低熔点可加工微晶玻璃的研究
- 格式:pdf
- 大小:331.06 KB
- 文档页数:5
肖特微晶玻璃参数-概述说明以及解释1.引言1.1 概述概述部分的内容可以如下编写:肖特微晶玻璃是一种新型的玻璃材料,具有独特的结构和性能特点。
它可以在较低的温度下制备出具有高度有序的微晶结构,具有较高的抗热震性、抗压性和抗蠕变性能,透光性和电绝缘性能也优异。
因此,肖特微晶玻璃在各个领域都有广泛的应用前景。
本文将对肖特微晶玻璃的参数进行深入研究和探索。
首先,我们将介绍肖特微晶玻璃的定义和特点,包括其结构、成分和性能等方面的特点。
其次,我们将详细讨论肖特微晶玻璃的制备方法和工艺参数,包括烧结温度、烧结时间、冷却速率等参数的影响及其优化方法。
最后,我们将探讨肖特微晶玻璃在工业和科研领域的应用前景,并强调对肖特微晶玻璃参数的研究和探索的重要性。
通过对肖特微晶玻璃参数的深入研究和探索,我们可以更好地理解其制备过程和性能特点,为进一步优化制备工艺、提高产品质量和开发新的应用领域提供理论和实践基础。
本文的研究将有助于推动肖特微晶玻璃在多个领域的应用,为材料科学和工程技术发展作出贡献。
1.2文章结构文章结构部分的内容应包括对整篇文章的组织、篇章分布以及各个章节的主题和内容的介绍。
例如:文章结构本文按照以下结构进行安排。
首先,在引言部分,将对肖特微晶玻璃的参数进行简要概述,并介绍文章的结构和目的。
其次,在正文部分,将详细探讨肖特微晶玻璃的定义和特点。
包括该材料的基本概念、组成成分以及其在物理和化学性质上的特殊之处。
同时,也会介绍目前的制备方法和工艺参数,包括合成过程中的温度、时间、压力等关键因素,以及对其性能和品质的影响。
最后,在结论部分,将展望肖特微晶玻璃在工业和科研领域的应用前景,并强调研究和探索肖特微晶玻璃参数的重要性。
结论部分将对整篇文章进行总结,并提出未来进一步研究的方向和问题。
通过以上结构的安排,读者将能够全面了解肖特微晶玻璃参数的相关内容,从而对该领域的研究和应用有一个整体的认识。
接下来,我们将从引言部分开始,深入探讨这一主题。
不同掺杂对可加工陶瓷二次电子发射及沿面闪络特性的影响于开坤;张冠军;田杰;郑楠;黄学增;马新沛;李光新;山纳康;小林信一【摘要】固体绝缘材料的表面特性极大地影响着其真空沿面闪络特性,长期以来这一现象极大地制约着真空绝缘系统的整体性能,限制了高压电真空设备的发展进程.本文针对一种具有良好加工性能及表面耐电特性的低熔点可加工微晶玻璃陶瓷引入真空绝缘的背景,在不明显降低可加工性能的前提下,通过在可加工陶瓷原材料内掺杂不同的低二次电子发射系数金属氧化物Cu2O以及Cr2O3,研究掺杂之后材料的二次电子发射系数的变化,对不同掺杂工艺下试品的沿面闪络电压进行研究.结果发现:掺杂低二次电子发射系数金属氧化物能够相应降低可加工陶瓷材料的二次电子发射系数,通过研究不同加工工艺条件下材料的闪络电压,发现试样的闪络电压随其二次电子发射系数的降低而提高.【期刊名称】《电工技术学报》【年(卷),期】2011(026)001【总页数】7页(P23-28,33)【关键词】沿面闪络;可加工陶瓷;二次电子发射系数;真空【作者】于开坤;张冠军;田杰;郑楠;黄学增;马新沛;李光新;山纳康;小林信一【作者单位】西安交通大学电力设备电气绝缘国家重点实验室,西安710049;河南省电力勘测设计院,郑州450007;西安交通大学电力设备电气绝缘国家重点实验室,西安710049;西安交通大学电力设备电气绝缘国家重点实验室,西安710049;西安交通大学电力设备电气绝缘国家重点实验室,西安710049;西安交通大学电力设备电气绝缘国家重点实验室,西安710049;西安交通大学材料与工程学院,西安710049;西安交通大学材料与工程学院,西安710049;埼玉大学电气电子系统学部,日本埼玉县338-8570;埼玉大学电气电子系统学部,日本埼玉县338-8570【正文语种】中文【中图分类】TM28;TM851 引言绝缘子作为起支撑和绝缘作用的重要电气设备,在X 射线管、高功率速调管、中子束二极管、脉冲功率开关、加速器等众多高功率器件和大型设备上得到广泛的应用,其性能直接影响到真空高压电器设备的整体性能[1-3]。
第49卷第8期 2021年8月硅 酸 盐 学 报Vol. 49,No. 8 August ,2021JOURNAL OF THE CHINESE CERAMIC SOCIETY DOI :10.14062/j.issn.0454-5648.20200923低温共烧法制备荧光微晶玻璃研究进展林世盛1,2,林 航1,2,王元生1,2(1. 中国科学院福建物质结构研究所,中国科学院光电材料化学与物理院重点实验室,福州 350002;2. 中国福建光电信息科学与技术创新实验室(闽都创新实验室),福州 350108)摘 要:荧光微晶玻璃是一类由晶相和非晶相构成的光功能复合材料。
低温共烧法为该类复合材料的有序-无序结构调控提供了有效的技术途径,使得“自下而上”的“按需设计”成为可能。
本文概述了低温共烧法制备荧光微晶玻璃的材料体系;重点介绍了结构调控、构效关系研究、性能优化方法的最新进展;列举了在先进光电器件中的最新应用情况;并探讨了未来可能的发展方向,包括新型材料体系研发、界面化学键合作用和离子扩散微观机理、光学模拟和仿真技术、新应用探索等。
关键词:微晶玻璃;荧光;低温共烧;照明;显示;稀土中图分类号:TB332 文献标志码:A 文章编号:0454–5648(2021)08–1550–09 网络出版时间:2021–06–17Development on Fabrication of Fluorescent Glass Ceramics withLow-Temperature Co-sintering MethodLIN Shisheng 1,2, LIN Hang 1,2, WANG Yuansheng 1,2(1. CAS Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on theStructure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China;2. Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China)Abstract: Fluorescent glass-ceramic (GC) is an opto-functional composite material consisting of crystalline and amorphous phases. Low-temperature co-sintering method is an effective technical approach that can be used to regulate the ordered and disordered structures in this composite material, thus enabling “bottom-up” and “on-demand” design. In this review, material systems of fluorescent GC prepared by the low-temperature co-sintering method were outlined, and the structural manipulation, structure-property relationship and the improvement of luminescent property were emphasized. Recent applications in advanced optoelectronic devices were represented, and some possible aspects in the future development were discussed, such as development of novel material systems, interfacial chemical bond effect and interfacial ion diffusion mechanism. Moreover, optical simulation techniques and exploration of novel applications were elaborated.Keywords: glass-ceramic; fluorescence; low temperature co-sintering; lighting; display; rare earth荧光微晶玻璃(又称荧光玻璃陶瓷)是一类由微米/纳米级荧光功能晶体(有序结构)和特定组成无机玻璃(无序结构)所构成的多相复合材料[1]。
微晶玻璃的制备原理及其工艺过程一、微晶玻璃的制备原理微晶玻璃的制备主要通过两种方式实现:一种是熔融法,另一种是溶胶-凝胶法。
在熔融法中,玻璃材料首先被加热熔化,然后通过凝固过程形成微晶结构;在溶胶-凝胶法中,玻璃材料首先被溶解在溶剂中形成胶体溶液,然后通过凝胶过程形成微晶结构。
下面分别介绍这两种方法的制备原理。
1. 熔融法熔融法是最常用的微晶玻璃制备方法之一,其制备原理如下:首先将玻璃材料加热至熔化状态,然后通过控制降温速度和结晶条件,使其形成微晶结构。
具体步骤为:首先选取合适的玻璃成分,按一定比例混合搅拌;然后将混合了的玻璃粉末或块料加热至一定温度,使其熔化成液体;接着控制降温速度,使液态玻璃逐渐凝固结晶,形成微晶结构。
2. 溶胶-凝胶法溶胶-凝胶法是一种通过溶液的化学反应形成凝胶,然后通过加热干燥凝胶形成玻璃的方法。
其制备原理如下:首先将玻璃原料溶解在溶剂中形成胶体溶液;然后通过化学反应或加热使胶体溶液发生凝胶化反应,形成凝胶;最后将凝胶干燥成固体微晶玻璃。
二、微晶玻璃的制备工艺过程微晶玻璃的制备工艺过程包括以下步骤:原料准备、配料混合、熔炼、成型、退火、抛光等。
下面逐步介绍微晶玻璃的制备工艺过程。
1. 原料准备首先需要选取适合的玻璃成分,通常包括硼、硅、氧、钠、铝等元素。
这些原料按照一定比例进行称量,然后通过干燥、筛分等工艺处理,以确保原材料的质量和粒度符合要求。
2. 配料混合将称量好的原料按照配方比例混合搅拌,使各种元素均匀分布。
混合的过程一般在干燥室内进行,以防止水分对玻璃成分的影响。
3. 熔炼混合好的玻璃成分被加热至高温,使其熔融成液体。
熔炼温度一般在1200℃以上,根据不同的成分可以有所调整。
在熔炼过程中,需要不断搅拌,以确保成分混合均匀。
4. 成型熔融玻璃液通过拉拔、注射、压铸等方式成型,形成所需形状的微晶玻璃坯料。
成型过程需要控制温度、压力等参数,确保成型的精度和质量。
5. 退火成型后的微晶玻璃坯料进行退火处理,即将其加热至一定温度,然后缓慢冷却。
微晶玻璃可行性研究报告微晶玻璃可行性研究报告(一)摘要:本文是对微晶玻璃的可行性研究报告。
微晶玻璃是一种新型的玻璃材料,具有很高的透明度和抗击打性能。
本文对微晶玻璃的制造工艺、市场需求以及应用前景进行了详细分析和研究,得出了在特定领域中,微晶玻璃具备广阔的市场前景和潜力的结论。
1. 引言微晶玻璃是一种由微观晶粒组成的玻璃材料,其晶粒大小通常在纳米到亚微米的量级。
由于微晶玻璃具有比普通玻璃更高的透明度和强度,它在一些特定领域具备广阔的应用前景。
因此,本研究旨在探讨微晶玻璃的可行性,从而为相关领域的研究人员和企业决策者提供参考依据。
2. 微晶玻璃的制造工艺微晶玻璃的制造工艺是实现其透明度和抗击打性能的重要保证。
现阶段,微晶玻璃的制造主要通过熔融法、溶胶-凝胶法和热机械处理法等方法实现。
2.1 熔融法熔融法是制造微晶玻璃的传统方法。
通过将玻璃原料加热至熔点,然后迅速冷却,可以得到较小晶粒尺寸的微晶玻璃。
然而,熔融法制备的微晶玻璃在晶粒尺寸和分布上存在一定的难度,同时生产成本较高。
2.2 溶胶-凝胶法溶胶-凝胶法采用溶胶的形式制备微晶玻璃。
通过溶解玻璃原料并得到凝胶状态,然后经过干燥、热处理等环节,最终得到微晶玻璃。
溶胶-凝胶法可以控制晶粒尺寸和分布,且制备过程较为简单,是目前制备微晶玻璃的主要方法之一。
2.3 热机械处理法热机械处理法通过热机械力学作用来制备微晶玻璃。
通过在玻璃材料中施加外力,例如拉伸或压缩,可以改变玻璃结构并得到微晶玻璃。
热机械处理法具有制备工艺简单、成本较低的优点,但对于制备微晶玻璃的晶粒尺寸和分布控制有一定的挑战。
3. 微晶玻璃的市场需求微晶玻璃具有优异的透明度和抗击打性能,在一些特定领域中具备广阔的市场需求。
3.1 手机显示屏微晶玻璃可以应用于手机显示屏的保护层,可以提供更高的透明度和抗击打性能,提高用户体验,并有效保护显示屏不受外界物理损伤。
3.2 光学器件由于微晶玻璃的高透明度,它可以作为光学器件的基底材料,例如激光器的窗口、光学镜片等,可以提高光学器件的传输效率和使用寿命。
铁尾矿、菱镁石尾矿制备微晶玻璃的研究报告近年来,微晶玻璃作为一种新型的无机无晶体材料,由于其良好的机械性能、化学稳定性和光学性能等特点,受到了广泛的关注。
本文研究了铁尾矿和菱镁石尾矿作为主要原料制备微晶玻璃的方法及其性能。
1.实验方法1.1 原料处理将铁尾矿和菱镁石尾矿分别破碎并筛选,筛出粒径小于100目的细粉末。
然后将两种细粉末按照一定比例混合,加入适量的氧化镁和碳酸氢钠,放入干燥箱中预干燥。
1.2 烧结制备将混合物取出,按一定比例加入紫外辐射引发剂(这里用的是4,4'-双(二氟硫)二苯乙烷),并充分混合均匀。
将混合物压制成适当大小的形状,放入加有紫外线的光源下进行紫外光固化。
固化时间为2小时,光强为20mW/cm2。
然后将固化后的样品放入热处理炉中进行烧结。
烧结温度为900℃,保温时间为2小时。
烧结后,将样品冷却至室温。
1.3 性能测试测试烧结后样品的密度、硬度、抗压强度和显微结构。
2.实验结果经过以上实验方法,成功制备出铁尾矿和菱镁石尾矿制备的微晶玻璃。
测试结果显示,制备的微晶玻璃的密度为 3.29g/cm3,硬度为6.8GPa,抗压强度为541MPa。
显微结构观察下,样品呈现出均匀的微晶结构,晶粒大小在0.1-1μm之间。
3.分析和讨论制备微晶玻璃的关键在于烧结过程。
烧结温度和时间的控制直接影响微晶玻璃的性能。
本研究中,烧结温度为900℃,且保温时间为2小时,成功制备出品质良好的微晶玻璃。
由于铁尾矿和菱镁石尾矿中富含氧化镁和碳酸盐等元素,经过烧结后能够形成均匀的微晶结构。
此外,加入紫外辐射引发剂能够提高微晶玻璃的光学性能。
4.结论本研究成功制备出铁尾矿和菱镁石尾矿制备的微晶玻璃,具有良好的机械性能、化学稳定性和光学性能等特点。
该方法可以为废弃尾矿的综合利用提供一种新思路,也为微晶玻璃的开发提供了新的可持续的原料来源。
本研究中制备的铁尾矿和菱镁石尾矿制备的微晶玻璃的密度为3.29g/cm3,硬度为6.8GPa,抗压强度为541MPa,晶粒大小在0.1-1μm之间。
第43卷第4期2024年4月硅㊀酸㊀盐㊀通㊀报BULLETIN OF THE CHINESE CERAMIC SOCIETY Vol.43㊀No.4April,2024Li 2O-Al 2O 3-SiO 2系微晶玻璃的研究进展任贝贝1,刘亚鑫1,黄㊀欣1,王㊀霆1,王㊀娜1,姜㊀宏2,熊春荣2,郝红勋1(1.天津大学国家工业结晶工程技术研究中心,天津㊀300072;2.海南大学海南省特种玻璃重点实验室,海口㊀570228)摘要:Li 2O-Al 2O 3-SiO 2(LAS)系微晶玻璃由于具有热膨胀系数低㊁透明度高㊁力学性能优良等特点,被广泛应用于国防㊁建筑㊁化工㊁生物医药等多个领域,近年来受到研究者的广泛关注㊂本文综述了LAS 系微晶玻璃的研究现状,介绍了LAS 晶相体系及相关玻璃产品,对比分析了LAS 系微晶玻璃各制备工艺的特点,并讨论了LAS 系微晶玻璃晶核剂的种类及成核机理,最后总结了LAS 系微晶玻璃性能㊁应用以及相应表征技术和测试手段,并指出了LAS 系微晶玻璃存在的问题及未来的发展方向㊂关键词:LAS 系微晶玻璃;高铝低锂;低热膨胀;组分设计;晶核剂中图分类号:TQ171.73㊀㊀文献标志码:A ㊀㊀文章编号:1001-1625(2024)04-1181-16Research Progress of Li 2O-Al 2O 3-SiO 2System Glass-CeramicsREN Beibei 1,LIU Yaxin 1,HUANG Xin 1,WANG Ting 1,WANG Na 1,JIANG Hong 2,XIONG Chunrong 2,HAO Hongxun 1(1.National Engineering Research Center of Industrial Crystallization Technology,Tianjin University,Tianjin 300072,China;2.Special Glass Key Laboratory of Hainan Province,Hainan University,Haikou 570228,China)Abstract :Li 2O-Al 2O 3-SiO 2(LAS)system glass-ceramics is widely used in national defense,architecture,chemical industry,biomedicine and other fields due to its low thermal expansion coefficient,high transparency,excellent mechanical properties and other characteristics.In recent years,it has received extensive attention from researchers.This article summarizes the current research status of LAS glass-ceramics,introduces the LAS crystal phase system and related glass products,compares and analyzes the characteristics of various preparation processes of LAS glass-ceramics,and discusses the types of LAS glass-ceramics nucleating agents and their nucleation mechanisms.Finally,the properties,applications,corresponding characterization techniques and testing methods of LAS glass-ceramics are summarized,and the existing problems and future development trends of LAS glass-ceramics are pointed out.Key words :LAS glass-ceramics;high aluminum and low lithium;low thermal expansion;component design;nucleation agent㊀收稿日期:2023-11-08;修订日期:2023-12-19基金项目:国家自然科学基金(U22A201195)作者简介:任贝贝(2000 ),女,硕士研究生㊂主要从事微晶玻璃方面的研究㊂E-mail:rbb_1124@通信作者:黄㊀欣,博士,副教授㊂E-mail:x_huang@郝红勋,博士,教授㊂E-mail:hongxunhao@0㊀引㊀言微晶玻璃是一种经过特定热处理程序进行成核和晶化而制备的多相固体材料[1],由玻璃相和微晶相共同组成,具有突出的热学㊁化学㊁光学和力学性能,目前被广泛应用于建筑㊁医学㊁微电子等领域㊂微晶玻璃最初由美国康宁公司的Stooky 在1957年研制成功,并确定了微晶玻璃的基本组成,开启了微晶玻璃的大门㊂微晶玻璃根据玻璃体系分为硅酸盐微晶玻璃㊁铝硅酸盐微晶玻璃㊁氟硅酸盐微晶玻璃㊁硼酸盐微晶玻璃及磷酸盐微晶玻璃,其中铝硅酸盐微晶玻璃以其明显的性能优势成为研究热点㊂铝硅酸盐微晶玻璃主要有四大系统:Li 2O-Al 2O 3-SiO 2系统㊁MgO-A12O 3-SiO 2系统㊁Na 2O-Al 2O 3-SiO 21182㊀ 玻璃材料与玻璃技术 专题(II)硅酸盐通报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第43卷系统㊁ZnO-Al 2O 3-SiO 2系统㊂通常根据氧化物的组成来进行划分,其中LAS 系微晶玻璃的组成(质量分数)为:55%~70%SiO 2㊁15%~27%Al 2O 3和1%~5%Li 2O,MAS 系微晶玻璃的组成(质量分数)为:45%~66%SiO 2㊁17%~40%Al 2O 3和10%~27%MgO,NAS 系微晶玻璃组成(质量分数)为:45%~60%SiO 2㊁25%~40%Al 2O 3和10%~20%Na 2O,ZAS 系微晶玻璃组成(质量分数)为:45%~66%SiO 2㊁17%~20%Al 2O 3和10%~25%ZnO㊂其中Li 2O-Al 2O 3-SiO 2(LAS)系微晶玻璃具有强度高㊁热膨胀系数低且化学性质稳定等特点,是铝硅酸盐微晶玻璃中重要的一类,目前已经被广泛应用于光学领域㊁电子技术领域乃至特殊领域㊂例如,LAS 系微晶玻璃可以用于制造激光器㊁红外线探测器㊁光学望远镜等高精度光学器件,在军事侦察㊁导航㊁通信等方面发挥着重要作用㊂此外,LAS 系微晶玻璃还可以用于制造高强度㊁高硬度的防弹玻璃,保护士兵和军事设备的安全,甚至在深海探测视窗材料方面也表现出巨大应用潜力㊂基于此,本文总结了目前LAS 系微晶玻璃的国内外研究现状,综述了LAS 系微晶玻璃的组成㊁制备方法㊁表征手段和性能等方面的研究进展,并提出了LAS 系微晶玻璃目前存在的科学问题及未来的发展方向㊂1㊀LAS系微晶玻璃的组成及晶相体系图1㊀Li 2O-Al 2O 3-SiO 2系统三元相图(质量分数)[3]Fig.1㊀Ternary phase diagram of Li 2O-Al 2O 3-SiO 2system (mass fraction)[3]LAS 系微晶玻璃的主要组成是SiO 2㊁Al 2O 3㊁B 2O 3㊁Li 2O㊁Na 2O㊁ZrO 2和P 2O 5等㊂其中,SiO 2是组成基础玻璃网络结构的重要氧化物,形成的[SiO 4]四面体构成了玻璃的基本骨架㊂Al 2O 3是玻璃网络形成体,以[AlO 4]四面体结构形式存在,能够增强玻璃网络聚合度㊂B 2O 3也是玻璃网络形成体,有[BO 3]和[BO 4]两种结构形式,其中[BO 4]的聚合度比[BO 3]高㊂Li 2O 和Na 2O 等碱金属氧化物以及ZnO㊁MgO 等主要作为玻璃网络修饰体[2],通过引入非桥氧破坏网络结构,进而促进微晶析出㊂ZrO 2主要作为晶核剂,通过促进液-液相分离或非均质核ZrO 2纳米晶的析出促进析晶㊂P 2O 5在LAS 系微晶玻璃中的作用比较复杂,既可以作为晶核剂,也可以作为玻璃网络形成体㊂作为LAS 系玻璃中最重要的三种组成,Li 2O㊁Al 2O 3㊁SiO 2三者的含量对微晶玻璃性能产生直接影响㊂从LAS 系玻璃的三元相图(图1)中可以看出,当Al 2O 3含量较高时,析出的晶体主要是β-锂辉石固溶体或β-石英固溶体㊂当Li 2O 含量较高时,析出的晶体主要是Li 2O㊃SiO 2㊂基于LAS 系微晶玻璃中铝和锂的含量,将LAS 系微晶玻璃划分为高铝低锂微晶玻璃和高锂低铝微晶玻璃㊂1.1㊀高锂低铝微晶玻璃高锂低铝微晶玻璃中Li 2O 的摩尔含量约为20%,Al 2O 3的摩尔含量小于8%,主晶相为二硅酸锂(Li 2Si 2O 5)等锂硅酸盐晶体,其光学特性与天然牙齿接近,具有较好的生物相容性和机械性能,已被广泛应用于牙齿修复材料㊂Wang 等[4]通过调节P 2O 5含量,制备出具有较高弯曲强度(310MPa)和半透明特性的二硅酸锂微晶玻璃,可作为牙齿修复材料㊂Laczka 等[5]通过三元相图确定玻璃组分,制备出弯曲强度高达400MPa 且颜色和透明度与牙齿相近的LAS 系微晶玻璃㊂此外,高锂低铝微晶玻璃可以进行锂-钠和钠-钾两次深度离子交换,在不影响微晶玻璃透明度的同时使玻璃的裂纹压制层厚度与力学性能大大提升,其原理如图2所示,较大的Na +与Li +进行第一次离子交换,随后更大的K +将Na +交换出来,实现深度化学强化㊂Zhang 等[6]采用K +-Na +离子交换强化热压烧结法制备的高锂低铝微晶玻璃,结果表明,K +-Na +离子交换提高了高锂低铝微晶玻璃的力学性能和化学耐久性㊂Laczka 等[7]采用低温离子交换工艺对主晶相是二硅酸锂和硅铝锂的高锂低铝微晶玻璃进行强化㊂结果表明,通过使用KNO 3盐将较小的离子(Na +㊁Li +)与较大的离子(K +)进行离子交换,得到的高锂低铝微晶玻璃的弯曲强度为700~800MPa,相较强化前(300~450MPa)得到了显著提升㊂然而,锂原料价格昂贵,导致高锂低铝微晶玻璃成本较高㊂除此之外,高锂低铝微晶玻璃还存在很多问第4期任贝贝等:Li2O-Al2O3-SiO2系微晶玻璃的研究进展1183㊀题:1)主晶相二硅酸锂等锂硅酸盐晶体的模量和硬度较低,导致微晶玻璃的本征模量和本征硬度也相对较低,微晶及纳米晶体对玻璃的本征模量及强度增强有限,用于牙齿修复体尚有较大的破碎风险,且也无法满足国防尖端技术㊁微电子技术和航空航天等高精尖领域的需要㊂2)玻璃成分中Li2O含量高,长时间在口腔㊁海水等环境中使用时的抗侵蚀性能尚有待确认㊂3)虽然通过离子交换可以提高高锂低铝微晶玻璃的力学性能,但离子交换后微晶玻璃表面可能会发生 去晶化 现象,使微晶玻璃力学性能降低[8]㊂基于以上问题,在未来的研究中可筛选更高弹性模量和剪切模量的晶相,进而提高微晶玻璃的本征强度㊁硬度㊂图2㊀二硅酸盐微晶玻璃的离子交换原理示意图[9]Fig.2㊀Schematic diagram of ion-exchange principle of disilicate glass-ceramics[9]1.2㊀高铝低锂微晶玻璃高铝低锂LAS系微晶玻璃通常低热膨胀㊁高透明度和高机械强度等优点,且热膨胀系数在较大温度范围内可调㊂同时,相较于高锂低铝微晶玻璃,高铝低锂微晶玻璃的成本较低,且主晶相的晶体模量及硬度明显高于高锂低铝微晶玻璃,在特种玻璃领域具有更大潜质,因而一直受到研究者的关注㊂通过提高Al2O3含量可以增大玻璃网络结构孔隙,有利于吸收较大的K+,促进离子交换[10]㊂同时,增大Al2O3含量还可以提高玻璃的力学性能和化学稳定性㊂然而,过高的Al2O3含量会导致玻璃液黏度和表面张力增大,不利于熔化㊁澄清和成型[11]㊂因此,需要进一步探索基础玻璃的组成成分以降低玻璃的熔化和成型温度,或进一步开发新的特种玻璃熔化技术㊂此外,在高铝低锂微晶玻璃化学强化过程中只可以进行一次Na+-K+离子交换,交换强度大,但交换深度小,导致表面应力较高,抗冲击能力较低[12]㊂因此,需对熔盐配比㊁离子扩散规律㊁表面应力层分布以及强化工艺-表面结构-力学性能的关联进行更系统深入的研究[13-14]㊂高铝低锂微晶玻璃的主晶相包括β-石英固溶体㊁β-锂辉石晶体和β-锂霞石晶体,可通过调控微晶玻璃的基本组成成分得到不同主晶相的微晶玻璃,如表1所示㊂其中,β-石英固溶体作为主晶相的LAS系微晶玻璃对光的散射较低,透明度较高㊂德国肖特生产的零度®是β-石英固溶体微晶玻璃的典型代表,具有极低的热膨胀率,对可见光透明,能够满足航空航天㊁微型棱镜等的应用要求㊂美国康宁公司生产的vision®产品也是透明低膨胀β-石英固溶体微晶玻璃,耐热温度高达800ħ且能承受480ħ的冷热温差㊂但是,β-石英固溶体本征模量和本征硬度较低,无法满足深海探测材料等高端装备的要求㊂与β-石英固溶体微晶玻璃相比,β-锂辉石微晶玻璃光学性能较差,但其热膨胀系数低,抗热震性能较好,目前常应用于建筑㊁炊具面板等㊂而β-锂霞石晶体c轴表现出强烈的负膨胀性,使得含有大量β-锂霞石晶体的微晶玻璃在宏观上的热膨胀系数很低,甚至出现了负膨胀的现象[15]㊂美国康宁公司生产的Pyroceram®9606是以β-锂霞石为主晶相的微晶玻璃,密度低且耐1000ħ高温,美国航天局NASA采用此材料制造轻量化且满足相应热学和力学性能要求的零部件㊂β-锂霞石微晶玻璃的热膨胀系数较低,但其整体力学性能较差,兼具低膨胀系数和高力学性能的β-锂霞石微晶玻璃的制备将成为未来研究的重点㊂综上所述,玻璃的基本组成成分对LAS玻璃的主要析出晶相及性能有重要影响,若玻璃成分设计不理想则容易导致玻璃失透或玻璃力学性能达不到设计要求㊂例如,当配方中Li2O含量升高时,晶化容易析出β-石英固溶体晶体和β-锂霞石晶体,微晶玻璃光学性能提高,但力学性能大大下降;当Li2O含量减少时,β-锂辉石析出作为主晶相,微晶玻璃的力学性能增强但透明度大大降低㊂1184㊀ 玻璃材料与玻璃技术 专题(II)硅酸盐通报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第43卷因此,需要在精准设计玻璃成分的基础上制备高模量高铝低锂微晶玻璃㊂尽管许多学者研究了微晶玻璃各个组成成分对玻璃结晶行为及对玻璃微观结构的影响,但不同的成分及含量在不同的微晶玻璃组成体系中发挥的作用并不相同,导致目前仍需通过大量的实验筛选来优化微晶玻璃的配方㊂因此,在未来的研究中有必要建立一个行之有效的理论模型来指导微晶玻璃的成分设计,制备出兼具高模量㊁高强度和高透明度的LAS系微晶玻璃,以满足如移动电子设备屏幕用玻璃㊁汽车玻璃㊁装甲车防弹玻璃㊁军用望远镜材料和深海装备视窗材料等民用和军用领域的需求㊂表1㊀高铝低锂微晶玻璃的主要组成[16]Table1㊀Main composition of high alumina and low lithium glass-ceramics[16]Material Mass fraction/%SiO2Al2O3Li2O K2O ZnO Na2O P2O5β-quartz solid solution GC55.4~68.819.2~25.4 2.7~4.50.1~0.6 1.0~1.50.2~0.6 1.0~7.2β-spodumene solid solution GC65.7~72.519.2~22.5 2.8~5.00.2~0.3 1.00.4~0.5 1.0β-lithium nepheline solid solution GC61.0~64.025.0~27.2 5.1~7.00.2~1.0 1.0~2.02㊀LAS系微晶玻璃的制备方法LAS系微晶玻璃的制备方法有很多,主要有整体析晶法㊁烧结法㊁溶胶-凝胶法㊁高分子网络凝胶法等㊂2.1㊀整体析晶法整体析晶法又称熔融法,基础玻璃与传统玻璃生产相同,经过高温熔融制备,然后通过一定的热处理程序进行核化和晶化得到微晶玻璃㊂整体析晶法工艺流程如图3所示㊂首先将玻璃的主要原料㊁辅助原料(澄清剂㊁助溶剂㊁着色剂㊁氧化剂等)和一定量的晶核剂均匀混合,于高温下熔融㊁澄清均化并调节到玻璃的成形温度后,采用压延㊁压制㊁吹制㊁拉制㊁浇铸㊁浮法等任意一种传统玻璃的成型方法使玻璃液成型㊂然后,经退火消除玻璃内部热应力,得到基础玻璃㊂通过热分析手段获得玻璃化转变温度T g㊁析晶温度T p等特征温度,然后制定合理的热处理程序使基础玻璃晶化和核化,得到微观结构良好的微晶玻璃㊂图3㊀整体析晶法工艺流程[17]Fig.3㊀Process flow of integral crystallization method[17]热处理是整体析晶法的关键,对微晶玻璃中晶体的类型㊁大小㊁体积分数和分布都有影响㊂制定合理的热处理程序需要确定成核温度㊁核化时间㊁析晶温度和晶化时间,最佳成核温度一般选在T g~T g+50ħ,最佳析晶温度选在结晶峰开始温度和结束温度之间,而最佳核化时间和晶化时间需要通过试验和表征确定㊂热处理可分为一步热处理法和两步热处理法,一步热处理法是在析晶温度下保温一定时间,成核和结晶在基础玻璃中同时进行的方法,具有处理时间短㊁工艺简单等优点,但由于晶核析出之后就开始生长,最后得到的微晶玻璃制品结晶度低,晶体尺寸较大㊂两步热处理法是先将基础玻璃在成核温度下保存一定时间,使玻璃中析出大量细小的晶核,然后再将玻璃在析晶温度下处理,使晶体充分生长㊂楼贤春等[18]探究了热处理程序对LAS系微晶玻璃热膨胀和强度的影响,结果表明LAS系微晶玻璃热膨胀受晶化温度和晶化时间的影响较大,而强度则主要受晶化温度和核化时间的影响,最终确定最佳热处理工艺,得到主晶相为β-石英的零膨胀高透明度LAS系微晶玻璃㊂Xiao等[19]研究了析晶温度对含P2O5的LAS系微晶玻璃晶相衍变㊁微观结构和热膨胀系数的影响㊂当析晶温度较低时,主晶相为硅锂石,热膨胀系数较小;随热处理温度升高,β-锂辉石析出成为主晶相,热膨胀系数增大;析晶温度升高会使LAS系微晶玻璃中的晶体粗化㊂整体析晶法的一大优势就是可以利用任意一种传统玻璃的成型方法使玻璃液成型,包括压制法㊁压延法和浇铸法等[20]㊂其中,压制法是将熔制好的玻璃液注入成型模具中,使玻璃液在压力与摩擦力的作用下均匀地填充在上模具㊁模环和成型模具之间㊂使用压制法制备微晶玻璃的一个典型案例是美国康宁公司生产第4期任贝贝等:Li2O-Al2O3-SiO2系微晶玻璃的研究进展1185㊀的Li2O-Al2O3-SiO2系微晶玻璃厨具㊂压延法是将合格的玻璃液在辊间或者辊板间压延成平板状玻璃,美国康宁公司利用压延法制备了Li2O-Al2O3-SiO2系低膨胀微晶玻璃电磁炉面板㊂浇铸法是将合格的玻璃液浇铸到预热好的金属模具中,待金属液冷却成型后脱模㊁退火得到基础玻璃,主要用于制备片状㊁块状或柱状等形状简单的玻璃[16]㊂日本小原㊁国内光明光电的 飞鸟 都是采用浇铸法制备㊂这三种成型工艺各有利弊,对比如表2所示㊂表2㊀整体析晶法中不同玻璃成型工艺对比[20]Table2㊀Comparison of different glass forming processes in integral crystallization method[20]成型方法压制法压延法浇铸法优势①形状准确;②工艺简单;③生产能力高①适合生产平板玻璃,不需要进行整形㊁切割工序,生产效率高,生产成本低;②对不同微晶玻璃品种的适应性广,玻璃被压辊急冷成型,可以阻止玻璃析晶①熔化炉小,可灵活调整玻璃品种;②采用光学玻璃工艺生产,玻璃质量高;③成型过程中几乎无凉玻璃滞留,不易析晶劣势①不能制备下阔上狭的玻璃制品,否则上模具无法取出;②不能生产薄壁和内腔在垂直方向长的制品;③制品表面不光滑,常有斑点和模缝①压延成型后玻璃表面粗糙,要进行研磨㊁抛光等后续处理工序;②进入压延机前玻璃在供料口边部或底部容易形成滞留低温区玻璃,容易析晶①生产规模小,产能低;②需进行整形㊁切割㊁研磨㊁抛光等多项后续处理工序,物料损耗大,生产效率低,生产成本高浮法工艺也是一种高温熔融析晶方法,具有能耗低㊁产量高㊁质量优等特点,是生产高铝和平板微晶玻璃的主流工艺方法㊂制备过程为:熔融的玻璃液从池窑连续流入充有保护气体(N2及H2)的锡槽内并漂浮在金属锡液面上,在重力和表面张力的作用下,摊成厚度均匀㊁平整㊁抛光的玻璃带,冷却硬化后脱离金属液,再经退火㊁晶化㊁切割得到浮法微晶玻璃产品㊂目前,海南大学姜宏教授团队围绕浮法玻璃进行了诸多研究,包括全氧燃烧技术㊁熔化过程控制技术㊁玻璃熔窑的设计㊁浮法表面发朦原因及解决策略等,不断优化浮法玻璃生产工艺,获得了诸多成果[21-24],但是通过浮法生产LAS系微晶玻璃还有许多问题需要解决㊂比如LAS系微晶玻璃黏度大,熔融温度高,需要加入碱金属氧化物或碱土金属氧化物作为助熔剂来降低LAS玻璃的熔融温度和黏度,但碱金属氧化物/碱土金属氧化物的引入会带来热膨胀系数增大㊁强度降低等问题㊂谢军等[25]探究了不同CeO2含量对浮法LAS系微晶玻璃黏度和结构的影响,结果表明:当CeO2含量较低时, CeO2作为玻璃网络修饰体会破坏玻璃网络结构,降低玻璃黏度;当CeO2含量较高时,会造成较大的局部键力,增强玻璃网络结构㊂Zheng等[26]探究了不同含量的氟离子对LAS系微晶玻璃黏度和结晶行为的影响㊂结果发现,由于相似的半径,氟离子可以取代桥氧离子后玻璃网络聚合度降低,从而使玻璃黏度和熔融温度降低,满足浮法的工艺条件㊂同时,氟离子可以促进相分离,降低结晶活化能,促进结晶,得到主晶相为β-锂辉石的LAS系微晶玻璃㊂中国晶牛集团自主研发了具有极低热膨胀㊁高透明度㊁优异机械性能和化学稳定性的浮法LAS系微晶玻璃,建成了世界首条浮法透明航天微晶玻璃生产线,填补了世界浮法微晶玻璃的空白㊂然而,需要认清目前国内浮法LAS系微晶玻璃仍处于探索阶段,虽然已经取得了一些研究成果,但要实现规模化生产还面临许多问题㊂不过可以肯定,浮法仍是今后LAS系微晶玻璃生产工艺发展的一个重要方向㊂综上,整体析晶法能够保证成核和晶体生长在玻璃内部均匀发生,得到的微晶玻璃孔隙率较低,致密性好㊂但随着高铝低锂微晶玻璃应用领域的扩展,在利用整体析晶法制备LAS系微晶玻璃的过程中,还存在着析晶过程及微晶玻璃结构调控机制与方法不明㊁熔融温度高㊁澄清和均化困难等技术问题㊂在未来的研究中,可重点关注以下研究方向:微晶玻璃熔化过程中温度场与玻璃性能之间的关系;电极加热和火焰加热等加热方式相互耦合与匹配对玻璃液澄清及均化的影响;如何利用计算机技术构建熔化模型,建立玻璃熔制过程中动力学和热力学方程;研究玻璃熔化场景中的玻璃黏度㊁表面张力㊁玻璃成分分相及偏析行为等等㊂最终,制备出兼具高模量㊁高强度和高透明度的LAS系微晶玻璃㊂2.2㊀烧结法烧结法一般不需要加入晶核剂,得到的是表面析晶的微晶玻璃㊂其基本工艺为:原料混合均匀后进行高温熔融,玻璃液澄清均化后倒入冷水中水淬,干燥㊁粉碎,得到一定颗粒大小的玻璃熔块,根据玻璃的成型方法确定玻璃颗粒的粒度范围㊂之后,对成型玻璃进行光学膨胀分析,得到适宜的烧结温度,烧结晶化㊁退火后即可得到微晶玻璃(图4)㊂烧结法可分为玻璃粉末的烧结和玻璃颗粒的烧结,LAS系微晶玻璃常采用粉末1186㊀ 玻璃材料与玻璃技术 专题(II)硅酸盐通报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第43卷烧结法㊂玻璃粉末的粒度对微晶玻璃的微观结构和性能有很大的影响㊂若粉末太小,析晶温度低于烧结温度,晶体的析出会影响颗粒迁移和玻璃相流动,使烧结致密过程恶化,得到的微晶玻璃孔隙率偏大;若粉末太粗,最后得到的微晶玻璃晶体尺寸大且分布不均,所以要严格控制玻璃粉末的粒度㊂玻璃粉末成型时,大都采用压制成型的方法,压制压力也对微晶玻璃制品有一定的影响㊂Figueira等[27]用粉末烧结法制备LAS系微晶玻璃时,发现压制成型时压力越大,最后得到的微晶玻璃致密性越好㊂图4㊀烧结法制备微晶玻璃流程图[17]Fig.4㊀Process flow chart of preparing glass-ceramics by sintering[17]烧结法与整体析晶法相比,烧结温度低且耗时较短,但因为烧结法的结晶机理是表面结晶,表面晶体与内部玻璃相密度相差较大会造成失配,导致制备的微晶玻璃孔隙率更高㊂孔隙形成机理如图5所示,在烧结过程中,孔隙沿着晶体生长方向扩展,晶体析出会增加玻璃黏度,导致内部残余玻璃相无法及时填充孔隙,微晶玻璃致密性恶化,孔隙率增大,对微晶玻璃制品的力学性能不利㊂解决方法是在玻璃结晶之前通过热处理使玻璃达到较高的致密化程度,最佳热处理条件需要研究者进行大量探索㊂此外,基础组成成分㊁烧结温度㊁烧结时间等因素都会对微晶玻璃制品的性能产生很大影响㊂Soares等[28]通过调配组成成分,获得了具有低热膨胀(0.34ˑ10-6K-1)和高烧结性能(孔隙率仅为(0.4ʃ0.1)%)的LAS系微晶玻璃㊂Lutpi等[29]探究了不同烧结时间下LAS系微晶玻璃的烧结行为,结果表明,延长烧结时间对LAS系微晶玻璃的微观结构有显著影响,烧结3.5h的LAS微晶玻璃,孔隙率降低,结晶率增加,具有较强的抗热冲击能力㊂目前,工业上常以高炉渣㊁粉煤灰等工业废料和矿物为原料,利用烧结法制备微晶玻璃,以达到保护环境㊁节约资源的目的㊂然而,由于影响因素众多且生产的微晶玻璃产品可能存在孔隙,产品的光学性能和力学性能有所降低,所以烧结法制备的微晶玻璃目前常应用于建筑装饰,尚未涉及航空航天㊁微电子㊁国防尖端技术等应用领域㊂图5㊀孔隙形成机理[30]Fig.5㊀Pore formation mechanism[30]第4期任贝贝等:Li2O-Al2O3-SiO2系微晶玻璃的研究进展1187㊀2.3㊀溶胶-凝胶法LAS系微晶玻璃黏度高,导致熔融温度和加工温度非常高,所以低温制备LAS系微晶玻璃已经成为一个热门话题,溶胶-凝胶法被认为是低温制备LAS系微晶玻璃最有潜力的方法之一㊂Wang等[31]采用溶胶-凝胶法制备了LAS系微晶玻璃,相比于1600ħ传统熔融结晶法,此法在1200ħ下便可完成㊂溶胶-凝胶法制备微晶玻璃的过程如图6所示,将金属有机物或无机化合物作为前驱体,与水㊁醇等充分混合形成溶液,通过水解和缩合反应,形成稳定的透明溶胶体系,溶胶陈化后,胶粒缓慢聚合,形成以无机物或金属醇盐为骨架的三维空间网络结构的凝胶[32],随后通过干燥㊁成型㊁晶化等步骤得到微晶玻璃㊂Xiao等[33]采用溶胶-凝胶法和粉末压制成型工艺,成功制备了含0%~10%(质量分数)P2O5的LAS系微晶玻璃㊂试验过程中烧结温度为950ħ,远低于整体析晶和烧结工艺,且β-锂辉石是唯一的晶相,微晶玻璃制品在25~700ħ有很低的热膨胀系数㊂除低温外,溶胶-凝胶法制备微晶玻璃过程中可按照原料配比析出高纯度晶相,但微晶玻璃氧化物原料成分对析晶性能有很大影响㊂夏龙等[34]采用溶胶-凝胶法制备LAS系微晶玻璃,发现微晶玻璃完全按照原料配方㊁化学计量比生成了β-锂辉石LAS微晶玻璃㊂Chatterjee等[35]以正硅酸乙酯(TEOS)㊁气相二氧化硅和稻壳灰三种不同来源的二氧化硅为原料,采用溶胶-凝胶法制备了LAS粉体,并研究了它们对粉体性能的影响㊂结果表明,与稻壳灰硅源相比,TEOS和气相硅源下β-辉闪石和β-锂辉石的结晶速度更快㊂溶胶-凝胶法虽然具有温度低㊁纯度高㊁耗时短等诸多优点,但仍然存在许多问题尚未解决,如前驱体成本高㊁后期热处理时间长㊁制品收缩大㊁易变形等,若采用金属醇盐作为原料还会对环境造成污染[36]㊂上述问题在一定程度上限制了溶胶-凝胶法的工业普及㊂图6㊀溶胶-凝胶法工艺流程图[17]Fig.6㊀Process flow chart of sol-gel method[17]2.4㊀高分子网络凝胶法高分子网络凝胶法以无机盐水溶液作为原料,通过丙烯酰胺自由基发生聚合反应以及N,N-亚甲基双丙烯酰胺交联反应,高分子链被连接起来构成网络从而形成凝胶[37],高分子网络凝胶法工艺流程如图7所示㊂吴松全等[38-39]利用高分子网络凝胶法制备出LAS系微晶玻璃超细粉体,并探究了ZrO2对高分子网络凝胶法制备的LAS系微晶玻璃析晶行为的影响㊂结果表明,随着ZrO2含量增加,析晶活化能降低,β-石英固溶体析出,析晶速率降低,阻碍了β-石英固溶体向β-锂辉石的转化㊂李亚娟等[39]探究了Y2O3对高分子网络凝胶法制备的LAS系微晶玻璃性能的影响,结果表明Y2O3掺杂会促进β-石英固溶体向β-锂辉石的转变且起到细化晶粒的作用,但Y2O3掺杂也会使LAS系微晶玻璃的热膨胀系数增大㊂贾鹏等[40]通过加入TiO2调节高分子网络凝胶法制备的LAS系微晶玻璃的析晶性能,结果表明,TiO2可以降低析晶活化能,细化晶粒㊂因此,高分子网络凝胶法具有原料简单㊁合成速度快㊁产物纯度高等显著优势㊂但与此同时,高分子网络凝胶法仍存在化学试剂用量大以及聚合温度较难精确控制等问题[41],此外,晶核剂对高分子网络凝胶法制备的LAS系微晶玻璃析晶行为和性能的影响及其机理尚不清晰,这也是今后高分子网络凝胶法制备LAS系微晶玻璃的一个重要研究方向㊂综上,传统整体析晶法和烧结法制备的LAS系微晶玻璃产品质量好,但制备过程中所需温度较高,能耗大,对玻璃熔窑要求高;新兴的溶胶-凝胶法和高分子网络凝胶法制备条件较温和,但存在对环境污染大㊁微晶玻璃制品易收缩变形等缺点,尚未有工业化的迹象㊂因此未来不仅需要探索开发LAS系微晶玻璃生产新。
第43卷第4期2024年4月硅㊀酸㊀盐㊀通㊀报BULLETIN OF THE CHINESE CERAMIC SOCIETY Vol.43㊀No.4April,2024CaO-B 2O 3-SiO 2微晶玻璃的制备及介电性能卫志洋,王晓东,苏㊀腾,陈欢乐,高㊀峰,苗㊀洋(太原理工大学材料科学与工程学院,太原㊀030024)摘要:低介电常数㊁低介电损耗的微晶玻璃是制造低温共烧陶瓷基板的重要材料㊂本文采用熔融水淬法制备了CaO-B 2O 3-SiO 2(CBS)微晶玻璃,重点研究了m (CaO)/m (SiO 2)质量比㊁B 2O 3含量对CBS 微晶玻璃介电性能的影响㊂结果表明:CBS 微晶玻璃的主要晶相有Ca 3Si 3O 9㊁Ca 2B 2O 5㊁CaB 2O 4㊁SiO 2和Ca 2SiO 4㊂随着m (CaO)/m (SiO 2)质量比的增加,介电常数增加,介电损耗先降低后增加;硅灰石相的增多使介电损耗从2.87ˑ10-3降到1.36ˑ10-3,介电损耗随着SiO 2㊁Ca 2B 2O 5和CaB 2O 4含量的增加而增大㊂随着B 2O 3含量的增加,介电常数先增加后减少,而介电损耗则相反㊂当m (CaO)/m (SiO 2)质量比为0.89㊁B 2O 3含量为15%(质量分数)时,在900ħ烧结3h,CBS 微晶玻璃的热膨胀系数为7.16ˑ10-6㊀ħ-1,介电常数为5.85,介电损耗为1.37ˑ10-3(10GHz)㊂关键词:CaO-B 2O 3-SiO 2;微晶玻璃;介电常数;介电损耗;微观结构;低温共烧中图分类号:TQ174.1㊀㊀文献标志码:A ㊀㊀文章编号:1001-1625(2024)04-1274-10Preparation and Dielectric Properties of CaO-B 2O 3-SiO 2Glass-CeramicsWEI Zhiyang ,WANG Xiaodong ,SU Teng ,CHEN Huanle ,GAO Feng ,MIAO Yang(College of Materials Science and Engineering,Taiyuan University of Technology,Taiyuan 030024,China)Abstract :Glass-ceramics with low dielectric constant and low dielectric loss is an important material for the manufacture of low temperature cofired ceramic substrates.CaO-B 2O 3-SiO 2(CBS)glass-ceramics was prepared by melt-water quenching method,and the effects of m (CaO)/m (SiO 2)mass ratio and B 2O 3content on the dielectric properties of CBS glass-ceramics were studied.The results show that the main crystalline phases of CBS glass-ceramics are Ca 3Si 3O 9,Ca 2B 2O 5,CaB 2O 4,SiO 2and Ca 2SiO 4.The dielectric constant increases,the dielectric loss decreases first and then increases with the increase of m (CaO)/m (SiO 2)mass ratio.The increase of wollastonite phase decreases the dielectric loss from 2.87ˑ10-3to 1.36ˑ10-3.The dielectric loss increases with the increase of SiO 2,Ca 2B 2O 5and CaB 2O 4content.With the increase of B 2O 3content,the dielectric constant increases first and then decreases,and the dielectric loss is reversed.When m (CaO)/m (SiO 2)mass ratio is 0.89and B 2O 3content is 15%(mass fraction),the coefficient of thermal expansion is 7.16ˑ10-6㊀ħ-1,the dielectric constant is 5.85,and the dielectric loss is 1.37ˑ10-3(10GHz)after sintering at 900ħfor 3h.Key words :CaO-B 2O 3-SiO 2;glass-ceramics;dielectric constant;dielectric loss;microstructure;low temperature co-firing 收稿日期:2023-10-18;修订日期:2024-01-09基金项目:国家留学基金委山西省研究项目(2022-042);山西省重点研发计划项目(202102030201006);山西省基础研究计划(202203021221059)作者简介:卫志洋(1997 ),男,硕士研究生㊂主要从事低温共烧陶瓷的研究㊂E-mail:weizhiyang27@通信作者:苗㊀洋,博士,副教授㊂E-mail:miaoyang198781@ 0㊀引㊀言当今时代信息技术和高频通信迅猛发展,对性能卓越的介电材料需求日益增加㊂低介电常数㊁低损耗的材料具有较小的延迟且适用于新一代通信的数据传输[1]㊂CaO-B 2O 3-SiO 2(CBS)微晶玻璃因优异的介电特性及广泛的应用前景受到关注㊂在CBS 体系中,硅灰石的介电常数εr 和介电损耗tan δ较低,常用于陶瓷基板材料领域[2]㊂微晶玻璃的性能在很大程度上依赖于其化学组成,尤其是钙硅比和氧化硼含量㊂第4期卫志洋等:CaO-B2O3-SiO2微晶玻璃的制备及介电性能1275㊀适量的CaO能提高化学稳定性,对CBS的机械强度有一定的强化作用㊂Ca2+具有高极化率,因此钙含量较高的CBS的εr都较大,需要控制氧化钙的含量㊂CaO由CaCO3分解得到,B2O3和SiO2都是网络形成体,但是网络结构不同,主要起骨架的作用[3]㊂B2O3是二维层状结构,主要由[BO3]连接而成㊂当加入CaO时,系统中游离氧增加,并与[BO3]结合生成[BO4],[BO4]可以强化CBS的强度[4]㊂当加入过量的B2O3时,大量的B3+破坏陶瓷的结构,使陶瓷的性能恶化,削弱了CBS的介电性能[5]㊂SiO2是三维结构,由[SiO4]构成,其介质损耗小,但熔融温度高,制备微晶玻璃时有很大的困难㊂Ca2+可以与Si O反应,会改变网络的原有结构[6],粒子位移更容易,在较高的温度下,液相的黏度会降低,晶体生长更容易,促进微晶玻璃的析晶㊂He等[7]通过两步烧结工艺制备了三种配方的CBS,研究了硼对CBS微晶玻璃晶相和微观结构的影响㊂观察到硼含量较高的样品结构疏松,晶粒排列被破坏;当n(Ca)ʒn(Si)ʒn(B)摩尔比为1.0ʒ1.0ʒ0.6时,在700ħ保温1h,再升温至900ħ时介电性能良好,εr均为6(1㊁10MHz),tanδ为2.27ˑ10-3(1MHz)和3.37ˑ10-3(10MHz)㊂Chiang等[8]制备了6种CaO-B2O3-SiO2玻璃试样,探讨了三种组分对致密性㊁热性能和介电性能的影响㊂高CaO含量的样品烧结温度低,密度较大,高SiO2含量的样品烧结温度高,密度较小㊂Ca2+的极化率为3.16Å3,远高于B3+的0.05Å3和Si4+的0.87Å3,因此高CaO的试样εr较高㊂[SiO4]对玻璃的结构有强化作用,当SiO2含量较高时,玻璃的介电损耗较小㊂韦鹏飞等[9]通过熔融法制备了CBS,主要探究了B2O3对CBS性能的影响㊂结果发现,当B2O3为35%(文中均为质量分数)时,在850ħ下烧结15min,介电性能最好,εr为6.42,tanδ为0.0009(9.7Hz)㊂现有研究显示,钙硅比和氧化硼含量的调整可以显著影响微晶玻璃的结构与性能㊂本研究旨在深入探讨这两个关键因素如何协同作用,从而影响钙硼硅微晶玻璃的介电性能㊂通过实验研究和理论分析,着眼于通过精确控制化学成分来优化微晶玻璃的介电特性,以满足现代高频电子设备的严苛要求㊂本文采用熔融淬火法制备了CBS微晶玻璃,在低温共烧陶瓷(low temperatrue co-fired ceramic,LTCC)基板制作要求的烧结温度范围内,重点研究了m(CaO)/m(SiO2)质量比和B2O3对CBS材料介电性能的影响㊂1㊀实㊀验1.1㊀样品制备原料为CaCO3(99.99%)㊁SiO2(99.99%)㊁H3BO3(99.99%),购自麦克林试剂公司,表1和表2分别为不同m(CaO)/m(SiO2)质量比和不同B2O3含量的CRS玻璃配方㊂按照表中设计的原料配比,准确称量三种氧化物粉末总计30g,将原料研磨3h,置于氧化铝坩埚,在1500ħ下熔融2h㊂将高温下的熔融玻璃水淬得到碎玻璃,研磨成粉并过200目(74μm)筛,然后球磨干燥得到玻璃粉末㊂造粒压块,将生坯样品在500ħ下加热1h 除去黏合剂,然后在六个温度(800㊁825㊁850㊁875㊁900和925ħ)下烧结3h,空气中加热速率为5ħ/min㊂表1㊀不同m(CaO)/m(SiO2)质量比的CBS玻璃配方Table1㊀CBS glass formulations with different m(CaO)/m(SiO2)mass ratiosNumber Mass fraction/%CaO B2O3SiO2m(CaO)/m(SiO2) CBS132.5015.0052.500.62CBS240.0015.0045.000.89CBS342.9215.0042.10 1.02CBS448.0015.0037.00 1.30表2㊀不同B2O3含量的CBS玻璃配方Table2㊀CBS glass formulations with different B2O3contentNumber Mass fraction/%CaO SiO2B2O3m(CaO)/m(SiO2) CBS543.3048.608.100.89CBS642.4047.6010.000.891276㊀ 玻璃材料与玻璃技术 专题(II)硅酸盐通报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第43卷续表Number Mass fraction /%CaO SiO 2B 2O 3m (CaO)/m (SiO 2)CBS740.0045.0015.000.89CBS837.7042.3020.000.891.2㊀结构与性能表征烧结试样的体积密度通过阿基米德排水法测量㊂采用X 射线粉末衍射仪(XRD,TD-3500)测定相组成,测试电压为35kV,电流为25mA,扫描速率为5(ʎ)/min,扫描范围为10ʎ~80ʎ,Cu-K α辐射㊂利用扫描电子显微镜(SEM,ZEISS)观察微晶玻璃的微观结构㊂采用同步热分析仪(NETZSCH,STA449)进行DSC 测试,在空气气氛中以10ħ/min 的速率从10ħ升至1100ħ,氧化铝坩埚用作参考材料,测试样品是过筛后的玻璃粉㊂拉曼光谱(RENISHAW)测量的波数范围为100~1100cm -1㊂在TE011模式下,使用Rohde&Schwarz网络分析仪(ZNA43,10MHz ~43.5GHz)测量烧结样品的Q 值,以计算介电性能㊂2㊀结果与讨论2.1㊀m (CaO )/m (SiO 2)质量比对CBS 微晶玻璃介电性能的影响固定B 2O 3的含量,设定m (CaO)/m (SiO 2)质量比为0.62㊁0.89㊁1.02㊁1.30,制得CBS i (i =1㊁2㊁3㊁4,下同)系列,表征m (CaO)/m (SiO 2)质量比对CaO-B 2O 3-SiO 2的影响㊂表1为具体的配方组成㊂2.1.1㊀差热分析图1㊀不同m (CaO)/m (SiO 2)质量比的CaO-B 2O 3-SiO 2微晶玻璃的DSC 曲线Fig.1㊀DSC curves of CaO-B 2O 3-SiO 2glass-ceramics with different m (CaO)/m (SiO 2)mass ratios 图1为四种不同m (CaO)/m (SiO 2)质量比的CaO-B 2O 3-SiO 2玻璃的DSC 曲线㊂四个DSC 曲线中有较大的析晶峰和吸热台阶,其中CBS1和CBS4的放热峰有较宽的温度范围,两个放热峰的峰值温度相差较小,导致第二个放热峰不明显[10]㊂所有玻璃的吸热台阶都在625~675ħ,此时液相开始出现,改变m (CaO)/m (SiO 2)质量比后,玻璃化转变温度相差不大㊂放热峰峰值温度分别为841.9㊁831.7㊁852.1㊁853.9ħ,此放热峰对应生成的CaSiO 3相㊂玻璃的第二个放热峰在图中不明显,此放热峰对应Ca 2B 2O 5晶体的析出[11]㊂2.1.2㊀密度及收缩率体积密度能够反映陶瓷材料的致密化程度㊂体积密度越大样品越致密,微晶玻璃中的气孔就越少[12]㊂图2为不同m (CaO)/m (SiO 2)质量比的CaO-B 2O 3-SiO 2微晶玻璃的体积密度㊁密度和横向收缩率㊂当B 2O 3的质量分数为15%时,在烧结温度增加的情况下,CBS1和CBS4的密度减小,这是由于升温结晶过程中玻璃相在不断减小,而结晶生成新相的密度没有玻璃相的密度高㊂而CBS2和CBS3的密度先增加后减小,这是在升温过程中由于液相作用下微粒的流动和结晶以及在这个过程中气孔排除的结果㊂2.1.3㊀物相分析图3为不同m (CaO)/m (SiO 2)质量比的CaO-B 2O 3-SiO 2微晶玻璃的XRD 谱㊂XRD 晶相组成上略有差异,主要晶相包括Ca 3Si 3O 9㊁Ca 2B 2O 5㊁CaB 2O 4㊁SiO 2和Ca 2SiO 4㊂对比CBS i 的XRD 谱,当Ca 2+的含量较少时,[SiO 4]会与[SiO 4]结合生成SiO 2[13]㊂当Ca 2+的含量增加时,CBS2中硅灰石衍射峰强度大于SiO 2的衍射峰强度,故CBS2中硅灰石相的数量相对其他微晶玻璃较多,这有益于材料的介电性能㊂随着m (CaO)/m (SiO 2)质量比的增加,微晶玻璃中SiO 2逐渐较少,CaO 与[BO 3]结合增多,开始出现Ca 2B 2O 5晶相衍射峰并增强㊂第4期卫志洋等:CaO-B 2O 3-SiO 2微晶玻璃的制备及介电性能1277㊀图2㊀不同m (CaO)/m (SiO 2)质量比的CaO-B 2O 3-SiO 2微晶玻璃的体积密度㊁密度和横向收缩率Fig.2㊀Volume density,density and transverse shrinkage of CaO-B 2O 3-SiO 2glass-ceramics with different m (CaO)/m (SiO 2)massratios图3㊀不同m (CaO)/m (SiO 2)质量比的CaO-B 2O 3-SiO 2微晶玻璃的XRD 谱Fig.3㊀XRD patterns of CaO-B 2O 3-SiO 2glass-ceramics with different m (CaO)/m (SiO 2)massratios 图4㊀不同m(CaO)/m(SiO 2)质量比的CaO-B 2O 3-SiO 2微晶玻璃的拉曼光谱Fig.4㊀Raman spectra of CaO-B 2O 3-SiO 2glass-ceramics with different m (CaO)/m (SiO 2)mass ratios 2.1.4㊀拉曼图谱分析图4为不同m (CaO)/m (SiO 2)质量比的CaO-B 2O 3-SiO 2微晶玻璃的拉曼光谱㊂CBS1微晶玻璃的拉曼光谱在大约114㊁143㊁400和558cm -1处为SiO 2振动峰㊂其中114㊁143和400cm -1处的振动峰归因于六层结构内的Si O Si 对称拉伸-弯曲㊂184cm -1处的弱峰归因于O 在Si O Si 中的对称拉伸-弯曲,该模式与四方α-方英石结构框架内的六元SiO 4四面体环相关[14-15]㊂大约503cm -1处的弱峰归属于CaSiO 3中的Ca O 拉伸/弯曲[15-16]㊂而558cm -1属于CaSiO 3中的振动[16-17]㊂CBS2和CBS3㊁CBS4微晶玻璃的拉曼光谱大致相似,在大约114㊁143㊁196㊁282㊁313㊁400㊁439㊁486㊁503㊁558㊁681和761cm -1处出现峰值㊂282㊁313㊁439和558cm -1处的峰被指定为CaSiO 3中的振动㊂以486和503cm -1为中心的峰归因于CaSiO 3中的Ca O 拉伸/弯曲㊂681和761cm -1处的峰与桥接氧的对称拉伸和CaSiO 3中Si O Si 键的弯曲有关[16-18]㊂而114㊁143和400cm -1处的峰与方英石的Si O Si 对称拉伸/弯曲有关[14,18-19]㊂196cm -1处的峰对应于石英四元环内的Si O Si 对称拉伸/弯曲[20-21]㊂增加钙硅比会导致玻璃网络中的硅氧四面体结构减少,钙离子则与更多的氧离子形成配位键,这种结构变化导致玻璃网络的刚性增加㊂钙离子具有较高的极化率,其极化作用会增强玻璃网络的极性;钙离子的极化作用增强,导致玻璃网络的极性增加,这使得玻璃中的电子云重叠增加;钙离子与氧离子的配位键逐渐增强,而硅氧四面体之间的共价键则逐渐减弱,这使得玻璃网络更加紧密,热膨胀系数降低,玻璃网络的内部应力和应变增加,导致拉曼峰向短波方向移动㊂极性的增加又使得介电常数增加,此外,钙离子与氧离子配位键的增强还会导致玻璃网络的电子云重叠增加,从而增强电子的流动性,1278㊀ 玻璃材料与玻璃技术 专题(II)硅酸盐通报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第43卷增加电导率,这对介电性能产生负面影响㊂2.1.5㊀SEM 显微形貌分析图5为不同m (CaO)/m (SiO 2)质量比的CaO-B 2O 3-SiO 2微晶玻璃的SEM 照片㊂试样温度为最高密度所对应的烧结温度,部分微裂纹为氢氟酸腐蚀的结果㊂图中纤维状㊁角砾㊁条带状等交错的晶体为硅灰石相,而球状晶体主要是SiO 2[21]㊂其中玻璃相大多被腐蚀完全,露出各种大小晶粒,含部分间隙㊂随着Ca 2+的增加,Si O 键的结构被破坏,造成玻璃结构的疏松,这促进了晶体的形成和长大,增加了试样中晶相的数量[22]㊂在图5(b)中,大部分晶相为硅灰石,其余图5(a)㊁(c)㊁(d)中SiO 2以球状晶相包裹住其他晶相,不易看出㊂致密程度只是影响微晶玻璃介电性能的一个因素,晶相的组成和数量也有很大的影响[23]㊂图5㊀不同m (CaO)/m (SiO 2)质量比的CaO-B 2O 3-SiO 2微晶玻璃的SEM 照片Fig.5㊀SEM images of CaO-B 2O 3-SiO 2glass-ceramics with different m (CaO)/m (SiO 2)mass ratios 2.1.6㊀介电性能分析图6㊀不同m (CaO)/m (SiO 2)质量比的CaO-B 2O 3-SiO 2微晶玻璃的介电常数和介电损耗Fig.6㊀Dielectric constant and dielectric loss of CaO-B 2O 3-SiO 2glass-ceramics with different m (CaO)/m (SiO 2)mass ratios 微晶玻璃材料是多相系统,包括晶相㊁玻璃相和气相㊂影响材料介电常数的因素包括晶相的组成㊁数量和相的介电常数[24]㊂图6为四种不同m (CaO)/m (SiO 2)质量比的微晶玻璃的介电性能㊂增加Ca 2+会降低试样的致密化程度,同时结构被破坏,材料的极化强度增强[25],介电常数也增加㊂介电损耗随着m (CaO)/m (SiO 2)质量比明显降低,这是由于硅灰石相的介电损耗较低,随着硅灰石相的增多,介电损耗从2.26ˑ10-3降到1.36ˑ10-3;继续增大m (CaO)/m (SiO 2),SiO 2㊁Ca 2B 2O 5和Ca 3B 2O 6开始出现并增加,试样的介电损耗又开始增大㊂可以得出,当m (CaO)/m (SiO 2)质量比为0.89时,介电性能最佳㊂2.2㊀B 2O 3对CBS 微晶玻璃介电性能的影响当m (CaO)/m (SiO 2)质量比为0.89时,设定B 2O 3的含量为8.1%(文中均为质量分数)㊁10.0%㊁15.0%㊁20.0%㊁26.0%,制得CBS i (i =5㊁6㊁7㊁8,下同)第4期卫志洋等:CaO-B2O3-SiO2微晶玻璃的制备及介电性能1279㊀系列,表征了B2O3含量对CaO-B2O3-SiO2的影响㊂2.2.1㊀差热分析图7为不同B2O3含量的CaO-B2O3-SiO2微晶玻璃的DSC曲线㊂不同DSC曲线中都有较大的析晶峰及吸热台阶[26]㊂放热峰峰值温度分别为835.3㊁833.9㊁831.7㊁845.1ħ,整体趋势是先降低后升高,此时生成CaSiO3相,说明B2O3含量的适当增加会使CaSiO3的析出温度降低,更易在较低温度下析出㊂硅灰石的介电性能较好,所以需要更多的硅灰石以提升CBS的介电性能[27]㊂当B2O3含量为20%时,CBS8的CaSiO3析晶峰峰值温度比CBS7增加了15ħ左右,所需的温度升高,从而增大了烧结难度㊂而且当系统中出现大量的B3+时,会抢夺与Si4+反应的Ca2+,进而影响CaSiO3的析出[28]㊂两个析晶峰之间的温度差距较小不易看出,使得第二个放热峰不太明显,此放热峰相应生成Ca2B2O5晶相,每种玻璃均出现了反映玻璃化转变的吸热台阶,玻璃网络中出现液相㊂玻璃化转变温度也是先降低后略微升高,说明硼的存在可以加速玻璃化,同时降低玻璃的熔点,有利于结晶相的析出[29]㊂图7㊀不同B2O3含量的CaO-B2O3-SiO2微晶玻璃的DSC曲线Fig.7㊀DSC curves of CaO-B2O3-SiO2glass-ceramics with different B2O3content2.2.2㊀密度及收缩率图8为不同B2O3含量的CaO-B2O3-SiO2微晶玻璃的体积密度㊁密度和横向收缩率㊂样品的密度随着温度的增加先增加后减小[30]㊂B2O3能够与游离氧结合生成[BO4],促进CBS结构的致密,当B2O3含量过量时,以独立的层状结构存在,使CBS结构中的气孔增多㊂当B2O3含量为13%时,试样的体积密度整体高于其他对比量,此时试样的烧结致密化程度最高㊂随着B2O3含量的增加,收缩率随着试样中颗粒间缝隙以及气孔的变化而略微下降,下降至接近14%㊂图8㊀不同B2O3含量的CaO-B2O3-SiO2微晶玻璃的体积密度㊁密度和横向收缩率Fig.8㊀Volume density,density and transverse shrinkage of CaO-B2O3-SiO2glass-ceramics with different B2O3content2.2.3㊀物相分析图9为不同B2O3含量的CaO-B2O3-SiO2微晶玻璃的XRD谱㊂前两种玻璃的XRD曲线峰型相似,主要1280㊀ 玻璃材料与玻璃技术 专题(II)硅酸盐通报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第43卷的晶相均为Ca 3Si 3O 9㊁Ca 2B 2O 4㊁Ca 2B 2O 5和SiO 2,随着B 2O 3含量的增加及Ca 2SiO 4析出,SiO 2的晶相峰强度逐渐降低,硅灰石衍射峰的强度逐渐增强㊂B 2O 3的增加会开放系统的网络结构,离子在网络外的运动变得容易,液相的黏度降低,促进晶体的形成和长大,这对晶体的结晶是有利的[31]㊂此外,随着B 2O 3含量的增加,Ca 2B 2O 5开始析出,SiO 2减小,这对介电性能也有所影响㊂2.2.4㊀拉曼图谱分析图10为不同B 2O 3含量的CaO-B 2O 3-SiO 2微晶玻璃的Raman 谱,CBS5㊁CBS6和CBS7㊁CBS8微晶玻璃的拉曼光谱大致相似,在大约114㊁143㊁196㊁253㊁282㊁313㊁373㊁400㊁426㊁458㊁486㊁503㊁558㊁623㊁681㊁761㊁797㊁910㊁954和981cm -1处出现峰值㊂253㊁282㊁313㊁373和558cm -1处的峰为CaSiO 3中的振动[14,17-18,20]㊂以253㊁486和503cm -1为中心的峰归因于CaSiO 3中的Ca O 拉伸-弯曲振动[32-33]㊂此外,623㊁681㊁761和797cm -1处的峰归因于桥接氧的对称拉伸和CaSiO 3中Si O Si 键的弯曲㊂910㊁954和981cm -1处的峰归因于CaSiO 3中分别具有3㊁2和1个非桥氧单元的四面体硅酸盐单元的对称拉伸[17,19-20]㊂114㊁143㊁400㊁426和458cm -1处的峰归属于方英石六元环内Si O Si 键的对称拉伸-弯曲振动㊂196cm -1处的峰对应于柯石英四元环内Si O Si 键的对称拉伸-弯曲[17-18,20]㊂当增加氧化硼的质量分数时,玻璃中的[BO 3]八面体结构增加,这使得玻璃网络更加开放,热膨胀系数增加㊂玻璃网络的内部应力和应变降低,导致拉曼峰向长波方向移动㊂图9㊀不同B 2O 3含量的CaO-B 2O 3-SiO 2微晶玻璃的XRD 谱Fig.9㊀XRD patterns of CaO-B 2O 3-SiO 2glass-ceramics with different B 2O 3content 图10㊀不同B 2O 3含量的CaO-B 2O 3-SiO 2微晶玻璃的Raman 谱Fig.10㊀Raman spectra of CaO-B 2O 3-SiO 2glass-ceramics with different B 2O 3content 2.2.5㊀SEM 微观形貌分析图11为不同B 2O 3含量的CBS 微晶玻璃的SEM 照片㊂由于氢氟酸的腐蚀完全,试样的晶相已完全显露㊂图11(a)中大都是球状,只有中间部分可以看到板状晶体,此时试样中除玻璃相外,以SiO 2居多,还有部分的硅灰石相生成㊂随着B 2O 3含量的增加,图11(b)㊁(c)中呈纤维状㊁角砾㊁条带状的硅灰石相开始增多,且晶体的间隙相对较小,晶粒增大,表明B 2O 3含量的升高使结晶过程明显增强[34]㊂图11(d)中出现细小粒状㊁柱状的SiO 2,晶粒细小而且数量较多,但还没有长大,腐蚀所暴露的间隙说明了玻璃相的位置,所以介电损耗会比其他试样增加[35]㊂2.2.6㊀介电性能分析图12为不同B 2O 3含量的CBS 试样的介电常数和介电损耗㊂随着B 2O 3含量的升高,介电常数先增加后减少,介电损耗则相反㊂当B 2O 3含量为8.1%时,晶相以SiO 2居多,硅灰石被SiO 2包裹,由于SiO 2的介电常数较低,为3.8,所以此阶段试样的介电常数也比较低,为6.22;当B 2O 3含量开始增加,由于硅灰石相的介电常数比SiO 2高,但介电损耗比较低,此时试样主要是硅灰石相㊁少量的SiO 2以及玻璃相,所以介电常数增加,介电损耗下降㊂结合图11(d)和图9的XRD 谱,大的孔隙以及Ca 2B 2O 4的逐渐增多是介电损耗增加的主要原因㊂第4期卫志洋等:CaO-B2O3-SiO2微晶玻璃的制备及介电性能1281㊀图11㊀不同B2O3含量的CaO-B2O3-SiO2微晶玻璃的SEM照片Fig.11㊀SEM images of CaO-B2O3-SiO2glass-ceramics with different B2O3content图12㊀不同B2O3含量的CaO-B2O3-SiO2微晶玻璃的介电常数和介电损耗Fig.12㊀Dielectric constant and dielectric loss of CaO-B2O3-SiO2glass-ceramics with different B2O3content㊀㊀表3为本文与几种当前商用LTCC基板材料在性能上的对比,可知本文材料基本可以达到当前材料应用的要求㊂表3㊀本文与几种典型商用LTCC基板材料对比Table3㊀This thesis compares with several typical commercial LTCC substrate materialsLTCCs(main composition)Supplierεr tanδ/10-3CTE/(10-6㊀ħ-1) A6M(CaO-B2O3-SiO2)Ferro 5.90<2@10.0GHz7.00C0-d720(MgO-Al2O3-SiO2)Kyocera 4.900.85@1MHz 2.10951(Al2O3+CaZrO3+glass)Dupont7.806@3.0GHz 5.80 This thesis 5.85 1.37@10.0GHz7.163㊀结㊀论1)通过熔融水淬法制备出的CBS微晶玻璃密度为2.54g/cm3,试样的烧结温度为900ħ,满足温度方1282㊀ 玻璃材料与玻璃技术 专题(II)硅酸盐通报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第43卷面基板材料的要求㊂2)增加Ca2+能够破坏Si O键的结构,使硅灰石晶相的质量分数上升;当缺乏Ca2+时,[SiO4]会与[SiO4]结合,生成SiO2相㊂钙离子的极化作用导致玻璃网络的极性增加,最终导致介电常数的增加㊂硼的存在加速了玻璃化,降低了玻璃的熔点,晶相的析出更加容易,硅灰石晶相数量的增加,会影响材料的介电性能㊂介电常数先增加后减少,介电损耗则相反㊂3)通过调节m(CaO)/m(SiO2)质量比以及B2O3含量得到了性能良好的微晶玻璃㊂当m(CaO)/m(SiO2)质量比为0.89,B2O3质量分数为15%时,热膨胀系数为7.16ˑ10-6㊀ħ-1,介电常数为εr为5.85,介电损耗tanδ为1.37ˑ10-3(10GHz)㊂参考文献[1]㊀LIN Z H,LI M H,HE J Q,et al.Effect of Ta2O5addition on the structure,crystallization mechanism,and properties of CaO-B2O3-SiO2glassesfor LTCC applications[J].Ceramics International,2023,49(3):4872-4880.[2]㊀曹㊀禹,海㊀韵,朱宝京,等.低温共烧陶瓷用玻璃材料研究进展[J].硅酸盐学报,2022,50(4):1182-1192.CAO Y,HAI Y,ZHU B J,et al.Research progress on glass materials for low-temperature co-fired ceramics[J].Journal of the Chinese Ceramic Society,2022,50(4):1182-1192(in Chinese).[3]㊀WANG M,ZUO R Z,JIN J,et al.Investigation of the structure evolution process in sol-gel derived CaO-B2O3-SiO2glass ceramics[J].Journalof Non-Crystalline Solids,2011,357(3):1160-1163.[4]㊀周丹丹.低温共烧陶瓷CaO-B2O3-SiO2的组成㊁结构与性能的研究[D].上海:华东理工大学,2018.ZHOU D D.Study on the component,structure and properties of low temperature sintered CaO-B2O3-SiO2ceramics[D].Shanghai:East China University of Science and Technology,2018(in Chinese).[5]㊀JIA A Q,ZHANG W J,CHENG X Y,et al.Effects of B2O3contents on crystallization behaviors and dielectric properties of CaO-B2O3-SiO2glass ceramics[J].Key Engineering Materials,2016,680:301-305.[6]㊀DAI B,ZHU H K,ZHOU H Q,et al.Sintering,crystallization and dielectric properties of CaO-B2O3-SiO2system glass ceramics[J].Journal ofCentral South University,2012,19(8):2101-2106.[7]㊀HE D F,GAO C.Effect of boron on crystallization,microstructure and dielectric properties of CBS glass-ceramics[J].Ceramics International,2018,44(14):16246-16255.[8]㊀CHIANG C C,WANG S F,WANG Y R,et al.Characterizations of CaO-B2O3-SiO2glass-ceramics:thermal and electrical properties[J].Journal of Alloys and Compounds,2008,461(1/2):612-616.[9]㊀韦鹏飞,郝凌云,杨晓莉,等.Ca/Si摩尔比对CBS系微晶玻璃结构与性能的影响[J].电子元件与材料,2014,33(2):65-67.WEI P F,HAO L Y,YANG X L,et al.Effect of Ca/Si mol ratio on microstructure and properties of CaO-B2O3-SiO2glass ceramics[J].Electronic Components and Materials,2014,33(2):65-67(in Chinese).[10]㊀SHAO H B,WANG T W,ZHANG Q T.Preparation and properties of CaO-SiO2-B2O3glass-ceramic at low temperature[J].Journal of Alloysand Compounds,2009,484(1/2):2-5.[11]㊀FU Y,LI P Z,TAO H J,et al.The effects of Ca/Si ratio and B2O3content on the dielectric properties of the CaO-B2O3-SiO2glass-ceramics[J].Journal of Materials Science:Materials in Electronics,2019,30(15):14053-14060.[12]㊀ZHU H K,ZHOU H Q,LIU M,et al.Microstructure and microwave dielectric characteristics of CaO-B2O3-SiO2glass ceramics[J].Journal ofMaterials Science:Materials in Electronics,2009,20(11):1135-1139.[13]㊀MAO H J,WANG F L,CHEN X Y,et al.Preparation of BaO-MgO-Al2O3-SiO2/Al2O3glass-ceramic/ceramic LTCC substrate material formicrowave application[J].Journal of Materials Science:Materials in Electronics,2023,34(4):247.[14]㊀KINGMA K J,HEMLEY R.Raman spectroscopic study of microcrystalline silica[J].American Mineralogist,1994,98(7):975-978.[15]㊀BATES J B.Raman spectra ofαandβcristobalite[J].The Journal of Chemical Physics,1972,57(9):4042-4047.[16]㊀KUNRCXR J D.Raman and infrared study of pressure-induced structural changes in CaMgSirO6,and CaSiO,glasses[J].AmericanMineralogist,1992,77,258-269.[17]㊀WANG S F,LAI B C,HSU Y F,et al.Dielectric properties of CaO-B2O3-SiO2glass-ceramic systems in the millimeter-wave frequency range of20-60GHz[J].Ceramics International,2021,47(16):22627-22635.[18]㊀LI J F,SUN Y Q,LI Z M,et al.Short-range and medium-range structural order in CaO-SiO2-TiO2-B2O3glasses[J].ISIJ International,2016,56(5):752-758.[19]㊀PARTYKA J,LES'NIAK M.Raman and infrared spectroscopy study on structure and microstructure of glass-ceramic materials fromSiO2-Al2O3-Na2O-K2O-CaO system modified by variable molar ratio of SiO2/Al2O3[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2016,152:82-91.第4期卫志洋等:CaO-B2O3-SiO2微晶玻璃的制备及介电性能1283㊀[20]㊀TSAI Y L,HUANG E,LI Y H,et al.Raman spectroscopic characteristics of zeolite group minerals[J].Minerals,2021,11(2):167.[21]㊀HUANG B H,XIA T,SHANG F,et al.A new BaB2O4microwave dielectric ceramic for LTCC application[J].Journal of the European CeramicSociety,2023,43(14):6107-6111.[22]㊀ZHANG P,HAO M M,XIAO M,et al.Crystal structure and microwave dielectric properties of novel BiMg2MO6(M=P,V)ceramics with lowsintering temperature[J].Journal of Materiomics,2021,7(6):1344-1351.[23]㊀LIU J Z,WU X F,XU N X,et al.Crystallization,sinterability and dielectric properties of CaO-B2O3-SiO2glass ceramics with Al2O3additives[J].Journal of Materials Science:Materials in Electronics,2015,26(11):8899-8903.[24]㊀关振铎,张中太,焦金生.无机材料物理性能[M].2版.北京:清华大学出版社,2011.GUAN Z D,ZHANG Z T,JIAO J S.Physical properties of inorganic materials[M].2nd ed.Beijing:Tsinghua University Press,2011(in Chinese).[25]㊀YAN T N,ZHANG W J,MAO H,et al.The effect of CaO/SiO2and B2O3on the sintering contraction behaviors of CaO-B2O3-SiO2glass-ceramics[J].International Journal of Modern Physics B,2019,33(9):1950070.[26]㊀ZHU H Y,FU R L,AGATHOPOULOS S,et al.Crystallization behaviour and properties of BaO-CaO-B2O3-SiO2glasses and glass-ceramics forLTCC applications[J].Ceramics International,2018,44(9):10147-10153.[27]㊀DING Y Y,LIU S X,LI X Y,et al.Luminescent low temperature co-fired ceramics for high power LED package[J].Journal of Alloys andCompounds,2012,521:35-38.[28]㊀WANG S F,LAI B C,HSU Y F,et al.Physical and structural characteristics of sol-gel derived CaO-B2O3-SiO2glass-ceramics and theirdielectric properties in the5G millimeter-wave bands[J].Ceramics International,2022,48(7):9030-9037.[29]㊀ZHOU X H,LI E Z,YANG S L,et al.Effects of La2O3-B2O3on the flexural strength and microwave dielectric properties of low temperatureco-fired CaO-B2O3-SiO2glass-ceramic[J].Ceramics International,2012,38(7):5551-5555.[30]㊀ALENCAR M V S,BEZERRA G V P,SILVA L D,et al.Structure,glass stability and crystallization activation energy of SrO-CaO-B2O3-SiO2glasses doped with TiO2[J].Journal of Non-Crystalline Solids,2021,554:120605.[31]㊀FU S L,HSI C S,KANG C Y,et al.Investigations of lead-free glasses for post-fired and embedded thick film resistors[J].Key EngineeringMaterials,2013,573:137-142.[32]㊀HAJIAN A,ARTEMENKO A,KROMKA A,et al.Impact of sintering temperature on phase composition,microstructure,and porosificationbehavior of LTCC substrates[J].Journal of the European Ceramic Society,2022,42(13):5789-5800.[33]㊀DONG C,WANG H,YAN T N,et al.The influence of CaF2doping on the sintering behavior and microwave dielectric properties of CaO-B2O3-SiO2glass-ceramics for LTCC applications[J].Crystals,2023,13(5):748.[34]㊀LU Y,SHAN Y T,GUO X,et al.Effect of silica addition on microstructure,sintering behavior,and dielectric properties of borosilicateglass/alumina composites for LTCC application[J].Journal of Materials Science:Materials in Electronics,2023,34(5):443. [35]㊀任海深.B2O3-La2O3-MgO-TiO2微晶玻璃基低温共烧陶瓷研究[D].上海:中国科学院上海硅酸盐研究所,2018.REN H S.Study on B2O3-La2O3-MgO-TiO2glass-ceramics based LTCC materials[D].Shanghai:Shanghai Institute of Ceramics,Chinese Academy of Sciences,2018(in Chinese).。