ______.②若2PQ =,求t 的值;(2)如图2,若E 为线段AB 上动点,过点P 作直线PF PQ ⊥交直线2l 于点F ,求当t 为何值时,PQ PF -最大,并求这个最大值.题型4:旋转问题7.如图1,在平面直角坐标系中,一次函数()0y kx b k =+≠的图象交y 轴于点()0,1A -,交x 轴交于点B ,且2OB OC OA ==,过点C 作y 轴的垂线,交直线AB 于点D .(1)求点D 的坐标;(2)点E 是线段CD 上一动点,直线BE 与y 轴交于点F .①若BDF V 的面积为8,求点F 的坐标;②如图2,当点F 在y 轴正半轴上时,将直线BF 绕点B 顺时针旋转45︒后的直线与线段CD 交于点M ,连接FM ,若1OF MF =+,求线段MF 的长.备用图(1)求直线1l 的表达式;(2)过M 作y 轴的平行线,分别交直线1l ,直线2l 于点D ,E ,连接DE ,①当3m =时,求DE 的长;(1)求n 的值及直线2l 的表达式;(2)在直线2l 上是否存在点E ,使BO ABE A S S =△△若存在,则求出点(3)如图2,点P 为线段AD 上的一个动点,一动点H(1)求直线AB 的表达式;(2)由图象直接写出关于x 的不等式102x kx b <<+的解集;(3)如图②所示,P 为x 轴上A 点右侧任意一点,以BP 为边作等腰Rt BPM 直线MA 交y 轴于点Q .当点P 在x 轴上运动时,线段OQ 的长度是否发生变化?若不变,求出线段长度;若变化,求线段OQ 的取值范围.题型6:定值问题11.如图1所示,直线l :10y mx m =+与x 轴负半轴、y 轴正半轴分别交于(1)若点D坐标为(12,3).①求直线BC的函数关系式;②若Q为RS中点,求点P坐标.(2)在点P运动的过程中,PQCR的值是否变化?若不变,求出该值;若变化,请说明理由.题型7:新定义题型13.函数图象是研究函数的重要工具,类比一次函数的学习,表是探究过程中的部分信息:x…2-1-01232y x=-…4a2-14(1)a的值为______;(2)在图中画出该函数的图象;(3)结合函数的图象,解决下列问题:①下列说法正确的是:______.(填所有正确选项)A.函数图像关于x轴对称x=时,函数有最小值,最小值为B.当0x>时,y随x的增大而增大C.当0③若12x -≤≤,则y 的取值范围为【拓展提升】18.对于两个不同的函数,通过加法运算可以得到一个新函数,我们把这个新函数称为两个函数的数”.例如:对于函数12y x =和231y x =-,则函数1y ,2y 的“和函数”3y =(1)已知函数1y x =和2=y ①写出3y 的表达式,并求出当②函数1y ,2y 的图象如图①所示,则....(2)已知函数4y x =和5y =,这两个函数的“和函数”记为6y .按照上图的速度步行前往学校,记录下小东10天到达学校所用的时间,如表.上学日期4号5号6号7号8号11号到达学校所用时间(单位:min)2524.825.324.925.124.8某天早上7:20,小东按照上表的速度步行上学.t(0<t≤10)分钟后,小明骑自行车以从小区出发,沿着相同的路线上学.骑行7分钟后,自行车因零件损坏无法继续骑行,小明只好将自行车停在路边非机动车停靠点(停车时间忽略不计),改用步行前往学校.为了赶时间,小明的步行速度不小于。
专题05 高分必刷题-等腰三角形、等边三角形压轴题真题(原卷版)题型一:等腰三角形、等边三角形中的动点问题1.(湘一芙蓉)如图,已知△ABC中,AB=AC=12cm,BC=10cm,点D为AB的中点.如果点P在线段BC上以2cm/s的速度由点B向C点运动,同时,点Q在线段AC上由点A 向C点以4cm/s的速度运动.(1)若点P、Q两点分别从B、A两点同时出发,经过2秒后,△BPD与△CQP是否全等?请说明理由;(2)若点P、Q两点分别从B、A两点同时出发,△CPQ的周长为16cm,设运动时间为t,问:是否存在某一时刻t,使得△CPQ是等腰三角形?如存在,请求出t的值,若不存在,请说明理由.2.(中雅)如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P 从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)何时△PBQ是直角三角形?(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数.3.(青竹湖)已知,△ABC是边长3cm的等边三角形.动点P以1cm/s的速度从点A出发,沿线段AB向点B运动.(1)如图1,设点P的运动时间为t(s),那么t为何值时,△PBC是直角三角形;(2)若另一动点Q从点C出发,沿射线BC方向运动.连接PQ交AC于D.如果动点P、Q都以1cm/s的速度同时出发.①如图2,设运动时间为t(s),那么t为何值时,△DCQ是等腰三角形?②如图3,连接PC,请你猜想:在点P、Q的运动过程中,△PCD和△QCD的面积有什么关系?并说明理由.4.(广益)如图1,在平面直角坐标系中,直线AB分别交x轴、y轴于A(a,0)、B(0,b)两点,且a,b满足(a﹣b)2+|a﹣4t|=0,且t>0,t是常数.直线BD平分∠OBA,交x轴于D点.(1)若AB的中点为M,连接OM交BD于N,求证:ON=OD;(2)如图2,过点A作AE⊥BD,垂足为E,猜想AE与BD间的数量关系,并证明你的猜想;(3)如图3,在x轴上有一个动点P(在A点的右侧),连接PB,并作等腰Rt△BPF,其中∠BPF=90°,连接F A并延长交y轴于G点,当P点在运动时,OG的长是否发生改变?若改变,请求出它的变化范围;若不变,求出它的长度.5.(长郡、雅礼)如图,在平面直角坐标系中,点O为原点,△OAB为等边三角形,P、Q 分别为AO、AB边上的动点,点P、点Q同时从点A出发,且当其中一点停止运动时,另一点也立即停止运动;若P以2个单位长度每秒的速度从点A向终点O运动,点Q以3个单位长度每秒的速度从点A向终点B运动,设运动时间为t,已知点A坐标为(a,b),且满足(a﹣6)2+|a﹣b|=0.(1)求A点坐标;(2)如图1,连接BP、OQ交于点C,请问当t为何值时,∠OCP=60°;(3)如图2,D为OB边上的中点,P,Q在运动过程中,D,P,Q三点是否能构成使∠PDQ=120°的等腰三角形,若能,求运动时间t并直接写出四边形APDQ的面积:若不能,请说明理由.6.(师梅)如图,在平面直角坐标系中,A(﹣3,0),点B是y轴正半轴上一动点,点C、D在x正半轴上.(1)如图,若∠BAO=60°,∠BCO=40°,BD、CE是△ABC的两条角平分线,且BD、CE交于点F,直接写出CF的长.(2)如图,△ABD是等边三角形,以线段BC为边在第一象限内作等边△BCQ,连接QD并延长,交y轴于点P,当点C运动到什么位置时,满足PD=DC?请求出点C 的坐标;(3)如图,以AB为边在AB的下方作等边△ABP,点B在y轴上运动时,求OP的最小值.7.(郡维)等腰Rt△ABC中,∠BAC=90°,AB=AC,点A、点B分别是y轴、x轴上两个动点,直角边AC交x轴于点D,斜边BC交y轴于点E.(1)如图(1),已知C点的横坐标为﹣1,直接写出点A的坐标;(2)如图(2),当等腰Rt△ABC运动到使点D恰为AC中点时,连接DE,求证:∠ADB =∠CDE;(3)如图(3),若点A在x轴上,且A(﹣4,0),点B在y轴的正半轴上运动时,分别以OB、AB为直角边在第一、二象限作等腰直角△BOD和等腰直角△ABC,连接CD 交y轴于点P,问当点B在y轴的正半轴上运动时,BP的长度是否变化?若变化请说明理由,若不变化,请求出BP的长度.8.(长郡)如图,在△ABC中.AB=AC,点E在线段BC上,连接AE并延长到G,使得EG=AE,过点G作GD∥BA分别交BC,AC于点F,D.(1)求证:△ABE≌△GFE;(2)若GD=3,CD=1,求AB的长度;(3)过点D作DH⊥BC于H,P是直线DH上的一个动点,连接AF,AP,FP,若∠C=45°,在(2)的条件下,求△AFP周长的最小值.9.(广益)如图,在平面直角坐标系中,点O为坐标原点,点A(0,3)与点B关于x轴对称,点C(n,0)为x轴的正半轴上一动点.以AC为边作等腰直角三角形ACD,∠ACD=90°,点D在第一象限内.连接BD,交x轴于点F.(1)如果∠OAC=38°,求∠DCF的度数;(2)用含n的式子表示点D的坐标;(3)在点C运动的过程中,判断OF的长是否发生变化?若不变求出其值,若变化请说明理由.题型二:等腰三角形、等边三角形综合类压轴题10.(雅境)(1)问题发现:如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.①∠AEB的度数为②猜想线段AD,BE之间的数量关系为:,并证明你的猜想.(2)拓展探究:如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请求出∠AEB的度数及线段CM,AE,BE之间的数量关系.11.(郡维)如图1,已知△ABC和△EFC都是等边三角形,且点E在线段AB上.(1)求证:BF∥AC;(2)过点E作EG∥BC交AC于点G,试判断△AEG的形状并说明理由;(3)如图2,若点D在射线CA上,且ED=EC,求证:AB=AD+BF.12.(北雅)已知:△ABC为等边三角形,点E为射线AC上一点,点D为射线CB上一点,AD=DE.(1)如图1,当E在AC的延长线上且CE=CD时,求证:BD=CD;(2)如图2,当E在AC的延长线上时,AB+BD等于AE吗?请说明理由;(3)如图3,当D在线段CB的延长线上,E在线段AC上时,请直接写出AB、BD、AE的数量关系,并证明.13.(中雅)已知△ABC为等边三角形,取△ABC的边AB,BC中点D,E,连接DE,如图1,易证△DBE为等边三角形,将△DBE绕点B顺时针旋转,设旋转的角度∠ABD=α,其中0<α<180°.(1)如图2,当α=30°,连接AD,CE,求证:AD=CE;(2)在△DBE旋转过程中,当α超过一定角度时,如图3,连接AD,CE会交于一点,记交点为点F,AD交BC于点P,CE交BD于点Q,连接BF,请问BF是否会平分∠CBD?如果是,求出α,如果不是,请说明理由;(3)在第(2)问的条件下,试猜想线段AF,BF和CF之间的数量关系,并说明理由.14.(雅实)如图1,△ABC为等腰三角形,∠ABC=90°,点P在线段BC上(不与B、C 重合),以点A为直角顶点作等腰直角△P AQ,且点Q在AP的左下方,过点Q作QE⊥AB于点E.(1)求证:△P AB≌△AQE;(2)连接CQ交AB于M,若PC=2PB,求的值.(3)如图2,过点Q作QF⊥AQ于AB的延长线于点F,过P点作DP⊥AP交AC于点D,连接DF,当点P在线段BC上运动时(不与B,C重合),式子的值会变化吗?若不变,求出该值;若变化,请说明理由.15.(师梅)如图1,在平面直角坐标系中,点A在y轴上,点B在x轴上,AB=AC,16.∠BAC=90°,CM⊥y轴,交y轴于点M.(1)求证∠ABO=∠CAM;(2)如图2,D,E为y轴上的两个点,BD=BE,BD⊥BE,求∠CEM的度数;(3)如图3,△P AQ是等腰直角三角形,∠P AQ为顶角,点Q在x轴负半轴上,连接CB,交y轴于点H,AC与x轴交于点G,连接PC,交AQ于点K,交x轴于点N,若CN=CM,NG=3,HM=2,求GH.16.(博才)如图1,OA=2,OB=4,以A点为顶点、AB为腰在第三象限作等腰Rt△ABC,(1)求C点的坐标;(2)如图2,P为y轴负半轴上一个动点,当P点向y轴负半轴向下运动时,以P为顶点,P A为腰作等腰Rt△APD,过D作DE⊥x轴于E点,求OP﹣DE的值;(3)如图3,已知点F坐标为(﹣2,﹣2),当G在y轴的负半轴上沿负方向运动时,作Rt△FGH,始终保持∠GFH=90°,FG与y轴负半轴交于点G(0,m),FH与x轴正半轴交于点H(n,0),当G点在y轴的负半轴上沿负方向运动时,以下两个结论:①m﹣n为定值;②m+n为定值,其中只有一个结论是正确的,请找出正确的结论,并求出其值.17.(青竹湖)如图,四边形OABC的位置在平面直角坐标系中如图所示,且A(0,a),B (b,a),C(b,0),又a,b满足﹣+b2+4b+8=0,点P在x轴上且横坐标大于b,射线OD是第一象限的一条射线,点Q在射线OD上,BP=PQ.并连接BQ交y 轴于点M.(1)求点A,B,C的坐标为A、B、C.(2)当BP⊥PQ时,求∠AOQ的度数.(3)在(2)的条件下,若点P在x轴的正半轴上,且OP=3AM,试求点M的坐标.。
八年级下册数学《第十九章 一次函数》 专题 一次函数与三角形的综合应用问题【例题1】(2022春•芝罘区期末)如图,一次函数y 1=kx +b 的图象与坐标轴交于A ,B 两点,与正比例函数y 2=﹣2x 交于点C (m ,4),OA =6. (1)求一次函数的表达式; (2)求△BOC 的面积;(3)在线段AB 上是否存在点P ,使△OAP 是以OA 为底的等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.【变式1-1】(2022秋•沭阳县期末)如图,在平面直角坐标系中,直线AB分别交x轴,y轴于点A(3,0),点B(0,3).(1)求直线AB的解析式;(2)若点C是线段AB上的一个动点,当△AOC的面积为3时,求出此时点C的坐标;(3)在(2)的条件下,在x轴上是否存在一点P,使得△COP是等腰三角形?若存在,直接写出所有满足条件的点P的坐标,若不存在,请说明理由.【变式1-2】(2022秋•烟台期末)如图,一次函数y=−34x+3的图象与x轴、y轴分别相交于点A,B,将△AOB沿直线CD对折,使点A和点B重合,直线CD与x轴交于点C,与AB交于点D.(1)求A,B两点的坐标;(2)求线段CD的长;(3)在x轴上是否存在点P,使△P AB为等腰三角形?如果存在,请直接写出所有满足条件的点P的坐标;如果不存在,请说明理由.【变式1-3】(2021秋•驿城区校级期末)直线y =kx ﹣8与x 轴、y 轴分别交于B 、C 两点,且OC OB=43.(1)求OB 的长和k 的值;(2)若点A 是第一象限内直线y =kx ﹣8上的一个动点,当它运动到什么位置时,△AOB 的面积是12? (3)在(2)成立的情况下,y 轴上是否存在点P ,使△POA 是等腰三角形?若存在,求出点P 的坐标;若不存在,请说明理由.(写过程)【变式1-4】(2023•沭阳县模拟)如图,直线AB :y =34x +32与坐标轴交于A 、B 两点,点C 与点A 关于y轴对称.CD ⊥x 轴与直线AB 交于点D . (1)求点A 和点B 的坐标;(2)点P 在直线CD 上运动,且始终在直线AB 下方,当△ABP 的面积为92时,求出点P 的坐标;(3)在(2)的条件下,点Q 为直线CD 上一动点,直接写出所有使△APQ 是以AP 为腰的等腰三角形的点Q 的坐标.【变式1-5】(2022春•珠晖区校级期中)如图,在平面直角坐标系中,O为坐标原点,△ABC的边BC 在x轴上,A,C,B三点的坐标分别为A(0,4),C(3,0),B(﹣5,0),点P从B出发,以每秒2个单位的速度沿射线BO匀速运动,设点P运动时间为t秒.(1)求直线AC的解析式和△ABC的AC边上的高线长;(2)连接P A,写出△POA的面积S与t的函数表达式;(3)是否存在一点P,使△P AC是等腰三角形?若存在,请直接写出P点满足条件时,所有t的值;若不存在,请说明理由.【变式1-6】(2022春•明溪县月考)阅读下列材料:课本的定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.该定理的逆命题“在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°.”也是真命题.请依据上面定理与真命题,解答下面问题.如图,在直角坐标系xOy中,点A(m,2√3)在正比例函数y=√3x图象上,将y轴沿着x轴正半轴平移m个单位得到直线AB,再将直线AB绕着点A逆时针旋转n°,分别交y轴,x轴于点C,点D.(1)求m的值;(2)如图1,若n=60,求直线AD的表达式;(3)若点C在y轴正半轴上,且△OAC是等腰三角形,求点C的坐标.【例题2】(2022秋•莲湖区期末)如图,直线l:y=12x+m交x轴于点A,交y轴于点B(0,1),点P(n,2)在直线l上.(1)求m,n的值;(2)已知M是x轴上的动点,当以A,P,M为顶点的三角形是直角三角形时,求点M的坐标.【变式2-1】如图,在平面直角坐标系中,正比例函数y=kx(k≠0)的图象经过点Q(6,8),点A在线段OQ上,点B在x轴的正半轴上,且OA+OB=10,点B关于点P(4,0)的对称点为点C,连结AB,AC,设点A的横坐标为t.(1)求k的值,并写出当0<y<6时x的取值范围.(2)当点A在线段OQ上运动时,设OB的长为S.①求S关于t的函数表达式.②当S=5时,求P A的长.(3)当△ABC为直角三角形时,求t的值.【变式2-2】(2022秋•万柏林区校级月考)如图,平面直角坐标系中直线AB与x轴交于点A(﹣3,0)与y轴交于点B(0,6),点C是直线AB上的一点,它的坐标为(m,4),经过点C作直线CD∥x轴交y轴于点D.(1)求点C的坐标及线段AB的长;(2)已知点P是直线CD上一点.请作答.①若△POC的面积为4,求点P的坐标;②若△POC为直角三角形,请直接写出所有满足条件的点P的坐标.【变式2-3】(2022秋•济南期末)如图,已知直线l1经过点(5,6),交x轴于点A(﹣3,0),直线l2:y=3x交直线l1于点B.(1)求直线l1的函数表达式和点B的坐标;(2)求△AOB的面积;(3)在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标;若不存在,请说明理由.【变式2-4】(2021春•和平区校级期中)如图,点M(2,m)在直线y1=2x上点A,B的坐标分别是(4,0),(0,2),连接AB,将△AOB沿射线OM方向平移,使点O移动到点M,得到△CMD(点A,B 分别对应点C,D).(1)填空:m=,点C的坐标是;(2)连接AD求直线AD的表达式y2=kx+b;(3)当y2≥y1时,请直接写出x的取值范围;(4)点P是直线OM上的一点,请直接写出使△ADP是以AD为直角边的直角三角形时点P的坐标.【变式2-5】(2022秋•海曙区校级期末)如图1,在同一平面直角坐标系中,直线AB:y=2x+b与直线AC:y=kx+3相交于点A(m,4),与x轴交于点B(﹣4,0),直线AC与x轴交于点C.(1)填空:b=,m=,k=;(2)如图2,点D为线段BC上一动点,将△ACD沿直线AD翻折得到△AED,线段AE交x轴于点F.①当点E落在y轴上时,求点E的坐标;②若△DEF为直角三角形,求点D的坐标.【例题3】如图,一次函数y=−23x+4的图象分别与x轴、y轴交于点A、B,以线段AB为边在第一象限内作等腰Rt△ABC,∠BAC=90°,求过B、C两点直线的解析式.【变式3-1】(2023春•崇川区校级月考)模型建立:如图1,等腰直角三角形ABC中,∠ACB=90°,CB =CA,直线ED经过点C,过A作AD⊥ED于D,过B作BE⊥ED于E.(1)求证:△BEC≌△CDA;(2)模型应用:已知直线l1:y=−43x﹣4与y轴交于A点.将直线l1绕着A点逆时针旋转45°至l2,如图2,求l2的函数解析式.【变式3-2】(2022春•南城县校级月考)如图,已知直线y=kx+3分别交x轴、y轴于A、C两点,直线BC过点C交x轴于点B,且OB=2OC=3OA,点D为AC的中点.(1)求k的值以及直线BC的解析式;(2)过点D作DE⊥y轴交BC于点E,连接OE,求四边形AOEC的面积;(3)已知点P是线段BC上的一个动点,点Q是x轴上的一个动点,当以点D、P、Q为顶点的三角形为等腰直角三角形时,求点P的坐标.【变式3-3】(2022秋•和平区校级期末)如图,直线l1经过A(6,0)、B(0,8)两点,点C从B出发沿线段BO以每秒1个单位长度的速度向点O运动,点D从A出发沿线段AB以每秒2个单位长度的速度向点B运动,设运动时间为t秒(t>0),(1)求直线l1的表达式;(2)当t=时,BC=BD;(3)将直线l1沿x轴向右平移3个单位长度后,与x轴,y轴分别交于E、F两点,求四边形BAEF的面积;(4)在第一象限内,是否存在点P,使A、B、P三点构成等腰直角三角形?若存在,直接写出点P的坐标;若不存在,请说明理由.【变式3-4】(2022•南京模拟)如图1,在平面直角坐标系中.直线l 1:y =kx +3与直线l 2:y =﹣x ﹣6交于点A ,已知点A 的横坐标为−185,直线l 1与x 轴交于点B ,与y 轴交于点C ,直线l 2与x 轴交于点F ,与y 轴交于点D .(1)求直线l 1的解析式;(2)将直线l 2向上平移92个单位得到直线l 3,直线l 3与y 轴交于点E .过点E 作y 轴的垂线l 4,若点M 为垂线l 4上的一个动点,点N 为l 2上的一个动点,求DM +MN 的最小值;(3)已知点P 、Q 分别是直线l 1,l 2上的两个动点,连接EP 、EQ 、PQ ,是否存在点P 、Q ,使得△EPQ 是以点Q 为直角顶点的等腰直角三角形,若存在,求点Q 的坐标;若不存在,说明理由.【例题4】(2022秋•蚌山区月考)如图,直线l1:y=ax+b(常数a<0,b>0)与x轴、y轴分别交于A,B两点,直线l2:y=cx+d(常数c>0,d>0)与x轴、y轴分别交于C,D两点,直线l1与直线l2交于点E,且△AOB≌△COD.(1)求证:AB⊥CD;(2)若a=﹣2,b=4,求△ADE的面积.【变式4-1】如图,平面直角坐标系xOy中,l1:y1=﹣2x+4交x轴于A,交y轴于B.另一直线l2:y2=kx+b交x轴于C,交y轴于D,交l1于E.已知△COD≌△BOA.(1)求l2解析式.(2)P,Q分别在线段AB和CD上运动,若P从B开始运动,速度是1单位长度每秒,Q从C开始运动,速度等于P的运动速度,设运动时间为t,则t为多少时,PQ∥x轴?【变式4-2】如图,直线y=−12x+2与x轴、y轴分别交于A,B两点,在y轴上有一点C(0,4),动点M从A点以每秒1个单位的速度沿x轴向左移动,设动点M的移动时间为t秒.(1)求A,B两点的坐标;(2)求当t为何值时△COM≌△AOB,并求此时M点的坐标.【变式4-3】如图,直线:y=−12x+b与x轴分别交于A(4,0)、B两点,在y轴上有一点N(0,4),动点M从点A以每秒1个单位的速度匀速沿x轴向左移动.(1)点B的坐标为;(2)求△MNO的面积S与移动时间t之间的函数关系式;(3)当t=时,△NOM≌△AOB;(4)若M在x轴正半轴上,且△NOM≌△AOB,G是线段ON上一点,连接MG,将△MGN沿MG折叠,点N恰好落在x轴上的H处,求G点的坐标.【变式4-4】如图①,在平面直角坐标系中,直线y=−43x+4交x轴、y轴分别于点A、点B,直线CD 交x轴、y轴分别于点D、点C,交直线AB于点E(点E不与点B重合),且△AOB≌△COD.(1)求直线CD的函数表达式;(2)如图②,连接OE,过点O作OF⊥OE交直线CD于点F,①求证:OE=OF;②直接写出点F的坐标.(3)若点P是直线CD上一点,点Q是x轴上一点(点Q不与点O重合),当△DPQ和△COD全等时,直接写出点P的坐标.【变式4-5】如图①,平面直角坐标系中,直线y=kx+b与x轴交于点A(﹣10,0),与y轴交于点B,与直线y=−73x交于点C(a,7).(1)求点C的坐标及直线AB的表达式;(2)如图②,在(1)的条件下,过点E作直线l⊥x轴,交直线y=−73x于点F,交直线y=kx+b于点G,若点E的坐标是(﹣15,0).①求△CGF的面积;②点M为y轴上OB的中点,直线l上是否存在点P,使PM﹣PC的值最大?若存在,直接写出这个最大值;若不存在,说明理由;(3)若(2)中的点E 是x 轴上的一个动点,点E 的横坐标为m (m <0),点E 在x 轴上运动,当m 取何值时,直线l 上存在点Q ,使得以A ,C ,Q 为顶点的三角形与△AOC 全等?请直接写出相应的m 的值.【例题5】(2022•铜仁市三模)(1)探索发现:如图1,已知Rt △ABC 中,∠ACB =90°,AC =BC ,直线l 过点C ,过点A 作AD ⊥l ,过点B 作BE ⊥l ,垂足分别为D 、E .求证:CD =BE .(2)迁移应用:如图2,将一块等腰直角的三角板MON 放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O 重合,另两个顶点均落在第一象限内,已知点N 的坐标为(4,2),求点M 的坐标. (3)拓展应用:如图3,在平面直角坐标系内,已知直线y =﹣4x +4与y 轴交于点P ,与x 轴交于点Q ,将直线PQ 绕P 点沿逆时针方向旋转45°后,所得的直线交x 轴于点R .求点R 的坐标.【变式5-1】(2022秋•邗江区校级期末)如图1,在平面直角坐标系中,点A 的坐标为(3,0),点B的坐标为(0,4),点C在y轴上,作直线AC.点B关于直线AC的对称点B′刚好在x轴上,连接CB′.(1)写出点B′的坐标,并求出直线AC对应的函数表达式;(2)点D在线段AC上,连接DB、DB′、BB′,当△DBB′是等腰直角三角形时,求点D坐标;(3)如图2,在(2)的条件下,点P从点B出发以每秒1个单位长度的速度向原点O运动,到达点O时停止运动,连接PD,过D作DP的垂线,交x轴于点Q,问点P运动几秒时△ADQ是等腰三角形.【变式5-2】(2021春•闵行区期中)一次函数y=kx+√3(k≠0)的图象与x轴、y轴分别交于A(1,0)、B(0,m)两点.(1)求一次函数解析式和m的值;(2)将线段AB绕着点A旋转,点B落在x轴负半轴上的点C处.点P在直线AB上,直线CP把△ABC 分成面积之比为2:1的两部分.求直线CP的解析式;(3)在第二象限是否存在点D,使△BCD是以BC为腰的等腰直角三角形?若存在,请直接写出点D 的坐标;若不存在,请说明理由.【变式5-3】如图1所示,腰长为3的等腰Rt△AOB的腰与坐标轴重合,直线y=−23x与AB交于点C.(1)求点C的坐标;(2)如图2,将直线OC沿y轴正方向平移4个单位长度得到直线DE(其中D、E分别为新直线与y轴、x轴的交点),连接DC、CE,求△CDE的面积;(3)如图3,在第(2)问的条件下,将△AOB沿x轴平移得到△NKM,连接DN、DM,当△DMN为等腰三角形时,直接写出M的坐标.【变式5-4】(2021春•梁平区期末)如图1,在矩形OACB中,点A,B分别在x轴、y轴正半轴上,点C 在第一象限,OA=8,OB=6.(1)请直接写出点C的坐标;(2)如图2,AF平分∠BAC交BC于点F,求△ACF的面积;(3)如图3,动点P(x,y)在第一象限,且点P在直线y=2x﹣4上,点D在线段AC上,是否存在直角顶点为P的等腰直角三角形BDP,若存在,请求出直线PD的解析式;若不存在,请说明理由.【变式5-5】(2021春•九龙坡区期中)如图1,矩形OABC摆放在平面直角坐标系中,点A在y轴上,点C在x轴上,OA=6,AB=4,点D在BC上,BD=2,过点A的直线交x轴于点E,连接DE,且DE ⊥AD.(1)△ADE是三角形,直线AE的解析式为;(2)如图2,点F是DE的中点,请在直线AE上找一点G,使得△DFG的周长最小,并求出此时点G 的坐标和△DFG周长的最小值;(3)如图3,将直线AE进行平移,记平移后的直线为l,直线l与直线DE相交于点M,与x轴相交于点N,是否存在这样的点M、N,使得△DMN是等腰直角三角形.若存在,请直接写出点M的坐标,若不存在,请说明理由.。
备战2019年中考二轮讲练测(精选重点典型题)专题05 一次函数的图象和性质一、期考典测——他山之石1.若b >0,则一次函数y =﹣x +b 的图象大致是( )A .B .C .D .2. 如图,在平面直角坐标系中,点A 1,A 2,A 3…都在x 轴上,点B 1,B 2,B 3…都在直线y x =上,△OA 1B 1,△B 1A 1A 2,△B 2B 1A 2,△B 2A 2A 3,△B 3B 2A 3…都是等腰直角三角形,且OA 1=1,则点B 2015的坐标是( )A .(20142,20142) B .(20152,20152) C .(20142,20152) D .(20152,20142)3. 如图,在一次函数6y x =-+的图象上取一点P ,作P A ⊥x 轴于点A ,PB ⊥y 轴于点B ,且矩形PBOA 的面积为5,则在x 轴的上方满足上述条件的点P 的个数共有( )A .1个B .2个C .3个D .4个 4. 如图,已知点A (﹣8,0),B (2,0),点C 在直线344y x =-+上,则使△ABC 是直角三角形的点C 的个数为( )A .1B .2C .3D .45.如图,在平面直角坐标系中,点(1)A m -,在直线23y x =+上.连结OA ,将线段OA 绕点O 顺时针旋转90︒,点A 的对应点B 恰好落在直线y x b =-+上,则b 的值为( )(A )2-(B )1(C )32(D )2xy ABO6. 已知直线l 1:y=(k ﹣1)x+k+1和直线l 2:y=kx+k+2,其中k 为不小于2的自然数. (1)当k=2时,直线l 1、l 2与x 轴围成的三角形的面积S 2=______;(2)当k=2、3、4,……,2018时,设直线l 1、l 2与x 轴围成的三角形的面积分别为S 2,S 3,S 4,……,S 2018,则S 2+S 3+S 4+……+S 2018=______.7.如图,在坐标轴上取点A 1(2,0),作x 轴的垂线与直线y =2x 交于点B 1,作等腰直角三角形A 1B 1A 2;又过点A 2作x 轴的垂线交直线y =2x 交于点B 2,作等腰直角三角形A 2B 2A 3;…,如此反复作等腰直角三角形,当作到A n (n 为正整数)点时,则A n 的坐标是 .8. 如图,直线112y x =+与x 轴交于点A ,与y 轴交于点B ,△BOC 与△B ′O ′C ′是以点A 为位似中心的位似图形,且相似比为1:3,则点B的对应点B′的坐标为.9. 已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为_____.10.如图,在平面直角坐标系中,将△ABO绕点B顺时针旋转到△A1BO1的位置,使点A的对应点A1落在直线33y x=上,再将△A1BO1绕点A1顺时针旋转到△A1B1O2的位置,使点O1的对应点O2落在直线33y x=上,依次进行下去…,若点A的坐标是(0,1),点B的坐标是(3,1),则点A8的横坐标是.11. 如图,在平面直角坐标系中,四边形ABCD的边AD在x轴上,点C在y轴的负半轴上,直线BC∥AD,且BC=3,OD=2,将经过A、B两点的直线l:y=﹣2x﹣10向右平移,平移后的直线与x轴交于点E,与直线BC交于点F,设AE的长为t(t≥0).(1)四边形ABCD的面积为;(2)设四边形ABCD被直线l扫过的面积(阴影部分)为S,请直接写出S关于t的函数解析式;(3)当t=2时,直线EF上有一动点,作PM⊥直线BC于点M,交x轴于点N,将△PMF沿直线EF折叠得到△PTF,探究:是否存在点P,使点T恰好落在坐标轴上?若存在,请求出点P的坐标;若不存在,请说明理由.12. 如图,在平面直角坐标系xOy中,直线y=﹣x+3与x轴交于点C,与直线AD交于点A(43,53),点D的坐标为(0,1)(1)求直线AD的解析式;(2)直线AD与x轴交于点B,若点E是直线AD上一动点(不与点B重合),当△BOD与△BCE相似时,求点E的坐标.二、模考典测——拾级而上11.若一次函数的函数值随的增大而增大,则()A.B.C.D.2. 小明参加100m短跑训练,2018年1~4月的训练成绩如下表所示:月份 1 2 3 4成绩(s)15.6 15.4 15.2 15体育老师夸奖小明是“田径天才”,请你预测小明5年(60个月)后100m短跑的成绩为()(温馨提示;目前100m短跑世界记录为9秒58)A.14.8s B.3.8s C.3s D.预测结果不可靠3. 定义:点A(x,y)为平面直角坐标系内的点,若满足x=y,则把点A叫做“平衡点”.例如:M(1,1),N(﹣2,﹣2)都是“平衡点”.当﹣1≤x≤3时,直线y=2x+m上有“平衡点”,则m的取值范围是()A.0≤m≤1B.﹣3≤m≤1C.﹣3≤m≤3D.﹣1≤m≤04. 已知直线33y x =-+与坐标轴分别交于点A ,B ,点P 在抛物线21(3)43y x =--+上,能使△ABP 为等腰三角形的点P 的个数有( )A .3个B .4个C .5个D .6个5. 已知点P (m ,n )是一次函数y =x ﹣1的图象位于第一象限部分上的点,其中实数m 、n 满足2(2)4(2)8m m n n m +-++=,则点P 的坐标为( )6. 将函数y =2x +b (b 为常数)的图象位于x 轴下方的部分沿x 轴翻折至其上方后,所得的折线是函数y =|2x +b |(b 为常数)的图象.若该图象在直线y =2下方的点的横坐标x 满足0<x <3,则b 的取值范围为 .7.如图,直线y=43x+4与x 轴、y 轴分别交于A 、B 两点,点C 在OB 上,若将△ABC 沿AC 折叠,使点B 恰好落在x 轴上的点D 处,则点C 的坐标是 .8.如图,已知一次函数(0)y ax b a =+≠和(0)y kx k =≠的图象交于点P ,则二元一次方程组y ax by kx -=⎧⎨-=⎩的解是 .9.如图,直线l 为y=x ,过点A 1(1,0)作A 1B 1⊥x 轴,与直线l 交于点B 1,以原点O 为圆心,OB 1长为半径画圆弧交x 轴于点A 2;再作A 2B 2⊥x 轴,交直线l 于点B 2,以原点O 为圆心,OB 2长为半径画圆弧交x 轴于点A 3;……,按此作法进行下去,则点A n 的坐标为(_______).10. 在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形A n B n C n C n﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点B n的坐标是.11. 如图,在平面直角坐标系xOy中,一次函数313y x=-+的图象与x轴、y轴分别交于点A、B,把Rt△AOB绕点A顺时针旋转角α(30°<α<180°),得到△AO′B′.(1)当α=60°时,判断点B是否在直线O′B′上,并说明理由;(2)连接OO′,设OO′与AB交于点D,当α为何值时,四边形ADO′B′是平行四边形?请说明理由.三、中考典测——实战演练1.如图,已知直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(﹣2,0),则k的取值范围是()A.﹣2<k<2B.﹣2<k<0C.0<k<4D.0<k<22.一次函数y=﹣x+1(0≤x≤10)与反比例函数1yx(﹣10≤x<0)在同一平面直角坐标系中的图象如图所示,点(x1,y1),(x2,y2)是图象上两个不同的点,若y1=y2,则x1+x2的取值范围是()A.﹣8910≤x≤1B.﹣8910≤x≤899C.﹣899≤x≤8910D.1≤x≤89103. 若以二元一次方程x+2y﹣b=0的解为坐标的点(x,y)都在直线y=﹣x+b﹣l上,则常数b=()A.B.2 C.﹣1 D.14.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2 C.D.25.在平面直角坐标系xOy中,点A、B的坐标分别为(3,m)、(3,m+2),直线y=2x+b与线段AB有公共点,则b的取值范围为(用含m的代数式表示).6.如图,点A1(1,1)在直线y=x上,过点A1分别作y轴、x轴的平行线交直线32y x=于点B1,B2,过点B2作y轴的平行线交直线y=x于点A2,过点A2作x轴的平行线交直线32y x=于点B3,…,按照此规律进行下去,则点A n的横坐标为.7.某年5月,我国南方某省A、B两市遭受严重洪涝灾害,1.5万人被迫转移,邻近县市C、D获知A、B 两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾区.已知C市有救灾物资240吨,D 市有救灾物资260吨,现将这些救灾物资全部调往A、B两市.已知从C市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.(1)请填写下表A(吨)B(吨)合计(吨)C 240D x 260总计(吨)200 300 500(2)设C、D两市的总运费为w元,求w与x之间的函数关系式,并写出自变量x的取值范围;(3)经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少m元(m>0),其余路线运费不变.若C、D两市的总运费的最小值不小于10320元,求m的取值范围.8. 学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示.(1)根据图象信息,当t=________分钟时甲乙两人相遇,甲的速度为________米/分钟;(2)求出线段AB所表示的函数表达式.9. 如图,平面直角坐标系中,已知点B的坐标为(6,4).(1)请用直尺(不带刻度)和圆规作一条直线AC,它与x轴和y轴的正半轴分别交于点A和点C,且使∠ABC=90°,△ABC与△AOC的面积相等.(作图不必写作法,但要保留作图痕迹.)(2)问:(1)中这样的直线AC是否唯一?若唯一,请说明理由;若不唯一,请在图中画出所有这样的直线AC,并写出与之对应的函数表达式.。
三年(2021-2023)中考数学真题分项汇编(全国通用)等腰三角形与等边三角形(优选真题60道)一.选择题(共30小题)1.(2023•贵州)5月26日,“2023中国国际大数据产业博览会”在贵阳开幕,在“自动化立体库”中有许多几何元素,其中有一个等腰三角形模型(示意图如图所示),它的顶角为120°,腰长为12m,则底边上的高是()A.4m B.6m C.10m D.12m2.(2023•内蒙古)如图,直线a∥b,直线l与直线a,b分别相交于点A,B,点C在直线b上,且CA=CB.若∠1=32°,则∠2的度数为()A.32°B.58°C.74°D.75°3.(2023•菏泽)△ABC的三边长a,b,c满足(a﹣b)2+√2a−b−3+|c﹣3√2|=0,则△ABC是()A.等腰三角形B.直角三角形C.锐角三角形D.等腰直角三角形4.(2023•河北)在△ABC和△A'B'C′中,∠B=∠B'=30°,AB=A'B'=6,AC=A'C′=4,已知∠C=n°,则∠C′=()A.30°B.n°C.n°或180°﹣n°D.30°或150°5.(2023•滨州)已知点P是等边△ABC的边BC上的一点,若∠APC=104°,则在以线段AP,BP,CP 为边的三角形中,最小内角的大小为()A.14°B.16°C.24°D.26°6.(2023•河北)四边形ABCD的边长如图所示,对角线AC的长度随四边形形状的改变而变化.当△ABC 为等腰三角形时,对角线AC的长为()A.2B.3C.4D.57.(2023•金昌)如图,BD是等边△ABC的边AC上的高,以点D为圆心,DB长为半径作弧交BC的延长线于点E,则∠DEC=()A.20°B.25°C.30°D.35°8.(2023•眉山)如图,△ABC中,AB=AC,∠A=40°,则∠ACD的度数为()A.70°B.100°C.110°D.140°9.(2022•泰安)如图,l1∥l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=25°,∠1=60°.则∠2的度数是()A.70°B.65°C.60°D.55°10.(2022•淄博)某城市几条道路的位置关系如图所示,道路AB∥CD,道路AB与AE的夹角∠BAE=50°.城市规划部门想新修一条道路CE,要求CF=EF,则∠E的度数为()A.23°B.25°C.27°D.30°11.(2022•台湾)如图,△ABC中,D点在AB上,E点在BC上,DE为AB的中垂线.若∠B=∠C,且∠EAC>90°,则根据图中标示的角,判断下列叙述何者正确?()A.∠1=∠2,∠1<∠3B.∠1=∠2,∠1>∠3C.∠1≠∠2,∠1<∠3D.∠1≠∠2,∠1>∠312.(2022•荆州)如图,直线l1∥l2,AB=AC,∠BAC=40°,则∠1+∠2的度数是()A.60°B.70°C.80°D.90°13.(2022•宿迁)若等腰三角形的两边长分别是3cm和5cm,则这个等腰三角形的周长是()A.8cm B.13cm C.8cm或13cm D.11cm或13cm 14.(2022•天津)如图,△OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且AB⊥x轴,若AB =6,OA=OB=5,则点A的坐标是()A.(5,4)B.(3,4)C.(5,3)D.(4,3)15.(2022•海南)如图,直线m∥n,△ABC是等边三角形,顶点B在直线n上,直线m交AB于点E,交AC于点F,若∠1=140°,则∠2的度数是()A.80°B.100°C.120°D.140°16.(2022•鞍山)如图,在△ABC中,AB=AC,∠BAC=24°,延长BC到点D,使CD=AC,连接AD,则∠D的度数为()A.39°B.40°C.49°D.51°17.(2022•自贡)等腰三角形顶角度数比一个底角度数的2倍多20°,则这个底角的度数是()A.30°B.40°C.50°D.60°18.(2021•青海)已知a,b是等腰三角形的两边长,且a,b满足√2a−3b+5+(2a+3b﹣13)2=0,则此等腰三角形的周长为(A.8B.6或8C.7D.7或819.(2021•赤峰)如图,AB∥CD,点E在线段BC上,CD=CE.若∠ABC=30°,则∠D的度数为()A.85°B.75°C.65°D.30°20.(2021•广西)如图,⊙O的半径OB为4,OC⊥AB于点D,∠BAC=30°,则OD的长是()A.√2B.√3C.2D.321.(2021•辽宁)如图,在△ABC中,AB=BC,由图中的尺规作图痕迹得到的射线BD与AC交于点E,点F为BC的中点,连接EF,若BE=AC=2,则△CEF的周长为()A.√3+1B.√5+3C.√5+1D.422.(2021•益阳)如图,AB∥CD,△ACE为等边三角形,∠DCE=40°,则∠EAB等于()A.40°B.30°C.20°D.15°23.(2022•鞍山)如图,直线a∥b,等边三角形ABC的顶点C在直线b上,∠2=40°,则∠1的度数为()A.80°B.70°C.60°D.50°24.(2022•绵阳)下列关于等边三角形的描述不正确的是()A.是轴对称图形B.对称轴的交点是其重心C.是中心对称图形D.绕重心顺时针旋转120°能与自身重合25.(2023•台湾)如图,△ABC中,D点在BC上,且BD的中垂线与AB相交于E点,CD的中垂线与AC 相交于F点,已知△ABC的三个内角皆不相等,根据图中标示的角,判断下列叙述何者正确()A .∠1=∠3,∠2=∠4B .∠1=∠3,∠2≠∠4C .∠1≠∠3,∠2=∠4D .∠1≠∠3,∠2≠∠426.(2022•宜昌)如图,在△ABC 中,分别以点B 和点C 为圆心,大于12BC 长为半径画弧,两弧相交于点M ,N .作直线MN ,交AC 于点D ,交BC 于点E ,连接BD .若AB =7,AC =12,BC =6,则△ABD 的周长为( )A .25B .22C .19D .1827.(2022•湖北)如图,在矩形ABCD 中,AB <BC ,连接AC ,分别以点A ,C 为圆心,大于12AC 的长为半径画弧,两弧交于点M ,N MN 分别交AD ,BC 于点E ,F .下列结论:①四边形AECF 是菱形;②∠AFB =2∠ACB ;③AC •EF =CF •CD ;④若AF 平分∠BAC ,则CF =2BF .其中正确结论的个数是( )A .4B .3C .2D .128.(2021•梧州)如图,DE 是△ABC 的边BC 的垂直平分线,分别交边AB ,BC 于点D ,E ,且AB =9,AC =6,则△ACD 的周长是( )A .10.5B .12C .15D .1829.(2021•河北)如图,直线l ,m 相交于点O .P 为这两直线外一点,且OP =2.8.若点P 关于直线l ,m 的对称点分别是点P 1,P 2,则P 1,P 2之间的距离可能是( )A .0B .5C .6D .730.(2021•淮安)如图,在△ABC 中,AB 的垂直平分线分别交AB 、BC 于点D 、E ,连接AE ,若AE =4,EC =2,则BC 的长是( )A .2B .4C .6D .8二.填空题(共23小题)31.(2023•吉林)如图,在△ABC 中,AB =AC .分别以点B 和点C 为圆心,大于12BC 的长为半径作弧,两弧交于点D ,作直线AD 交BC 于点E .若∠BAC =110°,则∠BAE 的大小为 度.32.(2023•江西)将含30°角的直角三角板和直尺按如图所示的方式放置,已知∠α=60°,点B,C表示的刻度分别为1cm,3cm,则线段AB的长为cm.33.(2023•新疆)如图,在△ABC中,若AB=AC,AD=BD,∠CAD=24°,则∠C=°.34.(2023•重庆)如图,在△ABC中,AB=AC,AD是BC边的中线,若AB=5,BC=6,则AD的长度为.35.(2023•凉山州)如图,边长为2的等边△ABC的两个顶点A、B分别在两条射线OM、ON上滑动,若OM⊥ON,则OC的最大值是.36.(2023•沙依巴克区模拟)已知:一等腰三角形的两边长x、y满足方程组{2x−y=33x+2y=8,则此等腰三角形的周长为.37.(2022•云南)已知△ABC是等腰三角形.若∠A=40°,则△ABC的顶角度数是.38.(2022•广安)若(a﹣3)2+√b−5=0,则以a、b为边长的等腰三角形的周长为.39.(2022•苏州)定义:一个三角形的一边长是另一边长的2倍,这样的三角形叫做“倍长三角形”.若等腰△ABC是“倍长三角形”,底边BC的长为3,则腰AB的长为.40.(2022•滨州)如图,屋顶钢架外框是等腰三角形,其中AB=AC,立柱AD⊥BC,且顶角∠BAC=120°,则∠C的大小为.41.(2022•鄂州)如图,在边长为6的等边△ABC中,D、E分别为边BC、AC上的点,AD与BE相交于点P,若BD=CE=2,则△ABP的周长为.42.(2021•苏州)如图,在Rt△ABC中,∠C=90°,AF=EF.若∠CFE=72°,则∠B=°.43.(2021•绍兴)如图,在△ABC中,AB=AC,∠B=70°,以点C为圆心,CA长为半径作弧,交直线BC于点P,连结AP,则∠BAP的度数是.44.(2021•朝阳)如图,在平面直角坐标系中,点A的坐标为(5,0),点M的坐标为(0,4),过点M作MN∥x轴,点P在射线MN上,若△MAP为等腰三角形,则点P的坐标为.45.(2021•陕西)如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8.若E、F是BC边上的两个动点,以EF为边的等边△EFP的顶点P在△ABC内部或边上,则等边△EFP的周长的最大值为.46.(2021•牡丹江)过等腰三角形顶角顶点的一条直线,将该等腰三角形分成的两个三角形均为等腰三角形,则原等腰三角形的底角度数为.47.(2023•武汉)如图,DE平分等边△ABC的面积,折叠△BDE得到△FDE,AC分别与DF,EF相交于G,H两点.若DG=m,EH=n,用含m,n的式子表示GH的长是.48.(2023•丽水)如图,在△ABC中,AC的垂直平分线交BC于点D,交AC于点E,∠B=∠ADB.若AB=4,则DC的长是.49.(2022•鄂尔多斯)如图,在△ABC中,边BC的垂直平分线DE交AB于点D,连接DC,若AB=3.7,AC=2.3,则△ADC的周长是.50.(2022•青海)如图,在Rt△ABC中,∠ABC=90°,ED是AC的垂直平分线,交AC于点D,交BC 于点E,∠BAE=10°,则∠C的度数是.51.(2021•锦州)如图,在△ABC中,AC=4,∠A=60°,∠B=45°,BC边的垂直平分线DE交AB于点D,连接CD,则AB的长为.52.(2021•娄底)如图,△ABC中,AB=AC=2,P是BC上任意一点,PE⊥AB于点E,PF⊥AC于点F,若S△ABC=1,则PE+PF=.53.(2021•南京)如图,在四边形ABCD中,AB=BC=BD.设∠ABC=α,则∠ADC=(用含α的代数式表示).三.解答题(共7小题)54.(2023•荆州)如图,BD是等边△ABC的中线,以D为圆心,DB的长为半径画弧,交BC的延长线于E,连接DE.求证:CD=CE.55.如图,点C为线段AB上一点,分别以AC,BC为等腰三角形的底边,在AB的同侧作等腰△ACD和等腰△BCE,且∠A=∠CBE.在线段EC上取一点F,使EF=AD,连接BF,DE.(1)如图1,求证:DE=BF;(2)如图2,若AD=2,BF的延长线恰好经过DE的中点G,求BE的长.56.(2022•温州)如图,BD是△ABC的角平分线,DE∥BC,交AB于点E.(1)求证:∠EBD=∠EDB.(2)当AB=AC时,请判断CD与ED的大小关系,并说明理由.57.(2021•淄博)如图,在△ABC中,∠ABC的平分线交AC于点D,过点D作DE∥BC交AB于点E.(1)求证:BE=DE;(2)若∠A=80°,∠C=40°,求∠BDE的度数.58.(2021•温州)如图,BE是△ABC的角平分线,在AB上取点D,使DB=DE.(1)求证:DE∥BC;(2)若∠A=65°,∠AED=45°,求∠EBC的度数.59.(2021•绍兴)如图,在△ABC中,∠A=40°,点D,E分别在边AB,AC上,BD=BC=CE,连结CD,BE.(1)若∠ABC=80°,求∠BDC,∠ABE的度数;(2)写出∠BEC与∠BDC60.(2021•长沙)如图,在△ABC中,AD⊥BC,垂足为D,BD=CD,延长BC至E,使得CE=CA,连接AE.(1)求证:∠B=∠ACB;(2)若AB=5,AD=4,求△ABE的周长和面积.。
专题55 一次函数中的构造等腰直角三角形1、如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证:△BEC≌△CDA;解:(1)由题意可知:△BEO≌△AOD(K型全等),∴OE=AD,∵k=﹣1,∴y=﹣x+4,∴B(0,4),∴OB=4,∵BE=3,∴OE=,∴AD=;(2)k=﹣时,y=﹣x+4,∴A(3,0),①当BM⊥AB,且BM=AB时,过点M作MN⊥y轴,∴△BMN≌△ABO(AAS),∴MN=OB,BN=OA,∴MN=4,BN=3,∴M(4,7);②当AB⊥AM,且AM=AB时,过点M作x轴垂线MK,∴△ABO≌△AMK(AAS),∴OB=AK,OA=MK,∴AK=4,MK=3,∴M(7,3);③当AM⊥BM,且AM=BM时,过点M作MH⊥x轴,MG⊥y轴,∴△BMG≌△AHM(AAS),∴BG=AH,GM=MH,∴GM=MH,∴4﹣MH=MH﹣3,∴MH=,∴M(,);综上所述:M(7,3)或M(4,7)或M(,);(3)当k>0时,AO=,过点Q作QS⊥y轴,∴△ABO≌△BQS(AAS),∴BS=OA,SQ=OB,∴Q(4,4﹣),∴OQ=,∴当k=1时,QO最小值为4;当k<0时,Q(4,4﹣),∴OQ=,∴当k=1时,QO最小值为4,与k<0矛盾,∴OQ的最小值为4.2、已如,在平面直角坐标系中,点A的坐标为(6,0)、点B的坐标为(0,8),点C在y轴上,作直线AC.点B关于直线AC的对称点B′刚好在x轴上,连接CB′.(1)写出点B′的坐标,并求出直线AC对应的函数表达式;(2)点D在线段AC上,连接DB、DB′、BB′,当△DBB′是等腰直角三角形时,求点D坐标;(3)如图2,在(2)的条件下,点P从点B出发以每秒2个单位长度的速度向原点O运动,到达点O 时停止运动,连接PD,过D作DP的垂线,交x轴于点Q,问点P运动几秒时△ADQ是等腰三角形.解:(1)∵A的坐标为(6,0)、点B的坐标为(0,8),∴OA=6,OB=8,∵∠AOB=90°,∴AB=10,∵B与B'关于直线AC对称,∴AC垂直平分BB',∴BC=CB',AB'=AB=10,∴B'(﹣4,0),设点C(0,m),∴OC=m,∴CB'=CB=8﹣m,∵在Rt△COB'中,∠COB'=90°,∴m2+16=(8﹣m)2,∴m=3,∴C(0,3),设直线AC的解析式为y=kx+b(k≠0),把A(6,0),C(0,3)代入可得k=﹣,b=3,∴y=﹣x+3;(2)∵AC垂直平分BB',∴DB=DB',∵△BDB'是等腰直角三角形,∴∠BDB'=90°,过点D作DE⊥x轴,DF⊥y轴,∴∠DFO=∠DFB=∠DEB'=90°,∵∠EDF=360°﹣∠DFB﹣∠DEO﹣∠EOF,∠EOF=90°,∴∠EDF=90°,∴∠EDF=∠BDB',∴∠BDF=∠EDB',∴△FDB≌△EDB'(AAS),∴DF=DE,设点D(a,a)代入y=﹣x+3中,∴a=2,∴D(2,2);(3)同(2)可得∠PDF=∠QDE,∵DF=DE=2,∠PDF=∠QDE,∴△PDF≌△QDE(AAS),∴PF=QE,①当DQ=DA时,∵DE⊥x轴,∴QE=AE=4,∴PF=QE=4,∴BP=BF﹣PF=2,∴点P运动时间为1秒;②当AQ=AD时,∵A(6,0)、D(2,2),∴AD=2,∴AQ=2,∴PF=QE=2﹣4,∴BP=BF﹣PF=10﹣2,∴点P的运动时间为5﹣秒;③当QD=QA时,设QE=n,则QD=QA=4﹣n,在Rt△DEQ中,∠DEQ=90°,∴4+n2=(4﹣n)2,∴n=1.5,∴PF=QE=1.5,∴BP=BF+PF=7.5,∴点P的运动时间为3.75秒,∵0≤t≤4,∴t=3.75,综上所述:点P的运动时间为1秒或5﹣秒或3.75秒.3、定义:在平面直角坐标系中,对于任意P(x1,y1),Q(x2,y2),若点M(x,y)满足x=3(x1+x2),y=3(y1+y2),则称点M是点P,Q的“美妙点”.例如:点P(1,2),Q(﹣2,1),当点M(x,y)满足x=3×(1﹣2)=﹣3,y=3×(2+1)=9时,则点M(﹣3,9)是点P,Q的“美妙点”.(1)已知点A(﹣1,3),B(3,3),C(2,﹣2),请说明其中一点是另外两点的“美妙点”;(2)如图,已知点D是直线y=+2上的一点.点E(3,0),点M(x,y)是点D、E的“美妙点”.①求y与x的函数关系式;①若直线DM与x轴相交于点F,当①MEF为直角三角形时,求点D的坐标.解:(1)①3×(﹣1+2)=3,3×(3﹣2)=3,①点B是A、C的“美妙点”;(2)设点D(m,m+2),①①M是点D、E的“美妙点”.①x=3(3+m)=9+3m,y=3(0+m+2)=m+6,故m=x﹣3,①y=(x﹣3)+6=x+3;①由①得,点M(9+3m,m+6),如图1,当①MEF为直角时,则点M(3,4),①9+3m=3,解得:m=﹣2;①点D(﹣2,);当①MFE是直角时,如图2,则9+3m=m,解得:m=﹣,①点D(﹣,);当①EMF是直角时,不存在,综上,点D(﹣2,)或(﹣,).4、如图,过点A(1,3)的一次函数y=kx+6(k≠0)的图象分别与x轴,y轴相交于B,C两点.(1)求k的值;(2)直线l与y轴相交于点D(0,2),与线段BC相交于点E.(i)若直线l把①BOC分成面积比为1:2的两部分,求直线l的函数表达式;(①)连接AD,若①ADE是以AE为腰的等腰三角形,求满足条件的点E的坐标.解:(1)将点A的坐标代入一次函数y=kx+6并解得:k=﹣3;(2)一次函数y=﹣3x+6分别与x轴,y轴相交于B,C两点,则点B、C的坐标分别为:(2,0)、(0,6);(i)S①BCO=OB×CO=2×6=6,直线l把①BOC分成面积比为1:2的两部分,则S①CDE=2或4,而S①CDE=×CD×x E=4×x E=2或4,则x E=1或2,故点E(1,3)或(2,0),将点E的坐标代入直线l表达式并解得:直线l的表达式为:y=±x+2;(①)设点E(m,﹣3m+6),而点A、D的坐标分别为:(1,3)、(0,2),则AE2=(m﹣1)2+(3﹣3m)2,AD2=2,ED2=m2+(4﹣3m)2,当AE=AD时,(m﹣1)2+(3﹣3m)2=2,解得:m=或;当AE=ED时,同理可得:m=;综上,点E的坐标为:(,)或(,)或(,).5、建立模型:如图1,等腰Rt①ABC中,①ABC=90°,CB=BA,直线ED经过点B,过A作AD①ED于D,过C作CE①ED于E.则易证①ADB①①BEC.这个模型我们称之为“一线三垂直”.它可以把倾斜的线段AB和直角①ABC转化为横平竖直的线段和直角,所以在平面直角坐标系中被大量使用.模型应用:(1)如图2,点A(0,4),点B(3,0),①ABC是等腰直角三角形.①若①ABC=90°,且点C在第一象限,求点C的坐标;①若AB为直角边,求点C的坐标;(2)如图3,长方形MFNO,O为坐标原点,F的坐标为(8,6),M、N分别在坐标轴上,P是线段NF上动点,设PN=n,已知点G在第一象限,且是直线y=2x一6上的一点,若①MPG是以G为直角顶点的等腰直角三角形,请直接写出点G的坐标.解:(1)①过点C作CD①x轴于点D,①①BDC=90°=①AOB,①①BCD+①DCB=90°,①①ABC=90°,①①ABO+①DBC=90°,①①ABO=BCD,①AB=BC,①①AOB①①BDC(AAS),DC=OB=3,BD=OA=4,故点C(7,3);①若AB为直角边,则除了①的情况以外,另外一个点C(C′)与①中的C关于点B对称,故点C′(﹣1,﹣3);故点C的坐标为:(7,3)或(﹣1,﹣3);(2)如图2,当①MGP=90°时,MG=PG,过点P作PE①OM于E,过点G作GH①PE于H,①点E与点M重合,①GF=AB=4设G点坐标为(x,2x﹣6),6﹣(2x﹣6)=4,得x=4,易得G点坐标(4,2);如图3,当①MGP=90°时,MG=PG时,同理得G点坐标(,),综上可知,满足条件的点G的坐标分别为(4,2)或(,).6、如图1,直线l:y=x+2与x轴交于点A,与y轴交于点B.已知点C(﹣2,0).(1)求出点A,点B的坐标.(2)P是直线AB上一动点,且①BOP和①COP的面积相等,求点P坐标.(3)如图2,平移直线l,分别交x轴,y轴于交于点A1B1,过点C作平行于y轴的直线m,在直线m 上是否存在点Q,使得①A1B1Q是等腰直角三角形?若存在,请直接写出所有符合条件的点Q的坐标.解:(1)设y=0,则x+2=0,解得:x=﹣4,设x=0,则y=2,①点A的坐标为(﹣4,0),点B的坐标的坐标为(0,2);(2)①点C(﹣2,0),点B(0,2),①OC=2,OB=2,①P是直线AB上一动点,①设P(m,m+2),①①BOP和①COP的面积相等,①×2|m|=2×(|m|+2),解得:m=±4,当m=﹣4时,点P与点A重合,①点P坐标为(4,4);(3)存在;理由:如图1,①当点B1是直角顶点时,①B1Q=B1A1,①①A1B1O+①QB1H=90°,①A1B1O+①OA1B1=90°,①①OA1B1=①QB1H,在①A1OB1和①B1HQ中,,①①A1OB1①①B1HQ(AAS),①B1H=A1O,OB1=HQ=2,①B1(0,﹣2)或(0,2),当点B1(0,﹣2)时,Q(﹣2,2),当点B1(0,2)时,①B(0,2),①点B1(0,2)(不合题意舍去),①直线AB向下平移4个单位,①点Q也向上平移4个单位,①Q(﹣2,2),①当点A1是直角顶点时,A1B1=A1Q,①直线AB的解析式为y=x+2,由平移知,直线A1B1的解析式为y=x+b,①A1(﹣2b,0),B1(0,b),①A1B12=4b2+b2=5b2,①A1B1①A1Q,①直线A1Q的解析式为y=﹣2x﹣4b①Q(﹣2,4﹣4b),①A1Q2=(﹣2b+2)2+(4﹣4b)2=20b2+40b+20,①20b2﹣40b+20=5b2,①b=2或b=,①Q(﹣2,﹣4)或(﹣2,);①当Q是直角顶点时,过Q作QH①y轴于H,①A1Q=B1Q,①①QA1C1+①A1QC=90°,①A1QC+①CQB1=90°,①①QA1C=①CQB1,①m①y轴,①①CQB1=①QB1H,①①QA1C=①QB1H在①A1QC与①B1QH中,,①①A1QC①①B1QH(AAS),①CQ=QH=2,B1H=A1C,①Q(﹣2,2)或(﹣2,﹣2),即:满足条件的点Q为(﹣2,2)或(﹣2,﹣2)或(﹣2,12)或(﹣2,).7、如图1,等腰直角三角形ABC中,①ACB=90°,CB=CA,直线DE经过点C,过A作AD①DE于点D,过B作BE①DE于点E,则①BEC①①CDA,我们称这种全等模型为“K型全等”.(不需要证明)【模型应用】若一次函数y=kx+4(k≠0)的图象与x轴、y轴分别交于A、B两点.(1)如图2,当k=﹣1时,若点B到经过原点的直线l的距离BE的长为3,求点A到直线l的距离AD 的长;(2)如图3,当k=﹣时,点M在第一象限内,若①ABM是等腰直角三角形,求点M的坐标;(3)当k的取值变化时,点A随之在x轴上运动,将线段BA绕点B逆时针旋转90°得到BQ,连接OQ,求OQ长的最小值.解:(1)由题意可知:①BEO①①AOD(K型全等),①OE=AD,①k=﹣1,①y=﹣x+4,①B(0,4),①OB=4,①BE=3,①OE=,①AD=;(2)k=﹣时,y=﹣x+4,①A(3,0),①当BM①AB,且BM=AB时,过点M作MN①y轴,①①BMN①①ABO(AAS),①MN=OB,BN=OA,①MN=4,BN=3,①M(4,7);①当AB①AM,且AM=AB时,过点M作x轴垂线MK,①①ABO①①AMK(AAS),①OB=AK,OA=MK,①AK=4,MK=3,①M(7,3);①当AM①BM,且AM=BM时,过点M作MH①x轴,MG①y轴,①①BMG①①AHM(AAS),①BG=AH,GM=MH,①GM=MH,①4﹣MH=MH﹣3,①MH=,①M(,);综上所述:M(7,3)或M(4,7)或M(,);(3)当k>0时,AO=,过点Q作QS①y轴,①①ABO①①BQS(AAS),①BS=OA,SQ=OB,①Q(4,4﹣),①OQ=,①当k=1时,QO最小值为4;当k<0时,Q(4,4﹣),①OQ=,①当k=1时,QO最小值为4,与k<0矛盾,①OQ的最小值为4.8、【模型建立】(1)如图1,等腰直角三角形ABC中,∠ACB=90°,CA=CB,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证:△CDA≌△BEC.【模型运用】(2)如图2,直线l1:y=x+4与坐标轴交于点A、B,将直线l1绕点A逆时针旋转90°至直线l2,求直线l2的函数表达式.【模型迁移】如图3,直线l经过坐标原点O,且与x轴正半轴的夹角为30°,点A在直线l上,点P为x轴上一动点,连接AP,将线段AP绕点P顺时针旋转30°得到BP,过点B的直线BC交x轴于点C,∠OCB=30°,点B到x轴的距离为2,求点P的坐标.证明:【模型建立】(1)∵AD⊥DE,BE⊥DE,∴∠D=∠E=90°∵∠ACB=90°,∴∠ACD=90°﹣∠BCE=∠CBE,且CA=BC,∠D=∠E=90°∴△CDA≌△BEC(AAS)【模型运用】(2)如图2,在l2上取D点,使AD=AB,过D点作DE⊥OA,垂足为E∵直线y=x+4与坐标轴交于点A、B,∴A(﹣3,0),B(0,4),∴OA=3,OB=4,由(1)得△BOA≌△AED,∴DE=OA=3,AE=OB=4,∴OE=7,∴D(﹣7,3)设l2的解析式为y=kx+b,得解得∴直线l2的函数表达式为:【模型迁移】(3)若点P在x轴正半轴,如图3,过点B作BE⊥OC,∵BE=2,∠BCO=30°,BE⊥OC∴BC=4,∵将线段AP绕点P顺时针旋转30°得到BP,∴AP=BP,∠APB=30°,∵∠APC=∠AOC+∠OAP=∠APB+∠BPC,∴∠OAP=∠BPC,且∠OAC=∠PCB=30°,AP=BP,∴△OAP≌△CPB(AAS)∴OP=BC=4,∴点P(4,0)若点P在x轴负半轴,如图4,过点B作BE⊥OC,∵BE=2,∠BCO=30°,BE⊥OC∴BC=4,∵将线段AP绕点P顺时针旋转30°得到BP,∴AP=BP,∠APB=30°,∵∠APE+∠BPE=30°,∠BCE=30°=∠BPE+∠PBC,∴∠APE=∠PBC,∵∠AOE=∠BCO=30°,∴∠AOP=∠BCP=150°,且∠APE=∠PBC,PA=PB∴△OAP≌△CPB(AAS)∴OP=BC=4,∴点P(﹣4,0)综上所述:点P坐标为(4,0)或(﹣4,0)9、如图1,在平面直角坐标系中,直线y=﹣x+b与x轴、y轴相交于A、B两点,动点C(m,0)在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上,过点D作DE⊥x 轴于点E.(1)求m和b的数量关系;(2)当m=1时,如图2,将△BCD沿x轴正方向平移得△B′C′D′,当直线B′C′经过点D时,求点B′的坐标及△BCD平移的距离;(3)在(2)的条件下,直线AB上是否存在一点P,以P、C、D为顶点的三角形是等腰直角三角形?若存在,写出满足条件的P点坐标;若不存在,请说明理由.解:(1)直线y=﹣x+b与y轴相交于B点,∴B(0,b)∴OB=b,∵点C(m,0)∴OC=m∵∠BCO+∠ECD=90°,∠BCO+∠OBC=90°,∴∠OBC=∠ECD.在△OBC和△ECD中,∴△OBC≌△ECD(AAS)∴BO=CE=b,DE=OC=m,∴点D(b+m,m)∴m=﹣(b+m)+b∴b=3m(2)∵m=1,∴b=3,点C(1,0),点D(4,1)∴直线AB解析式为:y=﹣x+3设直线BC解析式为:y=ax+3,且过(1,0)∴0=a+3∴a=﹣3∴直线BC的解析式为y=﹣3x+3,设直线B′C′的解析式为y=﹣3x+c,把D(4,1)代入得到c=13,∴直线B′C′的解析式为y=﹣3x+13,当y=3时,x=当y=0时,x=∴B′(,3),C'(,0)∴CC′=,∴△BCD平移的距离是个单位.(3)当∠PCD=90°,PC=CD时,点P与点B重合,∴点P(0,3)如图,当∠CPD=90°,PC=PD时,∵BC=CD,∠BCD=90°,∠CPD=90°∴BP=PD∴点P是BD的中点,且点B(0,3),点D(4,1)∴点P(2,2)综上所述,点P为(0,3)或(2,2)时,以P、C、D为顶点的三角形是等腰直角三角形.10、如图,已知一次函数y=﹣x+7与正比例函数y=x的图象交于点A,且与x轴交于点B.(1)求△AOB的面积:(2)在y轴上找一点C,使AC+BC最小,求最小值及C点坐标.(3)点P从O出发向B点以1个单位每秒的速度运动,点Q从B点出发向A点以同样的速度运动,两个点同时停止,当△BPQ为等腰三角形时,求Q点坐标.解:(1)∵一次函数y=﹣x+7与正比例函数y=x的图象交于点A,且与x轴交于点B.∴点B(7,0),﹣x+7=x∴x=3,∴点A(3,4)∴S△AOB=×7×4=14;(2)如图1,作点B关于y轴的对称点H(﹣7,0),连接AH,交y轴于点C,∴此时AC+BC最小值为AH,∵点A(3,4),点H(﹣7,0),∴AH==2,∴AC+BC最小值为2,设直线AH解析式为:y=kx+b,且过点A(3,4),点H(﹣7,0),∴,解得:∴直线AH解析式为:y=x+;(3)如图2,过点Q作QE⊥OB,∵以同样的速度运动,∴BQ=OP,∵一次函数y=﹣x+7与y轴交于点D,∴点D(0,7),∴OD=OB=7,且∠DOB=90°,∴∠DBO=45°,且QE⊥OB,∴∠QBE=∠EQB=45°,∴QE=BE,∴QB=QE=EB,若PB=QB,且OP=BQ,∴OP=PB==BQ,∴BE=EQ=,∴OE=7﹣,∴点Q(7﹣,),若QP=QB,且QE⊥OB,∴PE=BE,∵OB=7=OP+PE+BE,∴7=BE+2BE,∴BE==QE,∴OE=∴点Q(,),如图3,若BP=PQ,过点P作PF⊥BQ,∴BF=FQ=BQ,∵∠ABO=45°,PF⊥AB,∴∠FPB=∠ABO=45°,∴PF=BF,∴PB=BF,∴7﹣BQ=∴BQ=,∴BE=QE=,∴点Q坐标为(7﹣,).11、一边长为4正方形OACB放在平面直角坐标系中,其中O为原点,点A、B分别在x轴、y轴上,D为射线OB上任意一点.(1)如图1,若点D坐标为(0,2),连接AD交OC于点E,则△AOE的面积为;(2)如图2,将△AOD沿AD翻折得△AED,若点E在直线y=x图象上,求出E点坐标;(3)如图3,将△AOD沿AD翻折得△AED,DE和射线BC交于点F,连接AF,若∠DAO=75°,平面内是否存在点Q,使得△AFQ是以AF为直角边的等腰直角三角形,若存在,请求出所有点Q坐标;若不存在,请说明理由.解:(1)∵边长为4正方形OACB放在平面直角坐标系中,∴点A坐标(4,0),点C(4,4),∴直线OC解析式为:y=x,∵点D坐标为(0,2),点A坐标(4,0),∴直线AD解析式为:y=﹣x+2,∴解得:∴点E坐标(,)∴△AOE的面积=×4×=,故答案为:;(2)如图2,过点E作EH⊥OA,∵将△AOD沿AD翻折得△AED,∴AO=AE=4,设点E(a,a),∴OH=a,EH=a,∴AH=4﹣a,∵AE2=EH2+AH2,∴16=a2+(4﹣a)2,∴a=0(舍去),a=,∴点E(,)(3)∵将△AOD沿AD翻折得△AED,∴∠DAO=∠DAE=75°,OA=AE,∠DOA=∠DEA=90°,∴∠OAE=150°,AE=AC,∠ACF=∠AED=90°,∴∠CAE=60°,∵AE=AC,AF=AF,∴Rt△AEF≌Rt△ACF(HL)∴∠CAF=∠EAF=30°,且AC=4,∴CF=,∵△AFQ是以AF为直角边的等腰直角三角形,∴若∠AFQ=90°,AF=FQ,如图3,过点Q作QN⊥BF,∴∠NQF+∠QFN=90°,且∠QFN+∠AFC=90°,∴∠NQF=∠AFC,且∠ACF=∠QNF=90°,QF=AF,∴△QNF≌△FCA(AAS)∴QN=CF=,AC=NF=4,∴点Q(,4+)同理可求:Q'(8+,4﹣),若∠FAQ=90°,AF=AQ时,同样方法可求,Q''(0,),Q'''(8,﹣)。
专题55 一次函数中的构造等腰直角三角形
1、如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于点
D,过B作BE⊥ED于点E.
求证:△BEC≌△CDA;
2、已如,在平面直角坐标系中,点A的坐标为(6,0)、点B的坐标为(0,8),点C在y轴上,作直线
AC.点B关于直线AC的对称点B′刚好在x轴上,连接CB′.
(1)写出点B′的坐标,并求出直线AC对应的函数表达式;
(2)点D在线段AC上,连接DB、DB′、BB′,当△DBB′是等腰直角三角形时,求点D坐标;
(3)如图2,在(2)的条件下,点P从点B出发以每秒2个单位长度的速度向原点O运动,到达点O
时停止运动,连接PD,过D作DP的垂线,交x轴于点Q,问点P运动几秒时△ADQ是等腰三角形.
3、定义:在平面直角坐标系中,对于任意P(x1,y1),Q(x2,y2),若点M(x,y)满足x=3(x1+x2),y
=3(y1+y2),则称点M是点P,Q的“美妙点”.例如:点P(1,2),Q(﹣2,1),当点M(x,y)满足x=3×(1﹣2)=﹣3,y=3×(2+1)=9时,则点M(﹣3,9)是点P,Q的“美妙点”.
(1)已知点A(﹣1,3),B(3,3),C(2,﹣2),请说明其中一点是另外两点的“美妙点”;
(2)如图,已知点D是直线y=+2上的一点.点E(3,0),点M(x,y)是点D、E的“美妙点”.
①求y与x的函数关系式;
①若直线DM与x轴相交于点F,当①MEF为直角三角形时,求点D的坐标.
4、如图,过点A(1,3)的一次函数y=kx+6(k≠0)的图象分别与x轴,y轴相交于B,C两点.
(1)求k的值;
(2)直线l与y轴相交于点D(0,2),与线段BC相交于点E.
(i)若直线l把①BOC分成面积比为1:2的两部分,求直线l的函数表达式;
(①)连接AD,若①ADE是以AE为腰的等腰三角形,求满足条件的点E的坐标.
5、建立模型:
如图1,等腰Rt①ABC中,①ABC=90°,CB=BA,直线ED经过点B,过A作AD①ED于D,过C作CE①ED于E.则易证①ADB①①BEC.这个模型我们称之为“一线三垂直”.它可以把倾斜的线段AB和直角①ABC转化为横平竖直的线段和直角,所以在平面直角坐标系中被大量使用.
模型应用:
(1)如图2,点A(0,4),点B(3,0),①ABC是等腰直角三角形.
①若①ABC=90°,且点C在第一象限,求点C的坐标;
①若AB为直角边,求点C的坐标;
(2)如图3,长方形MFNO,O为坐标原点,F的坐标为(8,6),M、N分别在坐标轴上,P是线段NF上动点,设PN=n,已知点G在第一象限,且是直线y=2x一6上的一点,若①MPG是以G为直角顶点的等腰直角三角形,请直接写出点G的坐标.
6、如图1,直线l:y=x+2与x轴交于点A,与y轴交于点B.已知点C(﹣2,0).
(1)求出点A,点B的坐标.
(2)P是直线AB上一动点,且①BOP和①COP的面积相等,求点P坐标.
(3)如图2,平移直线l,分别交x轴,y轴于交于点A1B1,过点C作平行于y轴的直线m,在直线m 上是否存在点Q,使得①A1B1Q是等腰直角三角形?若存在,请直接写出所有符合条件的点Q的坐标.
7、如图1,等腰直角三角形ABC中,①ACB=90°,CB=CA,直线DE经过点C,过A作AD①DE于点D,
过B作BE①DE于点E,则①BEC①①CDA,我们称这种全等模型为“K型全等”.(不需要证明)
【模型应用】若一次函数y=kx+4(k≠0)的图象与x轴、y轴分别交于A、B两点.
(1)如图2,当k=﹣1时,若点B到经过原点的直线l的距离BE的长为3,求点A到直线l的距离AD 的长;
(2)如图3,当k=﹣时,点M在第一象限内,若①ABM是等腰直角三角形,求点M的坐标;
(3)当k的取值变化时,点A随之在x轴上运动,将线段BA绕点B逆时针旋转90°得到BQ,连接OQ,求OQ长的最小值.
8、【模型建立】
(1)如图1,等腰直角三角形ABC中,∠ACB=90°,CA=CB,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.
求证:△CDA≌△BEC.
【模型运用】
(2)如图2,直线l1:y=x+4与坐标轴交于点A、B,将直线l1绕点A逆时针旋转90°至直线l2,求直线l2的函数表达式.
【模型迁移】
如图3,直线l经过坐标原点O,且与x轴正半轴的夹角为30°,点A在直线l上,点P为x轴上一动点,连接AP,将线段AP绕点P顺时针旋转30°得到BP,过点B的直线BC交x轴于点C,∠OCB=30°,点B到x轴的距离为2,求点P的坐标.
9、如图1,在平面直角坐标系中,直线y=﹣x+b与x轴、y轴相交于A、B两点,动点C(m,0)在线
段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上,过点D作DE⊥x 轴于点E.
(1)求m和b的数量关系;
(2)当m=1时,如图2,将△BCD沿x轴正方向平移得△B′C′D′,当直线B′C′经过点D时,求点B′的坐标及△BCD平移的距离;
(3)在(2)的条件下,直线AB上是否存在一点P,以P、C、D为顶点的三角形是等腰直角三角形?
若存在,写出满足条件的P点坐标;若不存在,请说明理由.
10、如图,已知一次函数y=﹣x+7与正比例函数y=x的图象交于点A,且与x轴交于点B.
(1)求△AOB的面积:
(2)在y轴上找一点C,使AC+BC最小,求最小值及C点坐标.
(3)点P从O出发向B点以1个单位每秒的速度运动,点Q从B点出发向A点以同样的速度运动,两
个点同时停止,当△BPQ为等腰三角形时,求Q点坐标.
11、一边长为4正方形OACB放在平面直角坐标系中,其中O为原点,点A、B分别在x轴、y轴上,D为
射线OB上任意一点.
(1)如图1,若点D坐标为(0,2),连接AD交OC于点E,则△AOE的面积为;
(2)如图2,将△AOD沿AD翻折得△AED,若点E在直线y=x图象上,求出E点坐标;
(3)如图3,将△AOD沿AD翻折得△AED,DE和射线BC交于点F,连接AF,若∠DAO=75°,平面内是否存在点Q,使得△AFQ是以AF为直角边的等腰直角三角形,若存在,请求出所有点Q坐标;若不存在,请说明理由.。