《数学物理方法》第十二章 积分变换法
- 格式:ppt
- 大小:1.92 MB
- 文档页数:126
积分变换、数学物理方程与特殊函数经过十二周的学习,我们学到了很多知识,这与以后的学习和工作打下了基础,老师讲解十分认真,讲课效果很好。
由于现在还处于理论的学习阶段,无法将学到的这些内容应用到实际问题中,但我相信,在以后的实验和实际问题中肯定能发挥相当大的作用。
这门课是数学的更深一个层次,与高等数学的关系密不可分。
下面就我学习的状况谈一下我对这门课的认识。
首先学习的是《积分变换》的内容,我们主要学习了Fourier 变换、逆变换及其应用。
Fourier 积分变换相对于后面学到的《数学物理方程》偏重于理论,其中与多种函数和理论密切相关,Fourier 变换中经常用到欧拉公式。
复数形式的欧拉公式:⎪⎩⎪⎨⎧-=+=-=+=---x i x e x i e ie e n w t e e n w tix ix inwtinwt inwt inwt sin cos ,sin cos 2sin ,2cos 其中有三个基本函数,在学习《积分变换》时经常用到; 1.单位阶跃函数:⎩⎨⎧<>=0,00,1)(t t t u 可以用阶跃函数吧分段函数表达出来。
2.矩形脉冲函数:⎪⎪⎩⎪⎪⎨⎧><=2,02,τττt t E t P )( 3.δ函数:⎩⎨⎧≠=∞+=0,00,)(x x x δ 表示密度分布的极限。
δ函数具有筛选性质:)0()()(-f dx x f x =⎰+∞∞δ其一般形式为:)()()(0-0x f dx x f x x =-⎰+∞∞δ同时还学习了卷积定理:假定)(1t f ,)(2t f 都是满足Fourier 积分定理中的条件,且[])()(11w F t f =℘,[])()(22w F t f =℘,则[][]⎩⎨⎧*=⋅℘⋅=*℘-)()()()()()()()(212112121t f t f w F w F w F w F t f t f卷积并不容易算出,但卷积定理提供了卷积计算的简便方法,即化卷积运算为乘积运算,使卷积在线性系统分析中成为特别有用的方法,即又用到高等数学中求常函数的方法。
重积分的积分变换和积分替换积分是高等数学中的一个重要概念,它被广泛应用在各个领域中,包括物理学、统计学、经济学等。
在微积分中,一类重要的积分就是重积分。
和单变量积分不同,重积分涉及到多个变量,其计算难度往往更大。
近年来,学者们发现,利用积分变换和积分替换的技巧,可以有效地简化重积分的计算过程。
本文就介绍一些有关积分变换和积分替换的基本知识和重要应用。
一、积分变换积分变换是将一类积分变换成另一类积分的过程,通常是通过一些数学技巧来实现的。
积分变换有很多种,包括线性变换、仿射变换、圆柱变换、球坐标变换等。
在这里,我们主要介绍球坐标变换和柱坐标变换两种。
1. 球坐标变换球坐标变换是将三维空间中的积分转化为球坐标系下的积分。
通过这种变换,可以将具有各向同性的问题转化为与方向无关的问题,从而简化积分的计算。
球坐标系下的积分变量包括径向距离r、极角θ和方位角φ。
一般来说,球坐标变换的步骤如下:(1)将被积函数写成球坐标的形式;(2)将坐标变量x、y、z表示为r、θ和φ的函数;(3)将分子(dx dy dz)替换成球坐标系下的积分元素r²sinθ dr dθ dφ;(4)对变量r、θ和φ进行变量替换,计算出新的积分区域。
例如,设空间中有一个函数f(x,y,z),要求其在球形区域内的积分。
那么,将被积函数转化为球坐标系下的形式:f(x,y,z)→f(r,θ,φ)然后,把直角坐标系下的坐标写成球坐标系下的形式:x=r sinθ cosφ;y=r sinθ sinφ;z=r cosθ。
接着,计算出雅可比行列式,替换分子,并对积分区域进行调整。
最终得到球坐标下的积分表达式:∫∫∫f(x,y,z) dxdydz = ∫∫∫f(r,θ,φ) r²sinθ dr dθ dφ2. 柱坐标变换柱坐标变换是将三维空间中的积分转化为柱坐标系下的积分。
柱坐标系下的积分变量包括径向距离r、极角θ和高度z。
柱坐标变换的一般步骤如下:(1)将被积函数写成柱坐标系下的形式;(2)将直角坐标系下的坐标表示为柱坐标系下的形式;(3)将分子(dx dy dz)替换成柱坐标下的积分元素r d r dθ dz;(4)对变量r、θ和z进行变量替换,计算出新的积分区域。