流体力学讲义
- 格式:doc
- 大小:5.83 MB
- 文档页数:32
工程流体力学(水力学)第一章 绪论学习重点:流体的粘性及牛顿内摩擦定律。
尤其是牛顿内摩擦定律应熟练掌握。
了解工程的发展及在工程中的应用。
§1—1 工程流体力学简介1. 工程流体力学——是利用实验和理论分析的方法研究流体的平衡和运动规律及其在工程中的应用的一门学科。
2. 自然界中物质的存在形式有:(1)固体 ← 相应的研究学科有材料力学、弹性力学 等。
(2)液体(3)气体← 统称流体 。
相应的研究学科即流体力学。
3.流体与固体的比较:(1)从微观上说,流体分子之间的距离相对较大,分子运动丰富(振动、转动、移动)。
(2)从宏观上说,流体没有固定的形状,易流动、变形,静止的流体不能承受剪力及拉力。
4.发展史(随着生产的发展,继固体力学之后发展起来的一门学科):论浮体 (建立在实验、直观基础上)古典水力学(纯理论分析、理论模型) 计算流体力学5.意义:流体力学已经发展成一门涉及多专业的基础性学科。
工程流体力学在工程中的应用也越来越广泛。
例如:给排水、农田灌溉、道路、桥涵、港口设计等等。
§1—2 连续介质假设 流体的主要物理性质 一. 连续介质假设1. 流体的组成:由大量不断运动的分子组成,分子之间有间隙,不连续。
2. 假设:假设将流体看作是由无数质点组成的连续的介质。
因为我们研究的是流体的宏观机械运动而不是微观运动,这样的假设可以满足工程需要。
3. 连续介质:假定流体在充满一个体积空间时,不留任何空隙,整个空间均被流体质点所占据。
4. 质点——宏观体积足够小(可以忽略线性尺寸),但又包含大量分子的集合体。
5. 注:流体的分子运动是客观存在的,在一般的工程计算中可以把流体看成连续的介质,但在特殊情况下还是应加以考虑的。
二. 流体的主要物理性质1.易流动性——是指流体在静止时不能承受切力及不能抵抗剪切变形的性质。
一般的,固体可承受一定的拉力、压力及剪力;而静止的流体只能承受一定的压力。
流体力学第1节流体主要物理性质及力学模型流体主要物理性质:能够对流体静止和机械运动产生影响的性质一、流动性二、质量、密度三、粘性四、压缩性与膨胀性流体的主要物理性质一. 流体的流动性流体具有易流动性,不能维持自身形状,静止流体几乎不能承受拉力和剪切力。
流体的流动性受粘滞性制约。
二. 流体的质量和密度对于匀质流体,单位体积流体所具有的质量为流体的密度。
4℃水的密度为:流体的重度:三. 流体的粘滞性1)粘滞性定义:流体在运动状态下,抵抗剪切变形的能力。
平板试验说明了流体的粘滞性:两相邻液流层静止状态:两相邻液流层相对运动状态每个流体层,受到的摩擦力均与本身的相对运动方向相反,内摩擦力的作用:阻碍流体的相对运动(2) 牛顿内摩擦定律由内摩擦力的特征整理出牛顿内摩擦力的数学表达式:式中:T——内摩擦力,N;τ——单位面积上的内摩擦力(即粘滞切应力)N/m2 ;μ——动力粘滞系数,与流体种类、温度有关, Pa·s;du/dy——速度梯度,s;A——接触面积, m2 。
凡符合牛顿内摩擦定律的流体,即τ与du/dy呈过坐标原点的正比例关系的流体称为牛顿流体。
(3)粘滞系数动力粘滞系数μ:是一个反映液体粘滞性大小的量。
运动粘滞系数ν:因为ν具有运动学量纲,故称为运动粘滞系数。
题6-1 运动粘滞系数与动力粘滞系数的关系,两个系数的单位例6-1(2005年)已知空气的密度为ρ为 1.205kg/m3 , 动力粘度(动力黏滞系数)μ为1.83×10-5Pa •s,那么它的运动粘度(运动黏滞系数)v 为()A 2.2 × 10-5 s/ ㎡B 2.2 × 10-5㎡ / sC 15.2 × 10-6s/ ㎡D 15.2 × 10-6㎡ / s解:运动黏度答案:D例题(2011年)空气的粘性系数μ与水的粘性系数μ分别随温度的降低而()A 降低、升高B 降低、降低C 升高、降低D 升高、升高解:液体的粘性系数μ随温度的变化规律与我们日常生活中粘滞性和流动性的概念是一致的,例如:油的温度降低,流动性变差,粘滞性增大;这一特性是大家都了解到生活常识,由此可以判断:液体温度降低粘滞性增大、流动性降低;而气体的粘性特征与液体相反,即使不了解粘滞性的机理,也可以通过常识性知识去判断选择。
流体⼒学讲义上篇流体⼒学课程讲义绪论⼀、“流体⼒学”名称简介1、概念:⼯程流体⼒学中的流体,就是指以这两种物体为代表的⽓体和液体。
⽓体和液体都具有流动性,统称为流体。
2、研究对象流体⼒学是⼒学的⼀个分⽀。
它专门研究流体在静⽌和运动时的受⼒与运动规律。
研究流体在静⽌和运动时压⼒的分布、流速变化、流量⼤⼩、能量损失以及与固体壁⾯之间的相互作⽤⼒等问题。
3、应⽤流体⼒学在⼯农业⽣产中有着⼴泛的应⽤,举例。
4、流体⼒学的分⽀流体⼒学的⼀个分⽀是液体⼒学或叫⽔⼒学。
它研究的是不可压缩流体的⼒学规律。
另⼀分⽀是空⽓动⼒学,研究以空⽓为代表的可压缩流体⼒学,它必须考虑流体的压缩性。
本书以不可压缩流体为主,最后讲解与专业相关的空⽓动⼒学部分的基础内容。
⼀般来说,流体⼒学所指的范围较为⼴泛,⽽我们所学习的内容仅以⼯程实际需要为限,所以叫“⼯程流体⼒学”。
⼆、学科的历史与研究⽅法简介1、学科历史流体⼒学是最古⽼的学科之⼀,它的发展经历了漫长的年代。
例:我国春秋战国时期,都江堰,⽤于防洪和灌溉。
秦朝时,为了发展南⽅经济,开凿了灵渠,隋朝时开凿了贯穿中国南北,北起涿郡(今北京),南⾄余杭(今杭州)的⼤运河,全长1782km,对沟通南北交通发挥了很⼤作⽤,为当时经济的发展做出了贡献。
在国外,公元前250年,古希腊学者阿基⽶德就发表了《论浮体》⼀⽂。
到了18世纪,瑞典科学家DanielBernoulli伯努利(1700—1782)的《⽔动⼒学或关于流体运动和阻⼒的备忘录》奠定了流体⼒学的基础。
2、研究⽅法⼀⽅⾯,以理论⽅程为主线,将流体及受⼒条件理想化,忽略次要影响因素,建⽴核⼼⽅程式。
在这⽅⾯最有代表性的就是伯努利于1738年建⽴的能量⽅程。
另⼀⽅⾯,采取实验先⾏的办法。
开始了实⽤⽔⼒学的研究,在⼀系列实验理论的指导下,对理论不⾜部分反复实验、总结规律,得到经验公式和半经验公式进⾏补充应⽤。
在这⽅⾯最有代表性的是尼古拉兹实验、莫迪图等。
流体力学一、流体静力学基础 包括内容三部分:01流体主要物理特性与牛顿内摩擦定律 02流体静压强 03流体总压力01流体主要物理特性与牛顿内摩擦定律 水银的密度13.6g/cm 3重度γ(也成为容重,N/m3),单位体积流体所具有的能量。
=g γρ流体的压缩系数:1=pa d dV V dp dpρρβ-=-(单位:) ,β值越大,流体的压缩性也越大。
压缩系数的倒数成为流体的弹性模量,用表示,21()dpdV V β=-k=单位:pa=N/m流体的体膨胀系数a :1=(:)d dVV a T dT dTρρ--=单位质量力:大小与流体的质量成正比(对于均质流体,质量与体积成正比,故又称为体积力)表面力:作用在流体表面的力,大小与面积成正比,它在隔离体表面呈连续分布,可分为垂直于作用面的压力和平行于作用面的切力。
流体的黏性:流体内部质点间或流层间因相对运动而产生内摩擦力以反抗相对运动的性质叫做黏性。
此内摩擦力成为黏制力。
du d T AA dy dtθμμ== 式中:T 流体的内摩擦力μ为流体的动力黏度,单位Pa s •。
A 为流体与管壁的接触面积dudy为速度梯度,表示速度沿垂直于速度y 轴方向的变化率 d dtθ为角变形速度 气体动力黏度随温度的升高而增加。
液体动力黏度随温度的升高而降低,例如:油。
运动黏度v (单位:2/m s )(相对黏性系数):v μρ=理想流体:假想的无黏性的流体,即理想流体流过任何管道均不会产生能量损失。
[推导过程]:tan()dudt d d dy θθ≈=,即:d dudt dyθ=。
02流体静压强流体净压强的特性:①流体静压强方向与作用面垂直;②各向等值性:静止或相对静止的流体中,任一点的静压强的大小与作用面方向无关,只于该点的位置有关。
帕斯卡定律:0P P gh ρ=+式中:P 为液体内某点的压强0P 为液面气体压强 h 为某点在液面下的深度等压面:流体中压强相等的点所组成的面成为等压面。
流体力学讲义课程简介:流体力学是动力、能源、航空、环境、暖通、机械、力学等专业的重要基础课。
本课程的任务是系统介绍流体的力学性质、流体力学的基本概念和观点、基础理论和常用分析方法、有关的工程应用知识等;培养学生具有对简单流体力学问题的分析和求解能力,掌握一定的实验技能,为今后学习专业课程,从事相关的工程技术和科学研究工作打下坚实基础。
流体力学学科既是基础学科,又是用途广泛的应用学科;既是古老的学科,又是不断发展、充满活力的学科。
当前,流体力学进入了一个新的发展时期:分析手段更加先进,与各类工程专业结合更为密切,与其他学科的交叉渗透更加广泛深入。
但由于流体力学理论性较强,概念抽象,学生普遍缺乏对流体的感性认识,使流体力学课程历来被认为是教师难教、学生难学的课程之一。
为改进流体力学教学质量,所以,我们采用多媒体教学的方式,尽可能多地给学生提供大量的图片,增加感性认识。
学生在学习的过程中,要特别注意学习目标、学习方法、重点内容、注意事项等问题。
第一章绪论第一节工程流体力学的研究对象、内容和方法一、研究对象和内容研究对象和内容:工程流体力学以流体(包括液体和气体)为研究对象,研究流体宏观的平衡和运动的规律,流体与固体壁面之间的相互作用规律,以及这些规律在工程实际中的应用。
自然界存在着大量复杂的流动现象,随着人类认识的深入,开始利用流动规律改造自然界。
最典型的例子是人类利用空气对运动中的机翼产生升力的机理发明了飞机。
航空技术的发展强烈推动了流体力学的迅速发展。
流体力学是一门基础性很强和应用性很广的学科,是力学的一个重要分支。
它的研究对象随着生产的需要与科学的发展在不断地更新、深化和扩大。
60年代以前,它主要围绕航空、航天、大气、海洋、航运、水利和各种管路系统等方面,研究流体运动中的动量传递问题,即局限于研究流体的运动规律,和它与固体、液体或大气界面之间的相互作用力问题。
60年代以后,能源、环境保护、化工和石油等领域中的流体力学问题逐渐受到重视,这类问题的特征是:尺寸小、速度低,并在流体运动过程中存在传热、传质现象。
这样,流体力学除了研究流体的运动规律以外,还要研究它的传热、传质规律。
同样,在固体、液体或气体界面处,不仅研究相互之间的作用力,而且还需要研究它们之间的传热、传质规律。
工程流体力学是研究流体(液体、气体)处于平衡状态和流动状态时的运动规律及其在工程技术领域中的应用。
流体力学的基础理论由三部分组成。
一是流体处于平衡状态时,各种作用在流体上的力之间关系的理论,称为流体静力学;二是流体处于流动状态时,作用在流体上的力和流动之间关系的理论,称为流体动力学;三是气体处于高速流动状态时,气体的运动规律的理论,称为气体动力学。
工程流体力学的研究范畴是将流体流动作为宏观机械运动进行研究,而不是研究流体的微观分子运动,因而在流体动力学部分主要研究流体的质量守恒、动量守恒和能量守恒及转换等基本规律。
流体力学在工程技术中有着广泛的应用。
在能源、化工、环保、机械、建筑(给排水、暖通)等工程技术领域的设计、施工和运行等方面都涉及到流体力学问题。
不同工程技术领域的流体力学问题有各自不同的特点,概括起来主要有三种不同流动形式:一是有压管流,如流体在管道中的流动;二是绕流,如流体在流体机械中绕过翼型的流动;三是射流,如流体从孔口或管嘴喷出的流动。
流体力学就是要具体地研究流体流动形式中的速度分布、压力分布、能量损失,以及流体同固体之间的相互作用,同时也要研究流体平衡的条件。
流体力学作为一门独立的学科,同其他自然科学一样是人类为了满足自身生活和生产的需要,在认识与改造自然的斗争中,随着实践经验的不断积累,技术与知识水平的不断提高才形成和发展起来的,有着漫长的发展历程。
其发展既依赖于科学实验和生产实践,又受到许多社会因素的影响。
我国是世界上三大文明古国之一,有着悠久的历史和灿烂的文化,由于生产发展的需要,远在两三千年以前,古代劳动人民就利用孔口出流的原理发明了刻漏、铜壶滴漏(西汉时期的计时工具)。
同时又发明了水磨、水碾等。
在唐代以前,我国就出现了水轮翻车,宋元时代出现的水轮大纺车比英国早四五百年(英国在1796年发明)。
北宋时期,在运河上修建的真州复闸,与14世纪末在荷兰出现的同类船闸相比约早300多年。
清朝雍正年间,何梦瑶在《算迪》一书中提出了流量为过水断面上平均流速乘以过水断面面积的计算方法。
我国在防止水患、兴修水利方面也有着悠久的历史。
相传4000多年前的大禹治水,就表明我国古代进行过大规模的防洪工作。
在公元前256年至前210年间修建的都江堰、郑国渠和灵渠三大水利工程,两千多年来效益卓著。
以上都说明了我国劳动人民的聪明智慧,当时对流体流动规律的认识已达到相当高的水平。
14世纪以前,我国的科学技术在世界上是处于领先地位的。
但是,近几百年来由于闭关锁国使我国的科学得不到应有的发展,以致在流体力学方面由古代的领先地位而落在后面。
有明确记载的最早的流体力学原理是在公元前250年,希腊数学家及力学家阿基米德(Archimedes)发表一篇“论浮体”的论文,提出了浮体定律,这是流体力学的第一部著作。
由于奴隶制、神权和宗教观念的束缚,直到15世纪文艺复兴时期,尚未形成系统的理论。
16世纪以后,在欧洲由于封建制度的崩溃,资本主义开始萌芽,生产力有了发展。
在城市建设、航海和机械工业发展需要的推动下,逐步形成近代的自然科学,流体力学也随之得到发展。
意大利的达·芬奇(Vinci,L. da)是文艺复兴时期出类拔萃的美术家、科学家兼工程师,他倡导用实验方法了解水流性态,并通过实验描绘和讨论了许多水力现象,如自由射流、旋涡形成原理等等。
1612年伽利略(Galilei)提出了潜体的沉浮原理;1643年托里拆利(Torricelli,E.)给出了孔口泄流的公式;1650年帕斯卡(Pascal,B.)提出液体中压力传递的定理;1686年牛顿(Newton,I.)发表了名著《自然哲学的数学原理》对普通流体的黏性性状作了描述,即现代表达为黏性切应力与速度梯度成正比—牛顿内摩擦定律。
为了纪念牛顿,将黏性切应力与速度梯度成正比的流体称为牛顿流体。
18世纪~19世纪,流体力学得到了较大的发展,成为独立的一门学科。
古典流体力学的奠基人是瑞士数学家伯努利(Bernoulli,D.)和他的亲密朋友欧拉(Euler,L.)。
1738年,伯努利推导出了著名的伯努利方程,欧拉于1755年建立了理想流体运动微分方程,以后纳维(Navier,C .-L.-M.-H.)和斯托克斯(Stokes,G.G.)建立了黏性流体运动微分方程。
拉格朗日(Lagrange)、拉普拉斯(Laplace)和高斯(Gosse)等人,将欧拉和伯努利所开创的新兴的流体动力学推向完美的分析高度。
但当时由于理论的假设与实际不尽相符或数学上的求解困难,有很多疑难问题不能不能从理论上给予解决。
19世纪末以来,现代工业迅猛发展,生产实践要求理论与实际更加密切结合才能解决问题。
1883年,雷诺(Reynolds,O.)用不同直径的圆管进行实验,研究了黏性流体的流动,提出了黏性流体存在层流和紊流两种流态,并给出了流态的判别准则—雷诺数。
12年后,他又引进紊流(或雷诺)应力的概念,并用时均方法,建立了不可压缩流体作紊流运动时所应满足的方程组,雷诺的研究为紊流的理论研究奠定了基础。
1891年,兰彻斯特(F.W.)提出速度环量产生升力的概念,这为建立升力理论创造了条件,他也是第一个提出有限翼展机翼理论的人。
进入20世纪以后,流体力学的理论与实验研究除了在已经开始的各个领域继续开展以外,在发展航空航天事业方面取得了迅猛的发展。
在运动物体的升力方面,库塔(W.M.)和儒可夫斯基(N.E.)分别在1902年和1906年独立地提出特殊的与一般的库塔—儒可夫斯基定理和假定,奠定了二维升力理论的基础。
至于运动物体的阻力问题,至此仍缺乏完善的理论,人们普遍认为:尾涡是物体阻力的主要来源,遂将注意力转向物体尾流的研究。
1912年,卡门(T.von)从理论上分析了涡系(即卡门涡街)的稳定性。
1904年普朗特(Prandtl,L.)提出了划时代的边界层理论,使黏性流体概念和无黏性流体概念协调起来,使流体力学进入了一个新的历史阶段。
20世纪中叶以后,流体力学的研究内容,有了明显的转变,除了一些较难较复杂的问题,如紊流、流动稳定性与过渡、涡流动力学和非定常流等继续研究外,更主要的是转向研究石油、化工、能源、环保等领域的流体力学问题,并与相关的邻近学科相互渗透,形成许多新分支或交叉学科,如计算流体力学、实验流体力学、可压缩气体力学、磁流体力学、非牛顿流体力学、生物流体力学、多相流体力学、物理-化学流体力学、渗流力学和流体机械流体力学等。
一般来说,这些新的分支或交叉学科所研究的现象或问题都比较复杂,要想很好地解决它们,实际上是对流体力学研究人员的一次大挑战。
现有的流体力学运动方程组不能完全准确地描述这些现象和新问题,试图用现有的方程组和纯计算的方法去解决这些问题是相当困难的,唯一可行的道路是采用纯实验或实验与计算相结合的方法。
近年来在一些分支或交叉学科(如多相流等)中采用这种方法,获得了较好的效果,大大推动了实验技术的发展。
14世纪以前,我国在流体力学原理的应用方面做出了巨大贡献,曾领先于世界。
新中国建立以后,随着工农业的建设,在这方面的工作得到迅猛发展,建造了众多的各级重点实验室,不仅解决了无数的生产实际问题,而且还培养了一支具有较高水平的理论和实验队伍。
完全可以相信在今后的社会主义现代化建设事业中,通过流体力学工作者的不断努力,我国的流体力学事业必将有更大的发展。
二、研究方法力学分为理论力学、材料力学和流体力学。
流体力学分为理论流体力学、实验流体力学和计算流体力学。
由于流体运动本身具三维性、时变性与非线性等性质,因此其物理现象非常复杂。
早期的流体力学研究主要是借助于理论分析与试验,然而传统的理论分析方法由于有许多假设与简化,所以其能解决的问题通常有限。
近年来,所着电脑计算速度与内存容量不断地增进,计算流体力学所能解决问题的尺度与复杂难度也逐渐加大,时至今日,计算流体力学已成为学界研究流体力促恩的主要利器之一,与理论流体力学和实验流体力学构成现代研究流体力学之三大主流。
(1)实验流体力学大量实践中的复杂问题不得不借助于实验研究来解决,特别是国防、航空和宇航上,为提高解决问题的能力,实验设备越造越大,实验耗费也巨额增加。
对所研究的流动问题,选择适当的无量纲参数,建立相应的实验模型,在实验风洞中观察流动现象,测定数据,并根据相似理论和量纲分析等方法推测实验结果。
例如,飞机风洞试验。
欲了解飞机周围空气动力特性,让飞机在地面上静止,而让周围的空气运动,耗时长,费用大。