高等化工热力学 第四章分布函数
- 格式:ppt
- 大小:2.10 MB
- 文档页数:34
1.1 如果流体服从van der Waals 方程,请导出A 和G 的偏离函数以及逸度系数ϕ的表达式。
解:oo2o 2ooo - ()d ln van der Waals -()d ln (ln)|ln ln mmm V mm m m m mm mV mm mm m m m mV m m m m mm m mV RTA A p V RT V V RT ap V b V V RT a RTA A V RT V b V V V V V a RT RT V b V V V aRT V b V ∞∞∞=---=--=-----=---=--⎰⎰已知带入方程:,得:()()o 2o ln 2ln m m m m m m m m m m m m m m mm m m G G A A pV p V V a RT a RT V p V V b V V b V V RTV a RT RTV b V V b-=-+-⎛⎫=-+-- ⎪--⎝⎭=-+---则1.2 请根据下列丙酮(1)-氯仿(2) 溶液的实验数据 (35.17℃) 计算 (1)以纯液态为标准态,丙酮的活度及活度系数, (2)以无限稀释为参考态,氯仿的活度及活度系数。
x 2 0.0000 0.0588 0.1232 0.2910 0.4232 0.5143 0.6635 0.7997 0.9175 1.000 p 1 / kPa 45.93 43.09 39.90 30.70 23.28 18.00 10.53 5.00 1.73 0.0 p 2 / kPa0.0001.232.727.3911.8515.7122.6929.9235.6139.08解:0,,0,i ii i i i i x i i x i i ip a p p a p x a p x γγ==⇒== (1) 以纯液态为标准态,则0145.93kPa p =111,1012,1x p a a p x γ==- (2) 以无限稀释为参考态,则0239.08kPa p =,2,2,2*222,2022,,x x x x p a a p x γγγγ∞=== x 2 0.0000 0.0588 0.1232 0.2910 0.4232 0.5143 0.6635 0.7997 0.9175 1.000 p 1 / kPa 45.93 43.09 39.90 30.70 23.28 18.00 10.53 5.00 1.73 0.0 p 2 / kPa0.000 1.232.727.3911.8515.7122.6929.9235.6139.081a1 0.9382 0.8687 0.6684 0.5069 0.3919 0.2293 0.1089 0.0377 0 ,1x γ1 0.9968 0.9908 0.9427 0.8787 0.8069 0.6813 0.5435 0.4566 2a0.0315 0.0696 0.1891 0.3032 0.4020 0.5806 0.7656 0.9112 1 ,2x γ,2x γ∞=0.500.5353 0.5649 0.6498 0.7165 0.7816 0.8751 0.9574 0.9931 1,2*x γ1.0000 1.0705 1.1299 1.2997 1.4330 1.5633 1.7501 1.9147 1.98632.00001.3 已知对45℃时四氯化碳(1)-乙腈(2)混合物的平衡气相组成,总蒸气压及混合热如下,请分别计算:(1)活度1a ,2a 与x 的关系曲线, (2)45℃时G ∆及S T ∆与x 的关系曲线, (3)exH,ex G 及exTS 与x 的关系曲线。
第4章 非均相封锁体系热力学一、是不是题1. 偏摩尔体积的概念可表示为{}{}ii x P T i n P T ii x V nnV V ≠≠⎪⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂=,,,,∂。
(错。
因关于一个均相放开系统,n 是一个变数,即(){}0,,≠∂∂≠in P T i n n )2. 在必然温度和压力下的理想溶液的组分逸度与其摩尔分数成正比。
(对。
即常数===),(,ˆP T f f x f f i ii is i )3. 理想气体混合物确实是一种理想溶液。
(对)4. 关于理想溶液,所有的混合进程性质转变均为零。
(错。
V ,H ,U ,C P ,C V 的混合进程性质转变等于零,对S ,G ,A 那么不等于零) 5. 关于理想溶液所有的逾额性质均为零。
(对。
因is EM M M-=)6. 理想溶液中所有组分的活度系数为零。
(错。
理想溶液的活度系数为1)7. 体系混合进程的性质转变与该体系相应的逾额性质是相同的。
(错。
同于4)8. 关于理想溶液的某一容量性质M ,那么__i i M M =。
(错,同于4)9.理想气体有f=P ,而理想溶液有i i ϕϕ=ˆ。
(对。
因i i i i i i is i isiPfPx x f Px f ϕϕ====ˆˆ) 10. 温度和压力相同的两种理想气体混合后,那么温度和压力不变,整体积为原先两气体体积之和,总热力学能为原两气体热力学能之和,总熵为原先两气体熵之和。
(错。
总熵不等于原先两气体的熵之和)11. 温度和压力相同的两种纯物质混合成理想溶液,那么混合进程的温度、压力、焓、热力学能、吉氏函数的值不变。
(错。
吉氏函数的值要发生转变)12. 因为G E (或活度系数)模型是温度和组成的函数,故理论上i γ与压力无关.(错。
理论上是T ,P ,组成的函数。
只有对低压下的液体,才近似为T 和组成的函数)13. 在常温、常压下,将10cm 3的液体水与20 cm 3的液体甲醇混合后,其整体积为 30 cm 3。
习题四一、是否题M M。
4-1 对于理想溶液的某一容量性质M,则i i解:否4-2 在常温、常压下,将10cm3的液体水与20 cm3的液体甲醇混合后,其总体积为30 cm3。
解:否4-3温度和压力相同的两种纯物质混合成理想溶液,则混合过程的温度、压力、焓、Gibbs自由能的值不变。
解:否4-4对于二元混合物系统,当在某浓度范围内组分2符合Henry规则,则在相同的浓度范围内组分1符合Lewis-Randall规则。
解:是4-5在一定温度和压力下的理想溶液的组分逸度与其摩尔分数成正比。
解:是4-6理想气体混合物就是一种理想溶液。
解:是4-7对于理想溶液,所有的混合过程性质变化均为零。
解:否4-8对于理想溶液所有的超额性质均为零。
解:否4-9 理想溶液中所有组分的活度系数为零。
解:否4-10 系统混合过程的性质变化与该系统相应的超额性质是相同的。
解:否4-11理想溶液在全浓度范围内,每个组分均遵守Lewis-Randall 定则。
解:否4-12 对理想溶液具有负偏差的系统中,各组分活度系数i γ均 大于1。
解:否4-13 Wilson 方程是工程设计中应用最广泛的描述活度系数的方程。
但它不适用于液液部分互溶系统。
解:是二、计算题4-14 在一定T 、p 下,二元混合物的焓为 2121x cx bx ax H ++= 其中,a =15000,b =20000,c = - 20000 单位均为-1J mol ⋅,求 (1) 组分1与组分2在纯态时的焓值1H 、2H ;(2) 组分1与组分2在溶液中的偏摩尔焓1H 、2H 和无限稀释时的偏摩尔焓1∞H 、2∞H 。
解:(1)1111lim 15000J mol -→===⋅x H H a2121lim 20000J mol -→===⋅x H H b(2)按截距法公式计算组分1与组分2的偏摩尔焓,先求导:()()()12121111111d dd d d11d H ax bx cx x x x ax b x cx x x =++=+-+-⎡⎤⎣⎦12=-+-a b c cx将1d d Hx 代入到偏摩尔焓计算公式中,得()()()()()()11112121111111112122d 1d (1)211221H H H x x ax bx cx x x a b c cx ax b x cx x a b c cx x a b c cx a c x a cx =+-=+++--+-=+-+-+-+---+-=+-=+()()()()21121211111111121d 2d 112HH H x ax bx cx x x a b c cx x ax b x cx x x a b c cx b cx =-=++--+-=+-+---+-=+无限稀释时的偏摩尔焓1∞H 、2∞H 为:()()2-1112012-122111221lim lim 150002000035000J mol lim lim 200002000040000J molx x x x H H a cx H H b cx∞→→∞→→==+=+=⋅==+=+=⋅4-15 在25℃,1atm 以下,含组分1与组分2的二元溶液的焓可以由下式表示:121212905069H x x x x x x =++⋅+()式中H 单位为-1cal mol ⋅,1x 、2x 分别为组分1、2的摩尔分数,求 (1) 用1x 表示的偏摩尔焓1H 和2H 的表达式; (2) 组分1与2在纯状态时的1H 、2H ;(3) 组分1与2在无限稀释溶液的偏摩尔焓1∞H 、2∞H ;(4) ΔH 的表达式;(5) 1x =0.5 的溶液中的1H 和2H 值及溶液的H ∆值。