二叉树
- 格式:docx
- 大小:21.58 KB
- 文档页数:2
二叉树知识点总结1. 二叉树的性质1.1 二叉树的性质一:二叉树的深度二叉树的深度是指从根节点到叶子节点的最长路径长度。
对于一个空树而言,它的深度为0;对于只有一个根节点的树而言,它的深度为1。
根据定义可知,深度为k的二叉树中,叶子节点的深度值为k。
由此可知,二叉树的深度为所有叶子节点深度的最大值。
1.2 二叉树的性质二:二叉树的高度二叉树的高度是指从根节点到叶子节点的最短路径长度。
对于一个空树而言,它的高度为0;对于只有一个根节点的树而言,它的高度为1。
由此可知,二叉树的高度总是比深度大一。
1.3 二叉树的性质三:二叉树的节点数量对于一个深度为k的二叉树而言,它最多包含2^k - 1个节点。
而对于一个拥有n个节点的二叉树而言,它的深度最多为log2(n+1)。
1.4 二叉树的性质四:满二叉树满二叉树是一种特殊类型的二叉树,它的每个节点要么是叶子节点,要么拥有两个子节点。
满二叉树的性质是:对于深度为k的满二叉树而言,它的节点数量一定是2^k - 1。
1.5 二叉树的性质五:完全二叉树完全二叉树是一种特殊类型的二叉树,它的所有叶子节点都集中在树的最低两层,并且最后一层的叶子节点从左到右依次排列。
对于一个深度为k的完全二叉树而言,它的节点数量一定在2^(k-1)和2^k之间。
2. 二叉树的遍历二叉树的遍历是指按照一定的顺序访问二叉树的所有节点。
二叉树的遍历主要包括前序遍历、中序遍历和后序遍历三种。
2.1 前序遍历(Pre-order traversal)前序遍历的顺序是:根节点 -> 左子树 -> 右子树。
对于一个二叉树而言,前序遍历的结果就是按照“根-左-右”的顺序访问所有节点。
2.2 中序遍历(In-order traversal)中序遍历的顺序是:左子树 -> 根节点 -> 右子树。
对于一个二叉树而言,中序遍历的结果就是按照“左-根-右”的顺序访问所有节点。
2.3 后序遍历(Post-order traversal)后序遍历的顺序是:左子树 -> 右子树 -> 根节点。
二叉树的自平衡
自平衡二叉树是一种特殊的二叉查找树(Binary Search Tree,BST),它在插入或删除节点时能够自动调整树的结构,以保持树的平衡性。
平衡性的维护有助于确保在查找、插入和删除等操作时,树的性能保持在较高水平。
常见的自平衡二叉树包括:
1.A VL树:A VL树是一种最早被发明的自平衡二叉树。
在A VL树中,任意节点的左右子树高度之差(平衡因子)不能超过1。
当进行插入或删除操作后,如果破坏了平衡性,A VL树会通过旋转操作(左旋或右旋)来重新平衡。
2.红黑树:红黑树是一种更为灵活的自平衡二叉树。
在红黑树中,每个节点都被标记为红色或黑色,并通过一些规则确保树的平衡性。
这些规则包括节点颜色的变换和树的旋转。
3.Splay树:Splay树在每次访问一个节点后,将该节点移动到树的根位置,以提高后续对该节点的访问速度。
Splay树不维持固定的平衡条件,但通过频繁的局部调整来实现整体的平衡。
4.Treap(树堆):Treap是一种随机化的自平衡二叉树,结合了二叉搜索树和堆的性质。
每个节点有一个随机的优先级值,通过调整节点的优先级和执行旋转来保持树的平衡。
这些自平衡二叉树的设计灵感各异,选择适当的树取决于应用的具体要求。
自平衡二叉树的主要优势是保持较低的查找、插入和删除操作的时间复杂度,使其在很多应用中都是一个有用的数据结构。
二叉树基础知识讲解嘿,朋友们!今天咱来聊聊二叉树这个神奇的玩意儿。
二叉树啊,就像是一棵特别的大树,不过它可不像咱平常看到的大树那样枝繁叶茂、随心所欲地长。
你想啊,二叉树它有个特点,每个节点最多就俩孩子,就像咱人啊,最多也就俩胳膊。
这俩孩子还分左右呢,左边一个右边一个,多有意思!二叉树在计算机的世界里那可是大有用处啊!它就像一个超级整理大师,能把一堆乱七八糟的数据整理得井井有条。
比如说,咱要找个什么东西,在二叉树里找可比在一堆乱麻里找容易多了吧!它的结构也很巧妙呢!有的节点在上面,有的在下面,就像一个大家庭,有长辈有晚辈。
而且啊,通过那些连接的线,它们之间都有着特别的关系。
这是不是很像咱家里的亲戚关系网呀?二叉树的遍历也是很有讲究的哦!什么前序遍历、中序遍历、后序遍历,听起来是不是很玄乎?其实啊,就是从不同的角度去看看这棵树。
前序遍历就像是先看上面再看下面,中序遍历呢就有点像从中间开始看,后序遍历就是最后再看上面。
咱再想想,二叉树不就跟咱生活中的很多事情一样嘛!有时候咱得有条理地去做事,不能瞎搞一气。
就像二叉树,它的结构那么清晰,让我们能很容易地找到需要的东西。
而且二叉树还特别稳定呢!只要你一开始把它构建好了,它就乖乖地在那,不会随便出乱子。
这多让人放心啊!不像有些东西,一会儿变一个样,让人摸不着头脑。
那要是二叉树变得很大很大了呢?那可就更厉害了呀!它能处理超多的数据,就像一个超级大脑,什么都能记住。
你说,这二叉树是不是很神奇?它虽然看起来简单,但是里面蕴含的智慧可不少呢!它能帮我们解决好多问题,让我们的计算机世界变得更加精彩。
所以啊,可别小瞧了这二叉树哦!它真的是计算机领域里的一个宝贝呢!。
各种二叉树的介绍
二叉树是一种常见的数据结构,每个节点最多只能有两个子节点,通常称为左子节点和右子节点。
根据二叉树的不同特性和限制,可以将其分为多种类型,包括普通二叉树、满二叉树、完全二叉树、平衡二叉树等。
普通二叉树:这是最基本的二叉树形式,每个节点最多有两个子节点,且没有特定的限制条件。
满二叉树:在满二叉树中,所有叶子节点都在最后一层,且节点总数为2^n-1,其中n为层数。
也就是说,除了叶子节点外,每个节点都有两个子节点。
完全二叉树:完全二叉树的所有叶子节点都在最后一层或倒数第二层,且最后一层的叶子节点在左边连续,倒数第二层的叶子节点在右边连续。
如果将满二叉树从右至左、从下往上删除一些节点,剩余的结构就构成完全二叉树。
平衡二叉树(AVL树):平衡二叉树是一种特殊的二叉树,它要求每个节点的左子树和右子树的高度差绝对值不超过1,且每个子树也必须是一棵平衡二叉树。
这种树的查找效率通常高于普通二叉树,因此常用于需要频繁查找的场景。
此外,还有一些特殊的二叉树,如红黑树、B树、B+树等,它们具有不同的特性和应用场景。
红黑树是一种自平衡的二叉查找树,它的左右子树高度差有可能大于1,但通过对节点进行旋转和重新着色等操作,可以保持树的平衡性。
B树和B+树则常用于数据库和文件系统中,它们支持对节点进行分裂和合并操作,以满足快速查找、插入和删除数据的需求。
总之,二叉树是一种非常有用的数据结构,它可以用于实现各种算法和应用,如排序、搜索、压缩、加密等。
不同类型的二叉树具有不同的特性和应用场景,需要根据具体需求进行选择和使用。
数据结构之⼆叉树(BinaryTree)⽬录导读 ⼆叉树是⼀种很常见的数据结构,但要注意的是,⼆叉树并不是树的特殊情况,⼆叉树与树是两种不⼀样的数据结构。
⽬录 ⼀、⼆叉树的定义 ⼆、⼆叉树为何不是特殊的树 三、⼆叉树的五种基本形态 四、⼆叉树相关术语 五、⼆叉树的主要性质(6个) 六、⼆叉树的存储结构(2种) 七、⼆叉树的遍历算法(4种) ⼋、⼆叉树的基本应⽤:⼆叉排序树、平衡⼆叉树、赫夫曼树及赫夫曼编码⼀、⼆叉树的定义 如果你知道树的定义(有限个结点组成的具有层次关系的集合),那么就很好理解⼆叉树了。
定义:⼆叉树是n(n≥0)个结点的有限集,⼆叉树是每个结点最多有两个⼦树的树结构,它由⼀个根结点及左⼦树和右⼦树组成。
(这⾥的左⼦树和右⼦树也是⼆叉树)。
值得注意的是,⼆叉树和“度⾄多为2的有序树”⼏乎⼀样,但,⼆叉树不是树的特殊情形。
具体分析如下⼆、⼆叉树为何不是特殊的树 1、⼆叉树与⽆序树不同 ⼆叉树的⼦树有左右之分,不能颠倒。
⽆序树的⼦树⽆左右之分。
2、⼆叉树与有序树也不同(关键) 当有序树有两个⼦树时,确实可以看做⼀颗⼆叉树,但当只有⼀个⼦树时,就没有了左右之分,如图所⽰:三、⼆叉树的五种基本状态四、⼆叉树相关术语是满⼆叉树;⽽国际定义为,不存在度为1的结点,即结点的度要么为2要么为0,这样的⼆叉树就称为满⼆叉树。
这两种概念完全不同,既然在国内,我们就默认第⼀种定义就好)。
完全⼆叉树:如果将⼀颗深度为K的⼆叉树按从上到下、从左到右的顺序进⾏编号,如果各结点的编号与深度为K的满⼆叉树相同位置的编号完全对应,那么这就是⼀颗完全⼆叉树。
如图所⽰:五、⼆叉树的主要性质 ⼆叉树的性质是基于它的结构⽽得来的,这些性质不必死记,使⽤到再查询或者⾃⼰根据⼆叉树结构进⾏推理即可。
性质1:⾮空⼆叉树的叶⼦结点数等于双分⽀结点数加1。
证明:设⼆叉树的叶⼦结点数为X,单分⽀结点数为Y,双分⽀结点数为Z。
二叉树公式一、引言二叉树是计算机科学中常见的数据结构之一,它由一个根节点和最多两个子节点组成。
在二叉树中,每个节点最多有两个子节点,左子节点和右子节点。
二叉树在算法和程序设计中具有广泛的应用,因为它能够高效地表示和处理各种数据关系。
本文将介绍二叉树的基本概念和公式。
二、二叉树的定义二叉树是一种特殊的树结构,它的每个节点最多有两个子节点。
二叉树可以为空,当二叉树不为空时,它满足以下几个条件:1. 每个节点最多有两个子节点,分别称为左子节点和右子节点。
2. 左子节点和右子节点可以为空。
3. 二叉树中不存在重复的节点。
三、二叉树的性质1. 二叉树的最大深度等于根节点到最远叶子节点的路径长度。
2. 二叉树的最小深度等于根节点到最近叶子节点的路径长度。
3. 二叉树的节点个数等于根节点加上左子树和右子树的节点个数之和。
4. 二叉树的高度等于根节点到叶子节点的最长路径长度。
四、二叉树的遍历二叉树的遍历是指按照某种顺序访问二叉树中的所有节点。
常见的遍历方式有三种:前序遍历、中序遍历和后序遍历。
1. 前序遍历:先访问根节点,然后递归地遍历左子树和右子树。
2. 中序遍历:先递归地遍历左子树,然后访问根节点,最后递归地遍历右子树。
3. 后序遍历:先递归地遍历左子树和右子树,最后访问根节点。
五、二叉树的平衡性在二叉树中,平衡性是指左子树和右子树的高度差不超过1。
平衡二叉树是一种特殊的二叉树,它的左子树和右子树的高度差不超过1,并且左子树和右子树也都是平衡二叉树。
平衡二叉树的插入和删除操作时间复杂度都是O(logn),因此在某些应用场景中,平衡二叉树比普通二叉树更加高效。
六、二叉树的应用1. 二叉搜索树:二叉搜索树是一种特殊的二叉树,它的每个节点的值都大于其左子树的所有节点的值,小于其右子树的所有节点的值。
二叉搜索树可以高效地支持插入、删除和查找操作。
2. 堆:堆是一种特殊的二叉树,它满足堆序性质。
在最小堆中,每个节点的值都小于或等于其子节点的值;在最大堆中,每个节点的值都大于或等于其子节点的值。
平衡树——特点:所有结点左右子树深度差≤1排序树——特点:所有结点―左小右大字典树——由字符串构成的二叉排序树判定树——特点:分支查找树(例如12个球如何只称3次便分出轻重)带权树——特点:路径带权值(例如长度)最优树——是带权路径长度最短的树,又称Huffman树,用途之一是通信中的压缩编码。
1.1 二叉排序树:或是一棵空树;或者是具有如下性质的非空二叉树:(1)若左子树不为空,左子树的所有结点的值均小于根的值;(2)若右子树不为空,右子树的所有结点均大于根的值;(3)它的左右子树也分别为二叉排序树。
例:二叉排序树如图9.7:二叉排序树的查找过程和次优二叉树类似,通常采取二叉链表作为二叉排序树的存储结构。
中序遍历二叉排序树可得到一个关键字的有序序列,一个无序序列可以通过构造一棵二叉排序树变成一个有序序列,构造树的过程即为对无序序列进行排序的过程。
每次插入的新的结点都是二叉排序树上新的叶子结点,在进行插入操作时,不必移动其它结点,只需改动某个结点的指针,由空变为非空即可。
搜索,插入,删除的复杂度等于树高,期望O(logn),最坏O(n)(数列有序,树退化成线性表).虽然二叉排序树的最坏效率是O(n),但它支持动态查询,且有很多改进版的二叉排序树可以使树高为O(logn),如SBT,AVL,红黑树等.故不失为一种好的动态排序方法.2.2 二叉排序树b中查找在二叉排序树b中查找x的过程为:1. 若b是空树,则搜索失败,否则:2. 若x等于b的根节点的数据域之值,则查找成功;否则:3. 若x小于b的根节点的数据域之值,则搜索左子树;否则:4. 查找右子树。
[cpp]view plaincopyprint?1.Status SearchBST(BiTree T, KeyType key, BiTree f, BiTree &p){2. //在根指针T所指二叉排序樹中递归地查找其关键字等于key的数据元素,若查找成功,3. //则指针p指向该数据元素节点,并返回TRUE,否则指针P指向查找路径上访问的4. //最好一个节点并返回FALSE,指针f指向T的双亲,其初始调用值为NULL5. if(!T){ p=f; return FALSE;} //查找不成功6. else if EQ(key, T->data.key) {P=T; return TRUE;} //查找成功7. else if LT(key,T->data.key)8. return SearchBST(T->lchild, key, T, p); //在左子树继续查找9. else return SearchBST(T->rchild, key, T, p); //在右子树继续查找10.}2.3 在二叉排序树插入结点的算法向一个二叉排序树b中插入一个结点s的算法,过程为:1. 若b是空树,则将s所指结点作为根结点插入,否则:2. 若s->data等于b的根结点的数据域之值,则返回,否则:3. 若s->data小于b的根结点的数据域之值,则把s所指结点插入到左子树中,否则:4. 把s所指结点插入到右子树中。
简述二叉树的五种形态二叉树是一种常用的数据结构,它由节点组成,每个节点最多有两个子节点。
根据节点的分布情况,二叉树可以分为五种形态,分别是满二叉树、完全二叉树、平衡二叉树、搜索二叉树和线索二叉树。
一、满二叉树满二叉树是指除了叶子节点外,每个节点都有两个子节点的二叉树。
也就是说,满二叉树的所有层都是满的,并且最后一层的叶子节点都靠左排列。
满二叉树的节点数可以通过公式计算得到,假设树的高度为h,则节点数为2^h - 1。
满二叉树的特点是结构简单,查找速度快。
在满二叉树中,任意两个节点的路径长度都相同。
二、完全二叉树完全二叉树是指除了最后一层之外,其他层都是满的,并且最后一层的叶子节点都靠左排列的二叉树。
完全二叉树的特点是节点数较少,结构相对简单。
完全二叉树通常用数组来表示,因为它的节点之间的关系可以通过数组的下标来表示。
在完全二叉树中,任意一个节点的左子节点的下标为2i,右子节点的下标为2i+1。
三、平衡二叉树平衡二叉树是指左右子树的高度差不超过1的二叉树。
平衡二叉树的特点是查找、插入和删除的时间复杂度都为O(logn),其中n是节点的数量。
平衡二叉树的高度可以通过节点的平衡因子来计算,平衡因子定义为左子树的高度减去右子树的高度。
平衡因子的取值范围为-1、0和1,当平衡因子的绝对值大于1时,需要通过旋转操作来调整树的平衡性。
四、搜索二叉树搜索二叉树,也称为二叉搜索树或排序二叉树,是一种特殊的二叉树。
它的特点是对于树中的任意一个节点,其左子树中的所有节点都小于它,右子树中的所有节点都大于它。
搜索二叉树的中序遍历结果是一个递增的有序序列。
搜索二叉树的特点是可以快速地查找某个节点,时间复杂度为O(logn),其中n是节点的数量。
但是,如果搜索二叉树不平衡,即左子树或右子树过深,则会导致查找的时间复杂度退化为O(n)。
五、线索二叉树线索二叉树是对二叉树进行了优化的数据结构,它通过添加指向前驱和后继节点的线索,使得遍历操作更加高效。
二叉树结构的特点二叉树是一种常见的数据结构,它具有以下特点:1. 结构简单:二叉树是一种有序树结构,每个节点最多只有两个子节点,分别称为左子节点和右子节点。
这种结构的简洁性使得二叉树在实际应用中得到广泛使用。
2. 层次性:二叉树具有明显的层次性,即树的每一层都可以通过节点间的父子关系来确定。
根节点是第一层,根节点的子节点是第二层,以此类推。
3. 有序性:在二叉树中,每个节点的左子节点小于它,右子节点大于它。
这种有序性使得二叉树在查找和排序方面具有很高的效率。
4. 高度平衡:二叉树的高度平衡性是指树的左右子树的高度差不超过1。
高度平衡的二叉树可以保证查找、插入和删除操作的平均时间复杂度为O(log n)。
5. 递归性:二叉树的定义是递归的,即每个子树都是二叉树。
这种递归性质使得在二叉树上的操作可以通过递归算法来实现。
6. 存储结构灵活:二叉树的存储结构可以采用顺序存储和链式存储两种方式。
顺序存储是将二叉树的节点按照层次顺序存储在一维数组中,链式存储是通过每个节点的指针来连接各个节点。
在二叉树的基础上,还可以扩展出以下几种特殊的二叉树结构:1. 完全二叉树:完全二叉树是指除了最后一层外,其他层的节点个数都达到最大值,并且最后一层的节点依次从左到右排列。
完全二叉树的特点是高度平衡,可以用数组来存储。
2. 满二叉树:满二叉树是指每个节点都有两个子节点的二叉树,即除了叶子节点外,每个节点都有两个子节点。
满二叉树的特点是节点个数达到最大值,高度平衡。
3. 平衡二叉树:平衡二叉树是指任意节点的左右子树的高度差不超过1的二叉树。
平衡二叉树的特点是高度平衡,可以保证各种操作的时间复杂度较低。
4. 二叉搜索树:二叉搜索树是一种特殊的二叉树,它具有以下性质:对于树中的任意节点,其左子树中的节点值都小于它,右子树中的节点值都大于它。
二叉搜索树的特点是可以高效地进行查找、插入和删除操作。
5. 线索二叉树:线索二叉树是对二叉树的一种扩展,它的特点是在每个节点上增加了指向前驱节点和后继节点的指针。
数据结构二叉树知识点总结二叉树是指每个节点最多有两个子节点的树结构。
它是一种重要的数据结构,在算法和程序设计中被广泛应用。
下面是对二叉树的主要知识点进行详细总结。
1.二叉树的基本概念:-树节点:树的基本单元,包含数据项(节点值)和指向其他节点的指针。
-根节点:树的第一个节点。
-叶节点(又称为终端节点):没有子节点的节点。
-子节点:一些节点的下一级节点。
-父节点:一些节点的上一级节点。
-兄弟节点:拥有同一父节点的节点。
-深度:从根节点到当前节点的路径长度。
-高度:从当前节点到最远叶节点的路径长度。
2.二叉树的分类:-严格二叉树:每个节点要么没有子节点,要么有两个子节点。
-完全二叉树:除了最后一层外,其他层的节点数都达到最大,并且最后一层的节点依次从左到右排列。
-满二叉树:每个节点要么没有子节点,要么有两个子节点,并且所有叶节点都在同一层上。
-平衡二叉树:任意节点的两棵子树的高度差不超过13.二叉树的遍历:-前序遍历:根节点->左子树->右子树。
递归实现时,先访问当前节点,然后递归遍历左子树和右子树。
-中序遍历:左子树->根节点->右子树。
递归实现时,先递归遍历左子树,然后访问当前节点,最后递归遍历右子树。
-后序遍历:左子树->右子树->根节点。
递归实现时,先递归遍历左子树,然后递归遍历右子树,最后访问当前节点。
-层序遍历:从上到下,从左到右依次访问每个节点。
使用队列实现。
4.二叉查找树(BST):-二叉查找树是一种有序的二叉树,对于树中的每个节点,其左子树的节点的值都小于当前节点的值,右子树的节点的值都大于当前节点的值。
-插入操作:从根节点开始,递归地比较要插入的值和当前节点的值,根据比较结果向左或向右移动,直到找到插入位置为止。
-查找操作:从根节点开始,递归地比较要查找的值和当前节点的值,根据比较结果向左或向右移动,直到找到目标节点或到叶节点。
-删除操作:有三种情况:-被删除节点是叶节点:直接将其删除。
【二叉树的定义】( binary tree)是 n 个结点的有限集合,该集合或为空集(空二叉树),或由一个根结点与两棵互不相二叉树(右子树的二叉树构成。
交的,称为根结点的左子树左子树、右子树二叉树的特点是:每个结点最多有两棵子树,故二叉树中不存在度大于 2 的结点二叉树是有序的,其次序不能任意颠倒,即使树中的某个结点只有一棵子树,也要区分它是左子树还是右子树二叉树具有以下 5 种基本形态:【特殊的二叉树】在实际应用中,常会用到以下几种特殊的二叉树。
1.斜树右斜树左斜树,所有的结点都只有右子树的二叉树称为右斜树所有的结点都只有左子树的二叉树称为左斜树在斜树中,每层只有一个结点,因此斜树的结点个数与其深度相同2.满二叉树满二叉树。
在一棵二叉树中,若所有的分支结点都存在左子树和右子树,且所有的叶子都在同一层上,则称为满二叉树其特点是:叶子只能出现在最下一层只有度为 0、度为 2 的结点满二叉树在同样深度的二叉树中结点个数、叶结点个数最多。
由于满二叉树的特性可知:满二叉树在同样深度的二叉树中结点个数、叶结点个数最多。
3.完全二叉树对一棵具 n 个结点的二叉树按层序编号,若编号为 i 的结点与同样深度的满二叉树中编号 i 的结点在二叉树中的满二叉树是完全二叉树位置完全相同,则称为完全二叉树完全二叉树,那么显然有:满二叉树是完全二叉树其特点是:叶结点只能出现在最下两层,且最下层的叶结点都集中在二叉树左侧连续的位置若有度为 1 的结点,只可能有一个,且其只有左孩子深度为 k 的完全二叉树在 k -1 层上行一定是满二叉树简单来说,在满二叉树中,从最后一个结点开始,连续去掉任意个的结点,即是一棵完全二叉树【二叉树的性质】1.二叉树二叉树的第 i 层上行最多有个结点2.二叉树中,最多有个结点,最少有 k 个结点在一棵深度为 k 的二叉树推论:深度为 k 且具个结点的二叉树一定是满二叉树,但深度为 k 具有 k 个结点的二叉树不一定是斜树3.具有 n 个结点的二叉树二叉树,其分支数:B=n-1,对于任意一个结点,每度贡献一个分支,即:度为 0 的结点贡献 0 个分支,度为 1 的结点贡献 1 个分支,度为 2 的结点贡献 2 个分支。
二叉树是一种树形结构,其中的每个节点最多有两个子节点。
二叉树有五种基本形态:
满二叉树:每个节点都有左右两个子节点,并且所有叶子节点都在最底层。
完全二叉树:除了最后一层以外,其余每一层的节点都是满的,最后一层的节点都靠左排列。
平衡二叉树:每个节点的左子树和右子树的深度相差不超过1。
左偏树:所有节点都只有左子节点,没有右子节点。
右偏树:所有节点都只有右子节点,没有左子节点。
注意:二叉树的形态是由节点的子节点情况决定的,而不是节点的值。
1、一棵完全二叉树共有360个结点,则在该二叉树中度为1的结点个数为______。
本题考查知识点是二叉树基本性质。
完全二叉树是指除最后一层外,每一层上的结点数均达到最大值;在最后一层上只缺少右边的若干结点。
根据二叉树性质,设完全二叉树共有n个结点。
如果从根节点开始,按层序(每一层从左到右)用自然数1,2……,n给结点进行编号,则对于编号为k的结点有如下结论。
若k=1,则该结点为根结点。
若k>1,则该结点的父结点编号为INT(k/2),其中INT表示取整意思。
最后一个结点360的父结点编号为180。
若2k<=n,则编号为k 的结点的左结点编号为2k,否则该结点无左子结点(显然也没有右子结点)。
若2k+1<=n,则编号为k的结点的右子结点编号为2k+1,否则该结点无右子结点。
在本题中,2*180<=360,条件满足,故该结点无左子结点,由于该二叉树是完全二叉树,显然180是最后一个父结点,且没有右子结点。
所以本题答案为B。
2、设二叉树共有150个结点,其中度为1的结点有10个,则该二叉树中的叶子结点数为______。
本题考查知识点是二叉树性质。
任意一颗二叉树中,度为0的结点(叶子结点)总是比度为2的结点多一个。
可以设度为0的结点数问n,则度为2的结点数为n-1,根据题意可得n+n-1+10=150,n不是整数,故不可能有这样的二叉树。
所以本题答案为C。
3、某二叉树共有12个结点,其中叶子结点只有1个。
则该二叉树的深度为(根结点在第1层)______。
本题考查知识点是二叉树。
在任意一颗二叉树中,度为0的结点(即叶子结点)总是比度为2的结点多一个。
叶子结点只有一个,即没有度为2的结点,这样度为1的结点就是11个。
每一层有一个结点,故深度为12。
所以本题答案为A。
4、本题考查知识点是完全二叉树的性质。
完全二叉树的总结点为奇数时,叶子结点数是总结点加一再除以2。
所以本题答案为B。
深度为7的完全二叉树中共有125个结点,则该完全二叉树中的叶子结点数为
______。
5、设二叉树如下:
则后序序列为______。
C、DGEBHFCA
7、。