中考数学专题复习--新定义型问题课件
- 格式:pptx
- 大小:862.77 KB
- 文档页数:30
中考数学《新定义型问题》专项复习考向1 数或函数类新定义例:(2019•越秀区校级模拟)在平面直角坐标系中,当点(,)M x y 不在坐标轴上时,定义点M 的影子点为(y M x,)xy ,已知点P 的坐标为(,)a b ,且a .b 满足方程组|3|40(1416a c cbc 为常数),若点P 的影子点是点P ,则点P 的坐标为 . 【解析】方程组|3|4(1416acc b c 为常数),40c , 又由4160c ,4c ,3a ,1b ,(3,1)P ,由影子点的定义,1(3P ,3),故答案为1(3,3). 练习:1.(2018•越秀区校级一模)定义[a ,b ,]c 为函数2y ax bxc 的特征数,下面给出特征数为[1m ,1m 2]m 的函数的一些结论:①当3m时,函数图象的顶点坐标是(1,8);②当1m 时,函数图象截x 轴所得的线段长度大于3;③当0m时,函数在12x时,y 随x 的增大而减小;④不论m 取何值,函数图象经过两个定点.其中正确的结论有( ) A .1个 B .2个 C .3个 D .4个【解析】因为函数2y ax bxc 的特征数为[1m ,1m ,2]m ; ①当3m时,222462(1)8y x x x ,顶点坐标是(1,8);此结论正确;②当1m 时,令0y ,有2(1)(1)20m x m x m,解得,11x ,221mx m , 2131||31m x x m ,所以当1m 时,函数图象截x 轴所得的线段长度大于3,此结论正确;③当0m 时,2(1)(1)2y m x m x m 是一个开口向下的抛物线,其对称轴是:12(1)m xm ,在对称轴的左边y 随x 的增大而增大, 因为当0m时,1121112(1)2(1)212m m m m m ,即对称轴在12x 右边,可能大于12,所以在12x时,y 随x 的增大而减小,此结论错误, ④当1x 时,2(1)(1)20y m x m x m即对任意m ,函数图象都经过点(1,0)那么同样的:当2x时,2(1)(1)26ym x m x m,即对任意m ,函数图象都经过一个点(2,6),此结论正确.根据上面的分析,①②④是正确的. 故选:C .2.(2018•平定县二模)新定义:[a ,]b 为一次函数(0yaxb a,a ,b 为实数)的“关联数””.若“关联数”为[3,2]m 的一次函数是正比例函数,则点(1,1)m m 在第 象限. 【解析】 “关联数”为[3,2]m 的一次函数是正比例函数, 32yxm 是正比例函数,20m ,解得:2m , 则11m,13m,故点(1,1)m m 在第二象限. 故答案为:二.3.(2019•电城区二模)对于实数a ,b ,我们定义符号{max a ,}b 的意义为:当a b 时,{max a ,}b a ;当ab 时,{max a ,]b b ;如:{4max ,2}4,{3max ,3}3,若关于x 的函数为{3ymax x,1}x ,则该函数的最小值是 .【解析】联立两函数解析式成方程组,得:31y x yx ,解得:12x y.当1x时,{3y max x,1}12x x ;当1x时,{3y max x ,1}32x x .函数{3y max x,1}x 最小值为2.故答案为:2.4.(2019•普宁育才实验学校二模)在平面直角坐标系xOy 中,对于任意两点11(P x ,1)y 与22(P x ,2)y 的“非常距离”,给出如下定义: 若1212||||x x y y ,则点1P 与点2P 的“非常距离”为12||x x ; 若1212||||x x y y ,则点1P 与点2P 的“非常距离”为12||y y .例如:点1(1,2)P ,点2(3,5)P ,因为|13||25|,所以点1P 与点2P 的“非常距离”为|25|3,也就是图1中线段1PQ 与线段2P Q 长度的较大值(点Q 为垂直于y 轴的直线1PQ 与垂直于x 轴的直线2P Q 交点). (1)已知点1(2A ,0),B 为y 轴上的一个动点,①若点A 与点B 的“非常距离”为2,写出一个满足条件的点B 的坐标; ②直接写出点A 与点B 的“非常距离”的最小值; (2)已知C 是直线334yx 上的一个动点,①如图2,点D 的坐标是(0,1),求点C 与点D 的“非常距离”的最小值及相应的点C 的坐标;②如图3,E 是以原点O 为圆心,1为半径的圆上的一个动点,求点C 与点E 的“非常距离”的最小值及相应的点E 与点C 的坐标.【解析】(1)①B 为y 轴上的一个动点,设点B 的坐标为(0,)y .11|0|222,|0|2y ,解得,2y 或2y ;点B 的坐标是(0,2)或(0,2);②点A 与点B 的“非常距离”的最小值为12(2)①如图2,取点C 与点D 的“非常距离”的最小值时,需要根据运算定义“若1212||||x x y y ,则点1P 与点2P 的“非常距离”为12||x x ”解答,此时1212||||x x y y .即ACAD ,C 是直线334yx 上的一个动点,点D 的坐标是(0,1),设点C 的坐标为0(x ,033)4x ,0324x x ,此时,087x , 点C 与点D 的“非常距离”的最小值为:08||7x , 此时8(7C ,15)7; ②当点E 在过原点且与直线334y x 垂直的直线上时,点C 与点E 的“非常距离”最小,设(,)E x y (点E位于第二象限).则22431yxx y,解得,3545xy,故3(5E ,4)5. 003343545x x ,解得,085x ,则点C 的坐标为8(5,9)5,最小值为1. 考向 2 运算类新定义例:(2019•兴宁市期末)定义新运算:a bab b ,例如:323228,则34 .【解析】a b ab b ,(3)4(3)441248.故答案为:8.练习:1.(2018•陆河二模)定义符号{min a ,}b 的含义为:当a b 时{min a ,}b b ;当ab 时{min a ,}b a .如:{1min ,3}3,{4min ,2}4.则2{1min x ,}x 的最大值是( )A 51B 512C .1D .0【解析】在同一坐标系xOy 中,画出二次函数21y x 与正比例函数yx 的图象,如图所示.设它们交于点A .B . 令21x x ,即210x x ,解得:152x或15,15(2A ,51),15(B ,15).观察图象可知:①当152x 时,2{1min x,2}1x x ,函数值随x 51;②1515x 时,2{1min x ,}x x ,函数值随x 512;③当152x时,2{1min x ,2}1x x ,函数值随x 的增大而减小,最大值为15.综上所示,2{1min x,}x 51.故选:A .2.(2019•花都区期末)对于任意的实数m ,n ,定义运算“”,规定22()()m n m n mnm n m n ,例如:2323211,223231,计算(12)(21)的结果为( )A .4B .0C .6D .12【解析】22()()m n m n mnm n m n ,(12)(21)22(12)(21)(1)52(1)5154,故选:A .3.(2019•紫金东江二中二模)用“☆”定义一种新运算:对于任意有理数x 和y ,x ☆21(y a x ay a 为常数),如:2☆223231231a a a a .若1☆23,则3☆6的值为( )A .7B .8C .9D .13【解析】1☆23,2213a a ,222a a,3☆62361a a 23(2)1a a 3217,故选:A .4.(2019•陆丰期末)对任意两个正实数a ,b ,定义新运算a ★b 为:若a b ,则a ★ab b;若a b ,则a ★bb a.则下列说法中正确的有( ) ①a ★bb ★a ②(a ★)(b b ★)1a ③a ★12ba bA .①B .②C .①②D .①②③【解析】①a b 时,a ★ab b,b ★a a b,a ★bb ★a ;ab 时,a ★bba,b ★b a a,a ★bb ★a ,①符合题意.②由①,可得:a ★b b ★a ,(a ★)(b b ★)(a a ★)(b a ★)b ,(a ★)(b b ★)1a 不一定成立,②不符合题意.③由①,可得:a ★bb ★a ,a ★12ba b,a ★12ba b不成立,③不符合题意,说法中正确的有1个:①.故选:A .5.(2019•仁化二模)定义一种新运算:1a n nn bn x dx a b ,例如:222k hxdx k h ,若252m mx dx,则m.【解析】由题意可得:21152(5)m mx dx mm ,则1125mm,解得:25m.故答案为:25. 考向3 图形类新定义例:(2019•海珠区期末)定义:ABC 中,一个内角的度数为,另一个内角的度数为,若满足290,则称这个三角形为“准直角三角形”.如图,在Rt ABC 中,90C,8AC,6BC ,D 是BC 上的一个动点,连接AD ,若ABD 是“准直角三角形”,则CD 的长是( )A .127B .2413 C .83D .135【解析】作DM AB 于M .设BAD ,B .①设BAD,B ,当290时, 90DAC,DACB ,C C ,CAD CBA ∽,2AC CD CB ,3263CD(舍去);②设BAD ,B ,当290时,90DAC ,DAC DAB ,DM AB ,DCAC ,DMDC ,90DMA C,DM DC ,AD AD ,Rt ADC Rt ADM(HL),8AM AC ,90C,8AC ,6BC,22228610ABAC BC ,1082BM ,设BDx ,则6CD DM x , 在Rt BDM 中,则有222(6)2x x ,解得103x.108633CD.故选:C .练习:1.(2019•高州市期末)我们定义:若两个角差的绝对值等于60,则称这两个角互为“正角”,其中一个角是另一个角的“正角”.如:1110,250,|12|60,则1和2互为“正角”.如图,已知120AOB,射线OC 平分AOB ,EOF 在AOB 的内部,若60EOF ,则图中互为“正角”的共有 对.【解析】120AOB,射线OC 平分AOB ,1602AOCBOCAOB ,60AOB AOC ,60AOBBOC ,又60EOF ,60AOB EOF , 60EOFAOC,60AOFAOE,60AOFCOF,图中互为“正角”的共有AOB 与AOC ,AOB 与BOC ,AOB 与EOF ,AOF 与AOE ,AOF 与COF 共5对.故答案为:52.(2019•揭东县期末)通过对《勾股定理》的学习,我们知道:如果一个三角形中,两边的平方和等于第三边的平方,那么这个三角形一定是直角三角形.如果我们新定义一种三角形两边的平方和等于第三边平方的2倍的三角形叫做奇异三角形.(1)根据奇异三角形的定义,请你判断:等边三角形一定是奇异三角形吗?(填“是”或不是);(2)若某三角形的三边长分别为12,则该三角形是不是奇异三角形,请做出判断并写出判断依据;(3)在Rt ABC中,两边长分别为a、c,且250c,则这个三角形是不是奇异三角形?请做a,2100出判断并写出判断依据;探究:在Rt ABC中,90C,AB c,AC b,BC a,且b a,若Rt ABC是奇异三角形,求222a b c.::【解析】(1)设等边三角形的边长为a,222a a a,等边三角形一定是奇异三角形;2(2)2221(7)22,该三角形一定是奇异三角形;(3)当c为斜边时,22250b c a,Rt ABC不是奇异三角形;当b为斜边时,222150b c a,501502100,Rt ABC是奇异三角形;2222a b c,Rt ABC是奇异三角形;拓展:Rt ABC中,90C,222a b c,c b a,2222a b c,2c b a,222Rt ABC是奇异三角形,2222b a c,2222c c,222::1:2:3a b c.b a,2232b a a b,2223.(2019•云城区期末)定义:如果一个三角形的一个内角等于另一个内角的两倍,则称这样的三角形为“倍角三角形”.(1)如图1,ABC中,AB AC,36A,求证:ABC是倍角三角形;(2)若ABC是倍角三角形,A B C,30B,42AC,求ABC面积;(3)如图2,ABC的外角平分线AD与CB的延长线相交于点D,延长CA到点E,使得AE AB,若AB AC BD,请你找出图中的倍角三角形,并进行证明.【解析】(1)证明:AB AC,B C,180A B C,36A,72B C,2A C,即ABC是倍角三角形,(2)解:AB C,30B,①当2B C,得15C,过C作CH直线AB,垂足为H,可得45CAH,24 AH CH AC.43BH,434AB BH AH,18382S AB CH.②当2A B或2A C时,与AB C矛盾,故不存在.综上所述,ABC面积为8.(3)AD平分BAE,BAD EAD,AB AE,AD AD,()ABD AED SAS,ADE ADB,BD DE.又AB AC BD,AE AC BD,即CE BD.CE DE.2C BDE ADC.ADC是倍角三角形.4.(2018•阳春市二模)定义:两边的平方和与这两边乘积的差等于第三边平方的三角形叫做“和谐三角形”.如图1在ABC中,若222AB AC AB AC BC,则ABC是“和谐三角形”.(1)等边三角形一定是“和谐三角形”,是命题(填“真”或“假”).(2)若Rt ABC 中,90C,ABc ,AC b ,BC a ,且b a ,若ABC 是“和谐三角形”,求::a b c .(3)如图2,在等边三角形ABC 的边AC ,BC 上各取一点D ,E ,且AD CD ,AE ,BD 相交于点F ,BG 是BEF 的高,若BGF 是“和谐三角形”,且BGFG .①求证:AD CE .②连结CG ,若GCBABD ,那么线段AG ,FE ,CD 能否组成一个“和谐三角形”?若能,请给出证明:若不能,请说明理由.【解析】(1)当ABC 为等边三角形时,AB AC BC ,22222AB AC AB ACBC BC BC BCBC ,等边三角形一定是“和谐三角形”,故答案为:真; (2)90C,ABc ,AC b ,BC a ,222a b c ,当222a b ab c 时,则0ab (舍去);当222a c acb 时,则2222a c ac c a ,22aca ,2c a .::1:3:2a b c;当222b c bca 时,则2222b c bc c b ,22bcb ,得2cb .::3:1:2a b c;(舍去),综上可知,ABC 是“和谐三角形”时,::1:3:2a b c ;(3)①ABC 为等边三角形,AB BC AC ,60ABC ACB BAC , BG 是BEF 的高,BGF 是“和谐三角形”,::1:3:2FG BG BF,60BFG,60FAB FBA BFG , 60FABEACBAC,FBAEAC ,在ABD 和CAE 中,BADACEBAACDBAEAC,()ABD CAE ASA ,AD CE ;②GCB ABD ,AB AC ,6060FAB ABD GCB ACG ,在ABF 和CAG 中,FABGCAABCAABFCAG,()ABF CAG ASA ,AG BF ,AB BC ,AD CE ,BE CD , 设FG x ,EG y ,则3BGx ,2BFx , 2224AG BF x ,2222()2EF x y x xyy ,22222(3)3CD x y x y ,2222222422()3AG EF AG EFx x xyy x x y x y ,222AG EF AG EF CD ,线段AG ,FE ,CD 能组成一个和谐三角形.5.(2019•四会市二模)我们定义:如果圆的两条弦互相垂直,那么这两条弦互为“十字弦”,也把其中的一条弦叫做另一条弦的“十字弦”.如:如图,已知O 的两条弦ABCD ,则AB 、CD 互为“十字弦”,AB 是CD 的“十字弦”, CD 也是AB 的“十字弦”.(1)若O 的半径为5,一条弦8AB ,则弦AB 的“十字弦” CD 的最大值为 ,最小值为 .(2)如图1,若O 的弦CD 恰好是O 的直径,弦AB 与CD 相交于H ,连接AC ,若12AC ,7DH,9CH,求证:AB 、CD 互为“十字弦”;(3)如图2,若O 的半径为5,一条弦8AB ,弦CD 是AB 的“十字弦”,连接AD ,若60ADC ,求弦CD 的长.【解析】(1)如图a ,当CD 是直径时,CD 的长最大,则CD 的最大值为10;如图b,当点D与点A重合时,CD有最小值,过点O作OE CD于E,OF AB于F,4AF BF,DE CE,2225163OF AO AF,OE CD,OF AB,90CDB,四边形CEOF是矩形,3CE OF,6CD,CD最小值为6,故答案为:10,6;(2)如图1,连接AD,7DH,9CH,16CD,CD是直径,90CAD,2225614447AD CD AC,47 ADDH ,4747DCAD,AD DCDH AD,ADH ADC,ADH CDA∽,90AHD CAD,AB CD,AB、CD互为“十字弦”;(3)如图2,过点O作OE CD于E,过点O作OF AB于点F,连接AO,CO,过点O作ON AC于N,60ADC,AB CD,3AF DF,OECD ,OFAB ,AB CD ,四边形OEHF 是矩形,4AFBF,CEED ,OF EH ,2225163OFAO AF ,3EH,3ED CE DH ,32CF DH ,2120AOC ADC,且5AOCO,ONAC ,30CAO,AN CN ,52NO,53AN ,53AC,222AH CH AC ,22753(32)DH DH ,3232DH, 322(323)4332CDCE.。